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Abstract

This article tries to connecttwo separatestrandsof literatureconcern-
ing geneticalgorithms. On the onehand,extensive researchtook placein
mathematicsandcloselyrelatedsciencesin orderto find out moreaboutthe
propertiesof geneticalgorithmsasstochasticprocesses.On theotherhand,
recenteconomicliteratureusesgeneticalgorithmsasa metaphorfor social
learning.Thispaperwill facethequestionwhataneconomistcanlearnfrom
themathematicalbranchof research,especiallyconcerningtheconvergence
andstabilitypropertiesof thegeneticalgorithm.

It is shown that geneticalgorithmlearningis a compoundof threedif-
ferentlearningschemes.First, every particularschemeis analyzed.Thenit
will bepointedout that it is thecombinationof thethreeschemesthatgives
geneticalgorithmlearningits specialflair: A kind of stability somewherein
betweenasymptoticconvergenceandexplosion.

1 Intr oduction

As aconsequenceof thediscussionconcerningtheconceptsof perfectandbounded
rationalityvarioussuggestionshave beenmadewhich learningmechanismto use
insteadof letting economicagentsknow everythingthey needto know in orderto
solve theireconomicproblems.1

Oneof themetaphorsthatcanbeusedfor economiclearningis thatof genetic
algorithmlearning(GA learning). Geneticalgorithmlearningis a way of social
ratherthanindividual learning.�

Universiẗat Hannover, Institut für Volkswirtschaftslehre
1See,for exampleSargent(1993).
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Sociallearningalwaysmeanslearningfrom eachother. Thus,theresimply is
no GA learningby single,isolatedagents.This fact suggestsa closeconnection
of GA learningto evolutionaryeconomictheory, both fields of researchheavily
relying on a populationconceptinsteadof focusinganeconomicagentasan iso-
latedindividual. The fact that thereis no isolatedgeneticlearningalsorevealsa
significantconceptualdifferencebetweenGA learningon theonehandandstatis-
tical learningmechanisms(seee.g.Lucas(1986)or MarcetandSargent(1989))or
otherformsof artificial intelligencebasedlearning(seee.g.Heinemann(1998)for
neuralnetworklearning)on theother.

Social learningasgatheringinformationaccordingto the simplerulesof ge-
neticalgorithmsmeansin fact learningaccordingto threedifferentlearningtech-
niques:learningby imitation (selection/reproduction), learningby communication
(crossover)andlearningby experimentation(mutation).Recenteconomicresearch
showsthatgeneticalgorithmlearningperformsquitewell asalearningmechanism
when appliedto somestandardbenchmarkcasesof economictheory (Andreoni
andMiller (1995),Arifovic (1994,1995,1996),Bullard andDuffy (1998),Dawid
(1996a).Geneticalgorithmlearningis ableto reproducetheresultsof at leastsome
mainstreameconomicmodels,especiallyconcerningtheirstabilityproperties.One
of thescientificchallengesto GA learningresearchis to find out if therearecertain
propertiesof geneticalgorithmswhich leadgeneticlearningmodelsat leastto the
neighborhoodof theresultsof mainstreameconomicmodels.If suchpropertiesare
found,GA learningcould(amongotherthings)serveasabehavioral foundationof
mainstreameconomics,supportingit at its Achilles’ heel: its problemsat thefield
of heterogeneityandtheinteractionof diverseeconomicagents.2

Thus,theaim of thispaperis to determine,which arethepropertiesof theGA
thatleadto theobservedsimilaritiesof theresultsof geneticalgorithmlearningand
theoutcomeof analyticalmodels.Accordingly, themainquestionto beanswered
within this paperis: ‘Doesgeneticalgorithmlearningleadto behavioral stability,
andif so,how?’

Economicmodelsusingthemetaphorof geneticalgorithmlearninghave been
widely employed.3 Although therearequite a few articlesaboutthe properties
of geneticalgorithmsin moremathematicalfieldsof research(Davis andPrincipe
(1993),Nix andVose(1992),Rudolph(1994),Goldberg andSegrest(1987)),there
is a lack of theoreticalwork describingthebasicpropertiesof geneticalgorithms
usedin economicresearch.4 More thanthis, thereis a large amountof work ad-

2GA learningmodelscandoevenmorethanjustsupplementmainstreameconomics.A first step
beyondtheabilitiesof mainstreameconomictheoryis Arifovic (1995),who usesGA learningasa
tool of equilibriumselection.

3For a survey, seeClemensandRiechmann(1996).
4Thereis at leastsomework by Dawid (1996a,b), whotriesto copewith thisproblem.
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dressingthe dynamicsof populationsof biological or artificial entitieswithin a
selective environment,which could be usedfor the analysisof economicgenetic
algorithms(e.g. MaynardSmith (1982),HofbauerandSigmund(1988),Weibull
(1995),Riechmann(1998)).

In orderto examinegeneticalgorithmlearning,thisarticleappliestheresultsof
theserathertechnicalpapersto thefield of economictheory, putting its emphasis
mainlyon theinterpretationof theresultsandto asmallerextenton themathemat-
ical techniquesof obtainingthem.

Thepaperstartsby briefly reviewing conceptsof dynamicsandstability (sec-
tion 2). Then,a mathematicalmodelof ageneticalgorithmis setup andanalyzed.
After that,theresultof theanalysisis interpretedin termsof learningbehavior in a
marketeconomy. Thepaperendswith asummary.

2 Stability

Following mainstreameconomicliterature,a largenumberof economicproblems
resultin situationswhich canbedescribedassomekind of stableequilibria. Sta-
bility in mainstreameconomicsdescribesa situationwhere— aftersomestageof
transitionaldynamics— a stateis establishedin which decisionsof theeconomic
agentsceaseto change(asymptoticstability), changewithin a restrictedspaceof
alternatives(Ljapunov–stability) or changewithin someregular manner(cyclical
stability).5

A closerlook revealsthatthesenotionsof stabilityaremainlynotionsof macro
stability. Thestateof asocietyin its roleasaneconomicaggregatecanbedescribed
by macrodatasuchasequilibriumpricesandquantities.Mainstreameconomicdy-
namicssolely focusesthe movementof macrodata. Moreover, mainstreameco-
nomicshasno realautonomousconceptof micro dynamics,i.e. dynamicsof in-
dividual behavior. A distinct notionof micro behavior simply is not needed.As
longaseconomicresearchrelieson theconceptof the‘representativeindividual’6,
micro andmacrodynamicsarejust thesame.

Economicmodelswhich give up relianceon theconceptof therepresentative
agentandusea moreexplicit formulationof heterogeneitymaycausethenotions
of macroandmicro dynamicsto fall apart.

GA learningmodelsdemonstratevariouscombinationsof macroand micro
level dynamics.Someexamplesaregivenin thefollowing:

5Theserathernaive descriptioncaneasilybe refinedby consultinga textbookon mathematical
or economicdynamics,suchasAzariadis(1993)or HofbauerandSigmund(1988).

6For a contrast,seeFranke(1997),who developsa conceptof a representative individual explic-
itly basingon notionsof heterogeneity.
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� Aggregatedataremainsunchangedin time (‘asymptoticstability’) and in-
dividual behavior is identicalfor all economicagents.This resulthasbeen
gainedby e.g.Arifovic’s (1994)augmentedGA.� Aggregatedataremainsunchangedin time (‘asymptoticstability’) while in-
dividualbehavior isheterogenousandregularlychangingfromtimeto time.7

Dawid (1996a)findsstability of this typeasapossibleresultof hisextended
cobwebmodel.� Aggregatedatacomesfrom a finite set of numbers(‘Ljapunov stability’)
while individualbehavior is heterogenousandchangingin sucha way that
only a finite numberof socialbehavioral patternswill show up. This is the
kind of dynamicsmostGA learningmodelsleadto, e.g.Arifovic’s (1994)
basicGA.� Aggregatedatachangesregularly in cycles(‘cyclical stability’) while differ-
ent agentsbehave differently in the sameperiod,andevery agentchanges
his behavior from time to time. This kind of dynamicscanbefound in GA
learningmodelslike Riechmann(1997).

Throughoutthe restof this paper, dynamicsof thedifferentlearningmethods
thatarepartof theGA learningprocesswill becharacterizedby both,their macro
andtheir microbehavior.8

3 GeneticAlgorithm Learning asa Mark ov Process

3.1 The Basics

Standardgeneticalgorithmsare(computational)algorithmswhich transferasetof
geneticindividualsfrom onegenerationto thenext. Geneticindividualsarecoded
asstringsof (binary) bits. The setof geneticindividualsof the samegeneration
is calleda geneticpopulation.In thestandardgeneticalgorithm,eachpopulation
is subjectto four geneticoperators,selection,reproduction,recombinationand
mutation,to finally resultin thenext population.9

7As anillustration,imaginea marketin which two quantitydecisionsareequallyattractive to the
suppliers:100 and0. A situationarisesin which in every period30% of thesupplierschoose100
and70%choose0. Everytimean0–supplierchangeshisquantityto 100adifferentsupplierchanges
his from 100to 0. Thus,themacro–level is stablewhereasthemicro level is not.

8SeeBjörnerstedtandWeibull (1996)for a similarapproachto learningmechanisms.
9Meanwhile,therearevarioustextbooksandarticlesdescribingthestandardgeneticalgorithmin

detail. Oneof thefirst, yet still oneof thebestmaybeGoldberg (1989).More goodonesareDavis
(1991)andMichell (1996).
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A geneticindividual of lengthL consistsof L symbols’1’ and’0’, so thatS,
thesetof all possibledifferentgeneticindividualsof lengthL is givenas

S
��� 0 � 1 � L (1)

Fromthatit is clearthatthereare �
S

� 	 N 
 2L (2)

differentgeneticindividualsor geneticindividualsof a differenttype.
The ‘value’ of a geneticindividual is obtainedby decodingthe bit string.10

In economicmodelsthisvaluedescribesthebehavioral strategy11 of aneconomic
agent,e.g.thequantitydecisionof asupplierin acobwebmodel(Arifovic (1994)).
Accordingto (2) thereareN differentstrategieswhich canbecodedby a genetic
individualof lengthL.

A geneticpopulationis a setof M geneticindividuals.12 In economicmodels
a geneticpopulationrepresentsthewholeof thestrategiesof all economicagents
in thesamesituationat thesametime,e.g.thequantitydecisionsof all suppliersin
oneperiodof acobwebmodel.

A geneticpopulationconsistingof M geneticindividualscanbe written asa
vector

m 
�� m� 1
�� m� 2
���������� m� N 
�
 (3)

wherem� i 
 is the absolutefrequency of individuals of type i in populationm.
Hence,

N

∑
i � 1

m� i 
�
 M � (4)

Thus,ageneticpopulationcanbewrittenandinterpretedasadistributionof genetic
individuals.

Thesetof all differentgeneticpopulationsis S� . Thereare

�
S� � 
 N � different

geneticpopulations:13

N � 
 �
M � N � 1

M � 
 �
M � N � 1

N � 1 � � (5)

10The exact way of decodingthe bit string of a geneticindividual into its valuediffers among
the models. But — however decodingmay work — thereis just onefact worth noticing: genetic
individualscanonly encodea finite numberof values,they cannever encodethewholecontinuum
of realnumbers.

11Althoughtheterm‘strategy’ is widelyusedin learningrelatedliterature,it doesnotalwaysmean
thesameas‘strategy’ in agametheoreticsetting.Whatis learnedis sometimesjustagametheoretic
‘action’. (For thesedefinitions,seee.g.Rasmussen(1994),pp.9 )

12M is oftencalledthesizeor eventhelengthof a population.
13A simpleandratherintuitive explanationof thefollowing formulacanbefoundin Nix andVose

(1992),p. 81.
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Thegeneticalgorithmitself canbedescribedasastochasticprocesswhichturns
onegeneticpopulationinto anotherby usingcertainstochasticoperators,namely
selection/reproduction,mutationand crossover. It can be shown that a genetic
algorithmsatisfiestheMarkov property.14 Thus,a geneticalgorithmis a Markov
process.

To gainanassimpleaspossibleinsightinto theworkingof ageneticalgorithm
without lossof precision,this paperwill analyzethealgorithmpiecewise. First a
corealgorithmwill beviewed,theoneoperatoralgorithm.Then,in thetwo follow-
ing stepstwo moregeneticoperators— or learningschemes— will beintroduced
until theanalysiscoversthewholegeneticalgorithm.15

3.2 The OneOperator Algorithm — Learning by Imitation

Thevery heartof a geneticalgorithmis theselection–/reproduction operator. Se-
lectionassignsa fitnessvalueto eachgeneticindividualwithin thecurrentgenetic
population.Thefitnessof an individualgivesinformationabouttheperformance
of theindividualaccordingto theproblemto besolved.Thefitnessusuallyequals
a valueof a function which is optimizedby meansof the geneticalgorithm. In
theeconomicinterpretationthefitnessshowshow goodtheencodedstrategy of an
agentreally is. An exampleis Arifovic’s (1994)cobwebmodel,wherethefitness
is given by the profit an agentearnsaccordingto his quantity decision. In this
modeltheobjective functionto beoptimized(precisely:maximized)by meansof
thegeneticalgorithmis theindividualprofit function.

Reproductionmeanstheprocessof deriving anew populationfrom anold one.
Reproductionis doneby ‘drawing’ (with replacement)geneticindividualsout of
thepoolof theold population.Eachindividual’schanceof beingdrawn is equalto
its relativefitness,i.e. thefitnessof theindividual relative to theaveragefitnessof
its population.

Fromtheeconomicpoint of view, theassignmentof thefitnessto eachof the
individualsis thecrucialpartof thelearningprocess.It is thefitnessof a strategy
thatdecideson beingreproducedor not. This centralpartof the processis often
saidto beplayedby themarket.Themarketbringstogetherall agents’behavioral

14TheMarkov propertyis oftencalledtheno–memory–property. A Markov processhasnomem-
ory in thesensethattheprobabilityof reachingonestatefrom anotherdependsonly on thecurrent
statebut in nowayonany otherstatein thehistoryof thestochasticprocess.Moreelaborateanalysis
andexplanationcanbe found in many standardtextbooks,e.g.Goodman(1988)or Isaacsonand
Madsen(1976).

15For readersfamiliar with Dawid’s (1996a)analysisaremarkseemsworthwhile:Dawid’s propo-
sition, statingthat economicgeneticalgorithmsarespecialbecauseof their statedependentfitness
function,doesnothaveany consequencesto thefurtherresearchin thispaper. ThedescribedMarkov
chainwill notalterits basicproperties,whicharetime homogeneityandirreducibility.
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strategies,evaluatesthem,andrevealseachstrategy’squality relativeto thepresent
economicenvironment(whichconsistsof therestof thepopulation’sstrategiesand
the economicproblemto be solved). Thus,the role of the marketwithin genetic
algorithmlearningis mainly thewell–known roleof beingthesourceof up to then
unknown information. Themarketproducesa feedbackto every singleeconomic
agentwhich induceshim to changehis behavior (becauseof its poorperformance)
or to keepit (becauseof its relativesuccess).

Selectionandreproductioncanbeinterpretedasaformof learningby imitation:
Agentswhosestrategiesleadto relatively poorperformance(low relative fitness)
giveuptheir formerstrategy andcopythestrategy of amoresuccessfulmemberof
thepopulation.

The following Markov chainanalysisshows that this simplelearningmecha-
nismleadsto stablethoughnot alwaysoptimalbehavior.

The chanceof a geneticindividual i to be reproducedinto next generation’s
populationdependson his relative fitnessP1 � i � n
 , which is therelationof its own
fitnessto thefitnessof thewholepopulationn. R����
 is theobjective function(e.g.
theprofit functionin Arifovic (1994)):

P1 � i � n
�
 n � i 
 R� i 

∑ j � Sn � j 
 R� j 
 � (6)

Consequently, theprobabilityof populationm to becomethedirectsuccessor
of populationn by reproductionandselectionis

P1 � m� n
 
 �
M
m� ∏

i � S

P1 � i � n
 m! i " � (7)

where �
M
m� 
 M!

∏i � S � m� i 
 ! 
 � (8)

P1 � m� n
 is a transitionprobability of a transitionmatrix describingthe one
operatoralgorithmasa Markov process.

The Markov processcharacterizingthe oneoperatoralgorithmhasa number
of absorbingstates. Every uniform population,i.e. every populationconsisting
of only one type of individuals, is an absorbingstate. As thereare2L different
geneticindividualsthereareat least2L absorbingstates.Everyabsorbingstatecan
bereachedfrom at leastoneof the remainingtransientstates,sothat theMarkov
processwill inevitably endup in oneof theabsorbingstates.Thismeansthataone
operatorgeneticalgorithmwill alwaysleadto a uniform geneticpopulation.

If theoneoperatoralgorithmis interpretedasaprocessof learningby imitation,
thenthisprocesswill evidently leadto asituationwhereall economicagentsfollow
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thesamestrategy. The resultwill be anasymptoticallystable,uniform patternof
socialbehavior.

Thedrawbackof thisresultis thefollowing: Evenif theobjectivefunctionR�#�$

is totally flat, which meansthatminR����
%
 maxR����
 , theprocessneverthelesswill
converge to anabsorbingstate.In populationgeneticssucha situationis calleda
situationwithout selective pressure.Fromthis branchof scienceit haslong been
known that theabsenceof geneticpressurewill neverthelessleadto thedescribed
phenomenonwhich is calledgeneticdrift.16

Thus,learningby pureimitation will leadto stability, but it canonly by pure
chanceleadto aresultwhichis anoptimalsolutionof thegiveneconomicproblem.

3.3 The Two Operator Algorithm — Learning by Imitation and Com-
munication

Theoneoperatorgeneticalgorithmcanbeaugmentedby asecondgeneticoperator:
recombination. The specificrecombinationoperatorusedhere is the one point
crossover.17

Crossoverrandomlychoosestwogeneticindividuals(‘parents’)fromtheirpop-
ulation. It thencreatesanoffspringgeneticindividualby combiningpartsof thebit
stringsof thetwo parents.In orderto do so,thecrossover operatorrandomlycuts
the parents’bit stringsat a ‘crossover point’ s, andfits togetherthe first part of
thefirst parent’sandsecondpartof thesecondparent’sbit stringin orderto create
theoffspring. (Figure1 showsanexampleof crossingover two 16–bitparentsata
crossoverpoint of s 
 4.)

& & & & & & &�' ((((((( )
*+*-,.*/ 0�1 2 *3*4*4*4*+*4*-,5*4*4*-, *+*4*6,7,.*-,.*6,8,3,.*4*-,.*6,/ 0�1 2

1 2�/ 0*4*-,.* 1 2�/ 0*3*9,5*-,4,4,.*3*-,:*-,
Figure1: OnePointCrossover (example)

Crossover hasoftenbeeninterpretedasa form of learningby communication.
Two economicagentsmeet,talk to eachotherabouttheir strategiesandthusgive

16SeeMaynardSmith(1989).
17Thereis in fact a large numberof recombinationoperators(seee.g.Davis (1991)),which can

beusedwithin a geneticalgorithm.Theonepoint crossover, however, is therecombinationoperator
usedin thestandardgeneticalgorithmaswell asin mostof the othereconomicgeneticalgorithm
models.
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rise to the opportunityof adaptingpartsof eachother’s behavior. Although this
interpretationseemsabit strangewhenappliedto Arifovic’s(1994)cobwebmodel,
therearesomemodelsin whichlearningby communicationappearsto besensible.
A goodexamplefor this is Axelrod’s (1987)work concerningevolutionarygame
theory. In his model,Axelrodusesthe geneticindividual’sbit string to encodea
long term‘defect’ and‘cooperate’strategy for therepeatedprisoner’sdilemma.

In technicalterms,crossover is a mathematicalfunction I �#��
 . It hasfour argu-
mentsi, j , k andsandreturnsthevalue0 or 1:

I � i � j � k � s
 �6� 0; 1 � ; i � j � k � S; s �-; 1 �������<� L � 1= (9)

i and j arethegeneticindividualsthathavebechosenfor crossover, i.e.the‘parents’
of individual k which is the offspring producedby crossover. s is the crossover
point, i.e. theplaceat which the parents’bit stringsarecut. I �#��
 returns1, if the
offspringk consistsof thefirst partof i andthesecondpartof j . I ����
 returns0, if k
consistsof thefirst partof j andthesecondpartof i.18

Thereis a probabilityχ denotingthechanceof an individual gettinginvolved
into crossover. Moreover, thecrossingpoint s is setrandomly. Thepossiblepoints
s
�-; 1 � 2 �������>� L � 1= arei.i.d.

Thus, probability P2 � k � n
 of obtainingan individual k from populationn by
crossoverandselection/reproductionis

P2 � k � n
%
?� 1 � χ 
 P1 � k � n
@� χ∑
i � S

∑
j � S

P1 � i � n
 P1 � j � n
 1
L � 1

L A 1

∑
s� 1

I � i � j � k � s
�� (10)

In analogyto (7), theprobabilityof gainingpopulationmdirectly from n is

P2 � m� n
 
 �
M
m� ∏

i � S

P2 � i � n
 m! i " � (11)

The stochasticprocessof the crossover–selection/reproductionalgorithm is
very similar to theoneoperatoralgorithm(see3.2),especiallyin theimpossibility
of leaving a uniform population. Again, every uniform geneticpopulationis an
absorbingstateof theMarkov process.Thegeneticalgorithmwill inevitably end
up in oneof thesestates.Uniform behavior is a situationwhich cannotbeleft by
meansof imitationandcommunicationany more.

18In figure1, if theupperleft individual wasi andtheupperright onwas j, theoperationcouldbe
describedasI B i C j C k C 4D . If the lower individual wask, the resultof theoperationshown in figure1
would beI B i C j C k C 4DFE 1.
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3.4 The Thr eeOperator Algorithm — Learning by Imitation, Com-
munication and Experiments

Finally, a third operatoris addedto createa threeoperatoralgorithm, which is
identicalto thestandardgeneticalgorithm(Goldberg (1989)).Thethird operatoris
mutation.Mutationrandomlyalterssinglebitsof thebit stringby whicha genetic
individualis coded.As abinarybit canonly bechangedinto its inverse,thechang-
ing of a bit is often referredto as‘flipping’ thebit. Seefigure2 for an example.

G*4*-,.*3*8*3*4*4*4*4*6,.*+*4*-,
*4*-,.*3*8*3*4*-,.*4*6,.*+*4*-,
Figure2: Mutation(example)

Fromaneconomicperspective,mutationcanbeviewedasexperimentation.19

Thestrategy of aneconomicagentcanbeslightly changedby alteringpartsof it.
Mutationcansupportthediscoveryof totallynew strategies.Whereasimitation(se-
lection/reproduction)andcommunication(crossover)canonly reproducestrategies
which arealreadyin use(at leastpartially) by otherindividuals,experimentation
(mutation)is ableto find strategiesthathave never beenusedbefore.Mutationis
anoperatorcapableof describingtrueinnovation.

Themain influenceon mutationis themutationprobabilityµ. µ is theproba-
bility of eachsinglebit of anindividual’sbit stringto beflipped.20

Moreover, the probability of an individual i to be turnedinto individual j by
mutationonly dependsonthenumberof bits thathaveto beflippedin orderto turn
i to j . Thisnumberis calledtheHammingdistancebetweeni and j , H � i � j 
 .21 H �#�$

is adistance,sothat

0 H H � i � j 
�H L � (12)

Theprobabilityof turningindividual i into j is givenby

µH ! i I j " � 1 � µ
 ! L A H ! i I j "J" � (13)

19An alternative interpretationseesmutationastheresultof mistakesin imitation. Mutationarises
if an economicagentfails to correctly imitate anotheragent’s strategy. Seefor exampleAlchian
(1950).

20Usually, µ is a verysmallprobability, oftensetto somewherebetween1K 100and1K 1000.
21TheHammingdistancebetweentheindividualsin figure2 is — certainly— 1.
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In thethreeoperatorcase— usingselection/reproduction,crossoverandmuta-
tion — theprobabilityof gainingindividual i from populationn is

P3 � i � n
�
 ∑
j � S

µH ! i I j " � 1 � µ
 ! L A H ! i I j "L" P2 � j � n
@� (14)

Definingα : 
 µ
1 A µ leadsto

P3 � i � n
�
 1� 1 � α 
 L ∑
j � S

αH ! i I j " P2 � j � n
@� (15)

Finally, the probability of turning populationn directly into m by using the
threeoperatoralgorithmis

P3 � m� n
 
 �
M
m� ∏

i � S

P3 � i � n
 m! i " � (16)

Again, (16) is a transition probability of a transition matrix describingthe
Markov processof thethreeoperatoralgorithm.

Unlike for theoneandtwo operatoralgorithms,thereareno absorbingstates
any more. It canbe shown that thereis a positive lower boundfor P3 � m� n
 in-
dicating that P3 � m� n
 is strictly positive. Every stateof the Markov processcan
bereachedfrom every other(including thestateitself) within evenonestep.This
meansthatthewholeMarkov chainconsistsof only one— transient— class.

Thethreeoperatorgeneticalgorithmwill notconvergeinto someuniformstate.
Neverthelessit canbeshownthatthethreeoperatorgeneticalgorithmwill converge
into asituationwith aconstantprobabilitydistributionof all of its states(i.e. all its
populations).

An outlineof theproof runsasfollows: TheonesteptransitionmatrixP of the
threeoperatoralgorithmis regular, which (in thiscase)meansthatit is irreducible
andaperiodic.For regularmatricesthereexistsastochasticmatrixA with

A 
 lim
n M ∞

Pn � (17)

which consistsof identical row vectorsqα. qα gives the constantlong run dis-
tribution of the statesof the Markov process.This meansthat it characterizesa
probabilitydistributionwhich is not changedby anadditionalstepof theprocess:

qα 
 qαP� (18)

Accordingto thedefinitionof eigensystems,qα is a left eigenvectorof P to P’s
eigenvalueof λ 
 1.
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The Perron–Frobeniustheoremfor regular stochasticmatrices22 ensuresthat
thereexistsoneunique(dueto multiplication)suchvectorqα. Thestationarydis-
tribution of statesis characterizedby thatvectorqα theelementsof which sumup
to unity:

N

∑
i � 1

qα I i 
 1 (19)

Fromthisit canbeseenthatthereis auniqueandconstantlong–rundistribution
of populationswhich is reachedby thethreeoperatoralgorithm.Thespecificform
of thisdistribution is describedby thevectorqα.

Thisresultlooksabit tricky. It is importantto keepin mindthetwo distinctdis-
tributionstalkedabout.First, a populationis a distributionof geneticindividuals.
Or — in economicterms— apopulationis avectorof individualbehavioral strate-
gies,i.e. asocialbehavioral pattern.Second,anddifferentfrom thefirst, vectorqα
is adistributionof populations,i.e.of differentsocialbehavioral patterns.

In plain mathematicalterms,the three–operator–algorithmendsup in a state
which is Ljapunov stable:Thereis a setof populationswith a positive long run
measure,andthissetis a truesubsetof thesetof all populations.23

A learningschemeconsistingof learningby imitation, communicationand
experimentsdisplaystwo basicproperties:Ontheonehandsuchalearningscheme
will never lead to asymptoticstability in behavior. Economicagentsusingsuch
a schemewill never stopexperimentingandconsequentlywill never stoptrying
new strategies. On the otherhand,in the long run all kinds of experimentswill
occurwith a certainconstantprobability. Thus,aftera while, all combinationsof
individual behavioral strategieswill occurwith a fixed probability. This doesnot
meanthat socialbehavior (or aggregatedatacharacterizingsocialbehavior) will
remainunchangedfor the restof times. But it alsodoesnot meanthat therewill
be erraticbehavior for the restof times. Ljapunov stability of geneticalgorithm
learningsimply meansthat long run socialbehavior will remainwithin a certain
corridorof differentsocialbehavioral patterns.

22See,for example,IsaacsonandMadsen(1976),pp.123–132.
23Ljapunov stability in the spaceof populationscanalso be interpretedas asymptoticstability

in the spaceof long run distributionsof populations: In the long run, a constantandunchanging
distribution of populationsis reached.
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4 Genetic Algorithm Learning under the Regimeof the
Mark et

4.1 SomeBasicNotions

While theprevioussectioncontainsa ratherformal analysis,this sectionswitches
to an interpretationof geneticalgorithmsaslearningprocesses.Specifically, GA
learningwill beinterpretedwhentakingplaceundertheregimeof markets.In this
section,a few conceptsof evolutionarygametheorywill be used. Nevertheless,
the relation of theseconceptsto geneticalgorithm learningwill only be briefly
characterized.For a moredetaileddescriptionof the similaritiesof GA learning
andevolutionarygametheory, seeBirchenhall,Kastrinos,andMetcalfe(1997)or
Riechmann(1998).

First of all, it is importantto recognizethe correspondingapplicationof the
populationconceptin geneticalgorithmlearningaswell asin evolutionarygame
theory. In gametheory, a populationdescribesa set of players,eachplaying a
purestrategy in some(economic)game. An even shorterdescriptionsaysthat a
populationis a frequency distribution of purestrategiesplayedwithin a society.
Note that both interpretationsareexactly the sameas the onesusedfor genetic
populationsin theprecedingsection(especiallyequation(3)).

Furtheranalysisof GA learningwith respectto gametheoryshows that even
morecanbesaid.Everyeconomicagenttriesto maximizehisperformancerelative
to his environment,which can entirely be describedby his objective R �>��
 (see
equation(6)) andthe restof his populationn. Thus,every economicagentfaces
theproblem

max
i � Z

R � i � n
 ; Z N S� (20)

whereZ is thesetof all economicstrategiesavailableto theagent.Z isasubsetof S,
thesetof all possiblestrategies.Equation(20) is thedefinitionof a Nashstrategy:
It claimsthe agentto chosestrategy i of all strategiesZ available to him which
representsthebestresponseto all the otheragents’strategies. Thus,every agent
triesto play Nash,andselection(which is essentiallydrivenby themarket)works
in favourof Nashstrategies.But whetheror notaNashequilibriumor evenaseries
of moving Nashequilibriacanbeobtainedby GA learningdependson Z, which is
thesetof strategiesavailableto theagents.As will bepointedout in greaterdetail
a bit later, Z in turndependson thelearningmechanismstheagentsareallowedto
learn. Markov chainanalysisshows thatonly learningby experimentsis capable
of maintainingastrategy setZ thatis alwaysthesameasS.

Evolutionarygametheoryoffersanothertool whichis valuablefor amoreintu-
iti venotionof GA learningasadynamicprocess:thenotionof evolutionarystabil-
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ity. In short,apopulationis of evolutionarilystablecomposition,if it recoversfrom
theinfectionof aninvadingstrategy within finite time. Althoughnotdirectlyappli-
cableto geneticalgorithms,theconceptevolutionarystabilitycanbetransferredto
GA learningwithoutlosingits basicidea.24 Usingtheideaof evolutionarystability
enablesfocusingthedynamicsof geneticalgorithmlearningfrom adifferentpoint
of view: Geneticpopulationsarecontinuouslychallengedby oneor moreinvading
strategies.Thesestrategieseitherstaywithin thepopulation,by thatimproving its
composition25, or they arerejectedagain. This processof invasionandpossible
rejectioncontinuesforever. Even if an evolutionarily stablegeneticpopulationis
reached,invasionwill still go on, but now every invaderwill berejected.Again it
dependson thelearningmechanismsthatareusedif anevolutionarily stablekind
of socialbehavior (i.e. evolutionarily stablegeneticpopulation,if oneexists)can
begainedor not.

It hasalreadybeenshownin theprecedingsectionsthatgeneticalgorithmlearn-
ing is a compoundlearningstrategy consistingof threedifferenttypesof learning.
Eachof the threetypeshasits own effect on the result of the learningprocess.
This touchestwo aspects,thestabilityof thelearningprocessandthequalityof the
behavior whichwill beenlearned.

As themajoraimof thispaperis to examinethedynamicsandstabilityproper-
tiesof geneticalgorithmlearning,thesecondaspect(quality of learnedbehavior)
will bedescribedratherintuitively. For amoredrastical,i.e. mathematicaldescrip-
tion, refer to Davis andPrincipe(1993),Nix andVose(1992),Rudolph(1994),
Goldberg andSegrest(1987)andDawid (1996a).

4.2 Learning by Imitation

As pointedout in section3.2, learningby imitation leadsto behavioral stability in
its strongestform, i.e.uniformbehavior of all agents.Thereis simplynochanceof
learningotherstrategiesthanthosewhich werealreadycontainedwithin the first
geneticpopulation. (You canonly imitate what is alreadythere— thatsimply is
the true meaningof ‘imitation’.) Moreover, thephenomenonof geneticdrift will
inevidently leadto asymptoticallystable,homogeneousbehavior.26

Thisalsoimpliesthatit is impossibleto find a betterstrategy thanthebestone
containedwithin theveryfirst geneticpopulation.Learningby imitation doeslead
to a stableoutcomeof the learningprocessbut it doesnot necessarilyleadto an

24For detailsof evolutionarystability andgeneticalgorithmsreferto Riechmann(1998).
25A populationis evensaidto be invaded,if thereis nothingmorethana changein frequency of

thestrategiescontainedwithin it, whichmeansthatinvasiondoesnotnecessarilymeantheoccurence
of new strategies.

26SeeBjörnerstedtandWeibull (1996).
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optimalone.
The sameappliesto the notionsof evolutionarydynamics:Only thoseNash

equilibriacanbelearned(by society)whichconsistof strategiesalreadycontained
within thefirst population.More precisely:ThesetZ, which consistsof all strate-
gieslearnableby imitation, is thesetof strategiescontainedwithin thefirst popu-
lation. Only strategiescontainedwithin Z canbelearned.

Thefinal populationthe learningprocessconvergesto is evolutionarily stable
only duetherestrictedsetof learningmechanismsthateconomicagentsareallowed
to use. Theremay be populationswhich are evolutionarily superiorto the one
which is finally learned.But thesesuperiorpopulationscannotbereachedby mere
imitation,becausethey containstrategieswhicharenot containedwithin Z.

In order to clarify the numericaldimensionstalkedabout,imaginea genetic
populationconsistingof M geneticindividuals of length L. Sucha population
canat bestconsistof M differentgeneticindividuals,i.e. representno morethan
M differentbehavioral strategies (

�
Z

� H M.) If only learningby imitation takes
places,only the bestof theseM strategiescan be found, which is a ratherpoor
resultcomparedto thefact that in thiscasea numberof

�
S

� 
 2L (seeequation(2))
differentbehavioral strategiescanexist.27

4.3 Learning by Communication

Learningby communicationis a processvery similar to learningby imitation.28

Specifically, its outcomeis predeterminedby the first geneticpopulationwhich
determinesZ, the set of strategies learnableby communication. Although it is
possibleto exchangepartsof thestrategies(i.e. partsof thebit strings),only those
partscanbeexchangedwhichwerealreadycontainedin thefirst geneticpopulation
(or in Z). If nobodyknowsaboutacertaindetailwhichcouldmakeagoodstrategy
a perfectone,thennobodycanacquirethisdetailby communication.29

Thus,learningby communicationis ableto find betterstrategiesthanlearning
by imitation,becausethebestdetailsof differentstrategiescanbecombined.But
still it is impossibleto find astrategy partsof which werenotcontainedwithin the
first population.

27As an illustration: Takinga geneticpopulationof M E 100 individualsof lengthL E 16, only
about0 O 0015%of all strategiescanbelearnedby pureimitation.

28In fact, learningby communicationis nothingmorethan‘imitation of parts’or, asBirchenhall
(1995)putsit, ‘modularimitation’.

29The sameargumentin its technicalform reads: If, for instance,the bit string of the perfect
strategy requiresan ‘0’ in its secondplace,but every first populationgeneticindividual’s bit string
containsa ‘1’ in secondplace,thenthereis no way of finding theperfectstrategy by just usingthe
crossoveroperator.
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As a secondaspect,a uniform populationstill cannotbealteredby communi-
cation. If all agentsbehave thesame,thereareno differentdetailsof strategiesto
beexchanged.

In theendof thelearningprocess,learningby communicationleadsto a result
which is homogeneousandasymptoticallystable,andwhich in mostcasesleads
to betterresultsthanlearningby imitation, but which still is highly dependenton
the behavioral patternsat the very start of the process. Again, not every Nash
equilibrium can be learnedand the final populationmay only be evolutionarily
stablewith regardsto thelearningmechanismsavailableto theagentsandby that
with regardsto Z, which maybe smallerthanthesetS of all possiblebehavioral
strategies.

In some more technical papers (i.e. Goldberg (1989), Holland (1996)),
crossover or learningby communicationis seento bethemainforceto accelerate
learningby exploringthesearchspace.30 It is pointedout thatlearningof relatively
goodbehavioral strategiesis muchfasterwith communicationinvolvedcompared
to learningby experimentsalone. Additionally, rememberingthe importanceof
heterogeneityfor learningby communication,it is easyto concludethat thereis a
closeconnectionbetweentheextendof heterogeneitywithin a populationandthe
time it takesto find betterbehavioral strategies:Themorediversea populationis,
thefastercana goodsocialbehavior belearned.31

Againimaginingthedimensions,learningbycommunicationalonesearchesup
to

�
Z

� H 2 P M2 Q � L � 1
 alternativestrategies,which canresultfrom crossover based
on theveryfirst population.32

4.4 Learning by Experimentation

Learningbyexperimentationisquitedifferentfrom learningby communicationand
learningby imitation. Experimentscanfind patternsof behavior that have never
occurredin society(i.e. geneticpopulation)before. Experimentationallows for
the developmentof strategieswhich have not beenused— not even partially —
by any earlierpopulation.Experimentationis capableof finding trueinnovation.33

Thismakesit possibleto win betterstrategiesthanby imitationor communication.
Geneticalgorithmresearchshowsthatthestandardgeneticalgorithmis ableto find

30SeeRomer(1992)for adescriptionof learningassearchinga very largesearchspace.
31This mayevenbea behavioral interpretationof theFisherprinciple(Birchenhallet al. (1997)),

which links therateof fitnessgrowth within a populationto thepopulation’svariance(seee.g.May-
nardSmith(1989)).

32This meansthatfrom aboutM R 10a populationis almostsurelylargeenoughto containall the
informationneededto learnby communicationeverypossiblestrategy. Still thefactthatapopulation
is largeenoughis no guaranteethatit really doescontainall theinformationrequired.

33For a similarpointof view, seeBlumeandEasley (1993).
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optimalstrategiesfor a largenumberof problems.And, morethanthis, theseop-
timal strategiesarefoundirrespectively of thestartingpopulation.Theirrelevance
of thestartingconditionsis oneof thecentralfeaturesof themutationoperator.34

Markov chainanalysisshowsthatlearningby experimentsis aprocessthatwill
not fully converge to a uniform population. Totally homogeneousbehavior or at
leastanunchangingpopulationwill neverbeestablished.Instead,therewill always
beindividualexperimentationwhichdisturbsthecompositionof thepopulation.At
least,thedisturbancewill happenin a regularmanner, gaininga final distribution
of socialbehavior (i.e. adistributionof geneticpopulations)which is constantand
independentof thestartingconditions.

Markov chainanalysisrevealstheambiguityof themutationoperator:On the
one hand, it supportsfinding betterbehavioral patterns,but on the other hand,
it preventssocial behavior from completeconvergence. In technicalterms, the
resultingstability is of a Ljapunov stabletype, which meansthat in the long run
only a subsetof all possiblesocialbehavioral patternswill beadoptedby society.

More detailedtechnicalresearchshows thatevenlearningby experimentation
resultsin asymptoticallystablebehavior, if eitherthenumberof economicagents
is infinitely large(Nix andVose(1992))or if thefrequency of experimentsdeclines
in time (Davis andPrincipe(1993)).

Moreover, learningby experimentationis the only learningtechniquewhich
is ableto reachall strategies,which meansthat the setof strategieslearnableby
experimentationis thesameasthesetof all strategies:Z 
 S. Thus,only learning
by experimentationcanleadto every possibleNashequilibriumasit will leadto
anevolutionarily stablepopulation,providedthereexistsone.

4.5 The Compound: GeneticAlgorithm Learning

Thus,doesgeneticalgorithmlearningleadto behavioral stability?
Geneticalgorithmlearningdoesevenleadto asymptoticbehavioral stability—

aslong asthereis no experimentationor experimentationceasesin time. If this
is thecase,learningdynamicsis theonepresentedfor the two operatorcase(see

34This mayberegardedasa weaknessof theconceptof geneticalgorithmlearning,asit neglects
thepossibilityof modellingpathdependenceor lock–ins. So it maybeworthwhile to mentiontwo
furtherpoints,which aremainly beyondthescopeof this paper. First, dependingon theunderlying
(economic)problem,someGAs spendlong timessupportingpopulationswhich arenot evolution-
arily stable. Somekeywordspointing to this topic are ‘deceptiveness’of geneticalgorithmsand
theproblemof ‘prematureconvergence’.Secondly, the lack of ability to modellastinglock–insor
pathdependenceappliesto thebasicgeneticalgorithm. Therearevariationsof geneticalgorithms
which arecapableof modellingthesephenomena.Onekeyword pointing into this directionof re-
searchmaybe‘niching mechanisms’.Again,a goodstartingpoint for moredescriptionsof all of the
specialcasesandvariantsof GAs is Goldberg (1989).
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section3.3). The long run resultof geneticalgorithmlearningwithout mutation
or with decliningmutationrateis a stateowning two importantproperties:Every
economicagentbehavesjust like every otheronedoes,andevery economicagent
behavesjust like hedid lastperiod.Behavior will bethesameover all individuals
andfor all remainingperiods.

As soonasexperimentationis involved,thepicturechangesdramatically:The
only thing thatcanbesaidis thatdifferentsocialpatternsof behavior (i.e. genetic
populations)have a constantlong term probability distribution. This meansthat
thechanceof eachsocialbehavioral patternto show up againnext periodwill be
thesameevery perioduntil theendof times.This propertyis far away from being
stablein thetruesenseof theconceptof asymptoticstability, althoughit is alsofar
away from beingunstablein the sensethat thereis no fixed long run probability
distributionof thedifferentpatternsof socialbehavior.

Thus,from Markov chainanalysisit canbeconcludedthatgeneticalgorithm
learningsimply endsin a statewhich is Ljapunov stable. Furtherinvestigations
helpexplainingthereasonsfor this.

With all threetypesof learninginvolved,themarketasthecoordinatorof the
agents’strategiesgainsa crucial role for stability of sociallearningschemes.As
longasnomutationor learningby experimentstakesplace,no selectiveforce(i.e.
nomarket)is needed:Becauseof geneticdrift, convergenceof behavioral strategies
will beestablishedcompletelywithout it.35 As soonasexperimentationentersthe
stage,aforceis needed,thatcanserveasacounterpartto experimentation’scontin-
uousdisturbanceof socialbehavior. It is theinformationalfunctionof themarket
combinedwith theselectivepressurecausedby it thatplaysthis role.36 Every time
experimentationintroducesa behavioral strategy which leadsto a worseningof
socialbehavior (leadingto anevolutionarily worsepopulation),themarketmakes
surethatthis strategy will disappearagain.

Thus,takingall threelearningtechniquestogetherandletting themactwithin
anenvironmentof markets,twooppositeforcescanbeidentifiedto bethesourceof
geneticalgorithm’scharacteristiclongrundynamics:Learningby experimentation,
which continuouslydisturbsbehavioral stability, andcoordinationof the market,
which continuouslygainsstability backagain.

35This of coursedoesnotmeanthatwithout selectionor marketthebestalternative is learned.
36This notion is similar to Hayek’s (1978)view of the role of the marketwithin the processof

economiccompetition.
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5 Summary

If geneticalgorithmsareto beusedasametaphorfor economiclearning,thereare
somethingsto be awareof. The main thing is the fact that geneticlearningis a
compoundof threetypesof learningtechniques,eachof whichbehavesdifferently
in its own. It hasbeenshown that it is thecombinationof all the threethat— in
presenceof the market— givesthe standardgeneticalgorithmits characteristic
dynamicproperties.

Learningaccordingto a geneticalgorithmwill not leadto a situationin which
eacheconomicagentbehavesthesameor at leastthesocialbehavioral patternre-
mainsunchanged.Thoughmostagentswill show up a similar behavior therewill
alwaysbe someagentswhich changetheir behavior by experimenting.Thus,on
the onehandthereis learningby imitation andcommunicationthat forcesindi-
vidual behavior to converge. On the otherhandthereis learningby experiments
that leadssomeindividuals’strategiesto to bealteredandthusdivergefrom most
of the others’behavior. Above all, thereis the market,continuouslycontrolling
andcoordinatingagents’behavior, thusallowing changeif it is advantageousand
rejectionit if it is not.

Thus,geneticalgorithmlearningin fact offersa way of modellingwhat Witt
(1993,p. xix) callsan ’interplay of coordinatingtendenciesarising fromcompet-
itive adaptionsin themarketandde–coordinatingtendenciescausedby theintro-
ductionof novelty.’
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