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Abstract

Dieser Beitrag behandelt die Frage, ob eingeschrdnkt rationale
Wirtschaftssubjekte optimales Verhalten im Rahmen der freiwilligen
Bereitstellung eines offentlichen Gutes lernen. Der Lernprozefs wird
durch einen evolutiondren Algorithmus abgebildet. Im Verlauf des
Lernprozesses konvergiert die bereitgestellte Menge des 6ffentlichen
Gutes gegen das Nash—Gleichgewicht, obwohl vollstdndiges Tritt-
brettfahrerverhalten nicht beobachtet werden kann. Damit spiegelt
unser Ergebnis Resultate aus Experimenten zu offentlichen Giitern
wider. Sowohl die Gruppengrofe als auch die individuelle Experi-
mentierfreudigkeit sind zentrale Einfluifaktoren des Lernprozesses.

Abstract

This paper explores the question whether boundedly rational
agents learn to behave optimally when asked to voluntarily con-
tribute to a public good. The decision process of individuals is de-
scribed by an Evolutionary Algorithm. We analyze the learning pro-
cess of purely and impurely altruistic agents and find that in both
cases the contribution level converges towards the Nash equilibrium
although, with pure altruism, exact free rider-behavior is never ob-
served. The latter result corresponds to findings from experiments on
voluntary contribution to a public good. Crucial determinants of the
learning process are the population size and the propensity to experi-
ment.



1 Introduction

This paper explores the question whether boundedly rational individuals,
who possess only a minimum of information about the structure of the
economy, learn to behave optimally when asked to contribute to a pub-
lic good. The decision process of agents is described by an Evolutionary
Algorithm (EA), which belongs to the general class of adaptive learning
algorithms.!

The question whether agents voluntarily participate in the provision
of a public good has at length been studied theoretically as well as in ex-
periments (Isaac et al., 1985; Bergstrom et al., 1986, Andreoni, 1988b).2 A
widely accepted prediction on individual behavior is the Nash conjecture,
i. e. each person maximizes utility taking other people’s behavior as given.
The results from standard theory are clear. There are no incentives to re-
veal individual preferences truthfully, the agents try to free ride on the con-
tributions of others, and the equilibrium provision level falls short of the
Pareto—efficient one.

But how do individuals actually know that free riding is the best re-
sponse? If we consider the results from experimental economics, we find
that (a) there is no significant evidence of free riding in one—shot games, and
(b) there is convergence towards free riding in repeated games although
there is no exact free riding (see Marwell and Ames, 1981; Isaac et al., 1984;
Miller and Andreoni, 1991). So, there is good reason to conclude that stan-
dard theory neglects relevant aspects of individual behavior.

Sugden (1985) discusses non—-Nash behavior, but finds that taking ac-
count of individual beliefs on other’s contributions even aggravates the
problem of free riding. Andreoni (1988b) studies strategic interaction and
learning in public goods experiments. He finds neither of both strongly
supported by the data, and ascribes the results to non-standard behavior
such as altruism, social norms or bounded rationality.

Recently, especially incomplete information about individual actions,
bounded rationality, and the necessity to learn optimal strategies has come
into focus of economic ’rheory.3 Bliss and Nalebuff (1984), Fershtman and
Nitzan (1991), and Gradstein (1992) argue that in a dynamic context an
agent has the opportunity to learn the response of other players. Here,
learning is modeled as Bayesian learning, where an agent has statistical in-
formation about preferences or donations of others which are periodically

IEvolutionary algorithms (EAs) are a family of simulation methods resembling the ba-
sic working principles of biological evolution. The probably best known type of EAs are
Genetic Algorithms (Clemens and Riechmann, 1996; Riechmann, 2001b).

2For a survey see Ledyard (1995) and Cornes and Sandler (1996).

3For an extensive discussion see Evans and Honkapohja (1999).



updated. The results are ambiguous. Fershtman and Nitzan (1991) discuss
a dynamic model where the agents have incentives to free ride on current
and future contributions, whereas Marx and Matthews (2000) find Bayesian
equilibria with and without completion of the public project.

In our view, the Nash and the non—-Nash conjecture, and the models of
Bayesian learning share an important shortcoming. Neither do the individ-
uals possess perfect information nor are they attributed with such advanced
information processing capacities, those theories require them to have. We
drop the assumption that “I know that everyone else knows, and everyone knows
that each knows, and we all know that we know ... ”, i. e. that every player in
isolation has full knowledge of the relevant data and can costlessly figure
out all equilibria. Instead, our analysis relies on the assumption of bound-
edly rational agents. Basically our model consists of a repeated single-shot
game, where subjects report their individual valuation of the public good. It
is a dynamic approach, because a single-shot game is not sufficient to allow
subjects to learn the incentives, or following Andreoni (19880, p. 292) “Repe-
tition appears to be necessary for subjects to approach free riding.” The agents are
neither informed about the group size nor about preferences and endow-
ments of their co—players. We think that in general this layout corresponds
to the standard design of experiments.

The process of learning and strategy adaptation is modeled by an evolu-
tionary algorithm. In each round, a typical agent of the population reports
his willingness to pay, which is his strategic variable. The provision level
of the public good is determined, and the individual receives his utility.
The player then revises his strategy in order to adapt to the changing en-
vironment. This is done by means of learning by imitation and learning by
experiments (Riechmann, 1999). We do not consider multi—period decisions,
so there is no discounting of future payoffs or contribution delays.* More-
over, we do not discuss the design of incentive structures and mechanisms
that encourage individuals to reveal their true preferences. Inevitably, the
agents of our basic model end up with some kind of free rider—strategy.
But, it is important to stress that they have learned these strategies despite
of starting from a point of minimum information.

We contrast two preference specifications which allows for a separate
treatment of the effects stemming from impure altruism: The first case is
the standard framework where the agent does not receive additional utility
from the ‘act of giving’. The second case captures the notion of receiving a
‘warm glow’ from the donation to the public good (Andreoni, 1988a, 1990).

We draw from the model of Miller and Andreoni (1991), who describe

Tt would be straightforward to extend the model in this direction but this is beyond
the scope of this paper. The same argument applies to the discussion of heterogeneity or
congestion phenomena.



free riding as an outcome of an evolutionary game. The replicator dynam-
ics of the adaptive learning process strengthen those strategies over time
that perform well. Their findings support results from experiments on vol-
untary contribution to a public good. In their simulations the provision of
the public good converges towards exact free riding. Furthermore, they
demonstrate that convergence is delayed with an increase in group size,
which also replicates results from experiments.

Unfortunately, in their model, no strategy can be learned which differs
from the ones already contained in the initial population. The purely imi-
tative learning of replicator dynamics cannot develop any new strategies or
recover those which have been wiped out. If free riding is not part of the
initial set of strategies, it cannot be learned, and if the game starts with a
homogeneous population, no convergence towards free riding will be ob-
served. Miller and Andreoni (1991) cannot give a plausible explanation for
an important result from free riding experiments, namely, that exact free
riding is hardly observed. The evolutionary algorithm we use, provides
results which are closer to the experimental findings.

Our analysis will proceed as follows. Section 2 provides a short re-
view of the underlying assumptions and corresponding results of the static
game of voluntary contribution to a public good with incomplete informa-
tion. Section 3 derives general results for the intertemporal performance of
strategies. Section 4 describes the basics of the model of EA-learning, an-
alyzes the learning dynamics, and establishes a link between evolutionary
game theory and the theory of evolutionary algorithms. We examine two
major learning principles, i. e. learning by imitation and learning by exper-
iments. In section 5, we discuss the simulations. Section 6 concludes and
gives an outline for future research.

2 A Benchmark: Nash Equilibrium with Incomplete Informa-
tion

Consider the standard model of voluntary contribution to a public good (cf.
Varian, 1994; Cornes and Sandler, 1996, Ch. 6). Individual preferences and
endowments are common knowledge, so there is no uncertainty regarding
the strategies of other agents. Each individual’s utility maximizing choice
will depend on everyone else’s. A Nash equilibrium is an allocation at
which each individual’s chosen contribution is a best response to the other’s.
Typically, the Nash equilibrium is not Pareto—efficient. The equilibrium
level of the public good falls short of the socially optimal one, which — in
analogy to Cornes and Sandler (1996) — is referred to as systemic free riding.
In the particular case of quasi-linear preferences, the extent of free riding
increases with the group size.



A natural extension to this basic model is to relax the requirements on
individual knowledge and to allow for private information. It is easy to
demonstrate that this adds to the problem of free riding such that informa-
tional free riding can be observed. We consider a simple model with n > 2
consumers, one private good X and one pure public good G.°> Each agent
is endowed with exogenous wealth w;. The individual consumer partici-
pates in a Lindahl tdtonnement process and divides wealth between private
consumption X;, and a contribution to the public good 6; G. The individual
cost share 6; corresponds to the personalized Lindahl price. For simplicity,
we normalize the price of the private good, the public good, and marginal
costs for both goods to unity. The utility function of consumer i is U (x;, G)
and takes on the quasi-linear form

U(x,G) =% +BilnG, 2.1)

which allows for the exclusion of income effects. The general form of
U (%, G) is known to all agents, while the individual valuation of the public
good, Bj > 0, is private information. In what follows, we refer to 3 as the
true value of the preference parameter to distinguish it from the actually
reported value bj. In a first step, we compute the individual cost shares
6 and the public good level G for an arbitrary report b; according to the
preferences implied by (2.1). Then, in a second step, we determine the
best-response functions bf which constitute a Nash equilibrium.
Substitution of the budget constraint w; = X + 6; G for X enables us to
write the consumer’s maximization problem for an arbitrary report of b as

mé';lx Wi —6G+bInG, (2.2)

with the corresponding first-order condition b /G = 6;. The contributions of
different individuals are regarded to be perfect substitutes. For this reason
it is straightforward to use an additive aggregator function for the total
provision of the public good, that is

n
G= i; bi. (2.3)

The cost share of agent i can be derived as follows
6= f(bbi)=— 2 4

bi+ 3 i bj

where the subscript —i denotes the corresponding variables of agents other
than i. Given b_j, agent i knows how the own reported value b impacts

5The model is identical to the one discussed by Cornes and Sandler (1996, Ch. 7.4), except
for the underlying preferences.



bi

Bi

2 j4ibj

Figurel: Best—response Function for Agent i

on the Lindahl prices 6;,6_; and the aggregate provision level of the public
good, as given by (2.3). The consumer now chooses the best report b¥ to
maximize utility according to the true value (3;, while taking the reports of
others as given

mbax wi — 6 G+BiInG. (2.5)

Optimization leads to the following best-response function for agent i

b =g(Bi,b-i) =Bi— 3 bj. (2.6)
J#

The result is straightforward: Equation (2.6) indicates the well-known re-
sult that it is utility-maximizing for consumer i to significantly underre-
port the true value B;. Figure 1 depicts the best-response function for agent
i, where complete free riding occurs in case of Bj = ¥ jxbj. An announce-
ment that preference data are used for the purpose of estimating Lindahl
prices creates incentives to decrease voluntary contributions so as to un-
derstate true demands. In short, the agent has an incentive to misrepresent
preferences, in order to get a lower personalized Lindahl price 6;. Since
this result applies to each of the nagents, the level of public good provision
will be too low, if it is determined in accordance with the reported valua-
tions. So, besides the systemic type of free riding, we additionally observe
informational free riding.

The above described equilibrium is easily extended to a finitely repeated
noncooperative game. The Nash prediction continues to hold, and each
round is an exact replication of the one period game: Free riding (defect) is
the best strategy. Although we may drop the assumption of full informa-
tion with respect to the (possibly heterogeneous) form of U (x;, G) as well

5



as perfect knowledge of B_j, and w_j, the agent of this model must at least
be fully informed on the reports b_;j and the aggregation rule for G. Oth-
erwise, he would not be able to compute the aggregate provision level of
the public good and his cost share 6;. So, despite the fact that we allow
for incomplete information, we still demand a high amount of individual
information processing capacities, especially when we deal with large com-
munities or allow for repeated games.

The best-response function for the impure altruism set-up can be de-
rived analogously. In this case we use a Cobb—Douglas type utility function

U(%,9,G) =X +Biln (g¥ G*7), 2.7)

where g; = 6;G and 0, 1—a denote the weights, the agent puts on the private
and the public part of his contribution. Equation (2.7) reduces to a private
good model in case of o = 1. The Nash—strategy of this framework is more
difficult to learn than the simple linear strategy discussed above: On the
one hand, we have a positive direct effect of g on utility, while on the other
hand a utility maximizing choice of Gimplies a low individual contribution.
Each of the agents has to learn to balance these two effects.

The repeated one-shot game will be the starting point for our learn-
ing model of the next chapter, but with a major difference. To capture the
notion of bounded rationality, the agents of the evolutionary model are pro-
vided with as few information as possible regarding the structure of the
game. They possess no knowledge with respect to group size, preferences,
the aggregator function for the public good etc. We will demonstrate, that
the agents learn the noncooperative strategy even with hardly any presup-
position on individual knowledge.

3 Dynamic Performance of Strategies

We consider the model as introduced above with a population of n agents.
For simplicity, we assume that all agents are identical with respect to their
preferences and endowments, thatis i = Band w; =w, Vi =1,... ,n. More-
over, we posit preferences, endowments, and the size of the population to
be unchanging over time.® In each period individual i receives an endow-
ment W(t) and chooses a report bi(t) from the set of feasible contributions
B={blo<bgw}.’

6Learning in general does not occur in isolation but always includes learning from oth-
ers. In assuming identical agents, we avoid the discussion on the quality of adopted strate-
gies, which have been copied from other agents, who are totally different.

7For an easier understanding, imagine we assumed discrete contribution levels. Then B
is the set of h=1,... ,k contribution levels.



Learning now involves that — as time goes by — the agent replaces
poorly performing strategies by those performing well. But what makes
one strategy perform better than another, and how does this information
spread throughout the community? To answer this question, we will now
focus on the dynamic evolution of an arbitrary strategy of time t, say the
contribution level b™(t). Consider a group mof agents who decide to report
the identical contribution b™(t) € B. The time-t population share of type-m
agents will be denoted with q™(t). The utility of a group—-magent signaling
a contribution b™(t) in the standard case (2.1) is given by

UM(t) = w(t) —b™(t) + BInG(t). (3.1)

with G(t) as given by (2.3). Equation (3.1) displays the well-known result
that the agent’s utility is not only affected by his individual action b™(t).
It is additionally determined by the strategic decisions of all members of
the population which are reflected in the aggregate contribution level of
the public good. Since U™(t) is a state—dependent variable, it changes over
time as the agents revise their strategies.?

We are now interested in the performance of an arbitrary type of strat-
egy, say b™(t) of period t. The quality of the performance of a type-mstrat-
egy can only be estimated in relation to the performance of the entire set
of strategies which are actually played in the population. Hence, the qual-
ity of a strategy b™(t) is measured by individual payoff (3.1) relative to the
average utility at time t, the latter given by

U= 5 q"(um(). (3.2)

m/bMe B

The dynamic evolution of the population share g™(t) of agents playing b™(t)
can then be described as

(t+1) = qn(t) = . (3.3)

The population share of of type-m agents in the next period, q™(t + 1), is
determined by two factors: First, by the population share of type-magents
in the current population, q"(t), and second, by the ratio of the utility of a
type—m agent of the current population to the average utility of agents in
period t, U(t). By (3.3), the growth rate of the population share of type-m
agents can be derived as follows

q"t+H—q"H _ U -U®)
qn(t) umy

8Meiller and Andreoni (1991) used a quite similar setup to run simulations based on repli-
cator dynamics.

(3.4)




This is a typical representation of replicator dynamics in evolutionary game
theory (Vega-Redondo, 1996, p. 44). Consider a strategy b™(t) that performs
well in period t. The better this strategy, the more the payoff U™(t) exceeds
the average payoff, and the higher the growth rate of the population share
g™(t) of agents playing strategy m will be. The share of the population
which plays any given strategy changes in proportion to its relative utility.
In plain words, the success of strategy b™(t) is observed by agents who
played a poorly performing strategy, say bX(t). Those agents will probably
adopt the superior strategy and report a next—period willingness to pay
of b™(t + 1), which exactly reflects the dynamics of how better strategies
spread throughout the population.’

Now, which strategies will perform well and which will not? In general,
an agent perceives his impact on G as negligible. The direct utility loss of
announcing and paying a comparably high bj(t) will exceed the indirect util-
ity loss of the induced decrease in the provision level G. Since the subject of
our model takes no account of other agents’ strategic conjectures, he fares
well with a low contribution. This argument, together with (3.4) predicts
the dynamics to converge towards free riding behavior. So, our predictions
on the performance of individual strategies closely resemble the Proposi-
tions 1.-3. of the evolutionary game with replicator dynamics discussed
by Miller and Andreoni (1991).

Yet, the most severe problem with replicator dynamics is that the con-
cept relies on the assumption of an infinitely large population or, put differ-
ently, a ‘continuum strategy’ (Fudenberg and Levine, 1998). If populations
are of finite size, equation (3.3) only displays the expected dynamics of the
game. An attempt to derive the number of agents actually playing a spe-
cific strategy b™(t),b%(t) from the population shares gq™(t), g (t), would in
any case of a finitely—sized population most probably result in something
like 17.3 people signaling a demand of b™(t), 12.4 people announcing b¥(t),
et cetern. We will demonstrate below that the population size is a key deter-
minant of the exact time path of population dynamics. So it is not convinc-
ing to work with a concept that presupposes infinitely large populations.
Instead, our model relies on simulations of evolutionary algorithms (EAs),
uniting the best of two worlds: On the one hand, EAs rely on finitely large
populations. On the other hand, the dynamic characteristics generated by
the type of EA used in this paper are quite similar to the of replicator dy-
namics given by (3.3).

9For details on strategy adoption, see section 4.



4 Learning Dynamics

Learning Concepts At this point we want to give a short non—technical
sketch of the two learning concepts learning by imitation and learning by ex-
periments (Riechmann, 1999), before going into technical details of the learn-
ing dynamics. The first step in imitation learning is that a type-magent em-
ploys the information on individual strategies and corresponding utilities
available to him in order to evaluate the success of his own strategy b™(t).
At the end of each round of the game, the individual compares his resulting
utility UM(t) to the utility UX(t) of other players, who played strategy bX(t).
In a second step, he decides for period t + 1 on whether or not to adopt a
different strategy which has just proved to be promising. At this point it is
important to stress that no new strategies are generated within this learning
concept.!® Those new strategies come into the population via experiments.
The term experiment stands for a small-scale change in the strategy. The
subject adds (subtracts) a small amount to (from) the chosen next—period
contribution b™(t + 1) before entering the new round of the game. This in-
creases the variety in the pool (distribution) of available strategies and is
the only way out of strategic lock—ins.

The evolutionary algorithm we use to model the learning process does
not deviate much from the general design of genetic algorithms (Hol-
land, 1975, 1992; Goldberg, 1989). In fact, the major difference is its real-
valued coding. The algorithm consists of two genetic operators: selec-
tion / reproduction and mutation, where the first one reflects learning by
imitation and the second one reflects learning by experiments.!

In the following, we separately discuss the consequences of the two
learning concepts for the dynamics of strategy choice and the resulting pro-
vision level of the public good. Moreover, we focus on the similarities be-
tween evolutionary game theory and the theory of evolutionary algorithms
(Riechmann, 20014). We show that the dynamics generated by replicator
dynamics are formally equivalent to the expected selection / reproduction
dynamics of an EA.

Learning by Imitation The basic operator of the EA employed here is the
operator of selection and reproduction stemming from the canonical genetic
algorithm (CGA) introduced by Holland (1975, 1992) and Goldberg (1989).

OMoreover, this concept may even lead to absurd learning dynamics, if we assume
agents who are heterogeneous with respect to their true preferences Bj. A strategy which
in this context is successful for one person might as well perform poorly for another and
hence is not worth to be copied.

There is only one value coded in each round of the algorithm, namely the value of the
strategy bj(t). Consequently there is no necessity for crossover.



At each time t, the population of the evolutionary algorithm consists of the
strategies bi(t) € B played by the n agents of the economy. Note that in
the terminology of genetic algorithms, here the population is not the set of
agents but the set of strategies.

Members from a time—t population are transferred into the next—period
one by means of selection and reproduction. The procedure is conducted
a follows: First a strategy is drawn randomly (with replacement) from the
old population and copied into the new one. Each strategy has a certain
probability of being selected and reproduced, which depends on the quality
of performance in the previous round of the game. This introduces state—
dependency into our model. We use the relative fitness as a quality index of a
strategy b™(t), which is defined as the ratio of the agent’s fitness U™(t) to the
aggregate fitness of the whole population U (t) = ¥ mpmeg N™(t)U™(t). N™(t)
denotes the number of agents currently using strategy b™(t). We assume
that the selection and reproduction probability equals the agent’s relative
fitness, which is a standard assumption in theory of genetic algorithms.

N(t+ 1) is the total number of strategies in populationt+ 1. Accordingly,
the number of agents using strategy b™(t + 1) in period t +1, N™(t + 1), is
given as

m U m
N™(t + 1) = N™(t)N(t+1). (4.1)
U ()

In the spirit of replicator dynamics of evolutionary game theory, (4.1) can
be translated into a notation which explicitly shows the development of the
fraction of agents who play the respective strategy. Obviously, the share
qM(t) of agents playing strategy b™(t) in period t and the average utility
U (t) are defined as
(t)

qm(t) ;= N and U(t):= NGO (4.2)

Using (4.2), it is now easy to show that, for a selection / reproduction
scheme according to relative fitness, the expected growth rate of a popu-
lation share g™ can be written as

1) —qne)] Um0
E[ (0 ]‘ O

Notice, that (4.3) is structurally equivalent to (3.4), with the only differ-
ence, that there is no randomness in ordinary replicator dynamics. This
establishes a link between evolutionary algorithms and evolutionary game
theory. By the law of large numbers, the selection / reproduction dynamics of
EAs converge towards the replicator dynamics of evolutionary game theory

(4.3)

10



with an increase in population size. Thus, for finite populations, the pro-
cess of selection / reproduction in evolutionary dynamics can be regarded
as a good first approximation of replicator dynamics.

The agent based simulation of the problem presented here will contain
the operator of CGA selection / reproduction as described above. We al-
ready mentioned in the beginning that the behavioral interpretation of this
operator is the one of learning by imitation: Agents who recognize that
their strategy was not as successful as the strategies of others or, alterna-
tively was below average, drop their strategy and imitate another.

From the formal analysis we know that the more successful a strategy
was in the last period, the more likely it is to be imitated in the current one.
This interpretation also holds for replicator dynamics, where it is usually
called evolutionary learning. But this result does not predict, that the speed of
learning increases while superior strategies spread throughout the society,
because the expected growth rate of the fraction q"(t) of people playing
b™(t) itself depends on the evolution of the entire population.

Yet, learning by pure imitation suffers from a severe drawback (Riech-
mann, 1999): Strategies not contained in the very first population can never
be learned, and strategies wiped out throughout the learning process can
never be recovered. This implies that learning by pure imitation is a process
which is highly path-dependent. In contrast to replicator dynamics, here,
learning by imitation includes the case that even superior strategies may
die out due to the random element in the selection / reproduction operator.
From this follows immediately that the learning process might eventually
lock in at uniform contribution levels b > 0 which are far from the optimal
free riding-level of the Nash-strategy b = 0. This phenomenon is usually
called genetic drift.

Learning by Experiments An individual learning process which purely re-
lies on imitation of other agents’ strategies is indeed not a very convincing
learning concept, since it completely ignores the creative part of learning.
For this reason we introduce the mutation operator as a means of learning
by experiments.

The agent chooses a preliminary contribution level for the public good.
We denote this preliminary level with b™(t). For an easier understanding,
imagine that selection / reproduction has already taken place and the pre-
liminary level b™(t) is the starting point for the development of a new strat-
egy b™(t). The value b™(t) is then subject to a refinement. A small amount
is added to the individual contribution for the public good, or subtracted
respectively. The resulting strategy b™(t) is the one, the agent pretends to
be his true demand for the public good in the next iteration of the game.

This experimental process is modeled in the simulations as follows: The

11



final strategy b™(t) is derived by adding a term &j(t) to the agent’s prelim-
inary time-t strategy, b™(t), where €;(t) is a random number drawn from a
Gaussian distribution with zero mean and a finite variance 0*:

b™(t) = bM(t) +&(t),  with &(t) ~ A(0, 6?). (4.4)

By using a Gaussian distribution for the size of the experiment, €(t), we sus-
tain two plausible behavioral facts: Experiments are equally likely in any
direction from the original strategy, and small experiments are more likely
than big ones. We interpret the mutation variance 02 as the propensity to
experiment (Riechmann, 2001b). It is a measure for the extent of experiments
an agent is willing to undertake.!? For convenience, the 02 is assumed to
be identical for all agents and constant over time in our simulations.

With the introduction of mutation we simultaneously established a way
out of the local optimum or lock in—dilemma discussed in the previous sec-
tion. With a positive propensity to experiment, there is always a positive
probability that local optima will be left in finite time, and that already van-
ished superior strategies may be regained.

5 Simulations

So far, what do we know about the learning of optimal strategies in the
case of voluntary contributions to a public good? The theoretical analy-
sis of the preceding sections has shown that (a) superior strategies have
better chances to survive and spread throughout the society, (b) non-
astonishingly, a superior strategy is to pay less in the standard public good
model, (c) purely imitative learning does not necessarily lead to the Nash-
strategy b = 0, and (d) the learning concepts act together in such a way,
that an individual potentially may learn to free ride, even if it was totally
unacquainted with free riding behavior in the outset.

Those theoretical observations now have to pass the empirical test. We
performed numerical simulations to underline our findings and were espe-
cially interested in the following questions: First, how does the size of the
population impact on the learning process? Second, how does the propen-
sity to experiment affect the convergence properties of the learning process?
Third, how does impure altruism affect the learning process? Forth, to what
extent does convergence towards free riding behavior occur?

The simulations are based on the evolutionary algorithm as described
in the previous section. In order to derive results regarding the sensitivity
of the learning process with respect to the population size, we performed

12Duye to the real-valued coding of the EA, mutation differs substantially from the flipping
the bit-procedure of the binary—coded CGA.

12
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Figure2: Convergence and Population Size: Fixed initial Population

simulations with n= 50, n= 200and n = 500agents respectively. Remember
that the population size n does not explicitly appear in the agent’s problem
(3.1). It is implicitly part of of the aggregate provision level of the public
good G(t), which is not subject to individual optimization. Of course, the
population size does not affect the true valuation 3 or initial endowments w.
Those parameters were assumed to be constant and identical across agents.
The parameter settings are w= 100 and 3 = 20, which corresponds to a true
report of b= 20. The propensity to experiment is set constant with 02 = 0.03,

Experimental results suggest that there is no significant free riding in
the first period of a repeated single-shot game (Marwell and Ames, 1981).
For this reason we assume our agents initially to be naive or some kind of
good—natured. They reveal their preferences truthfully in the initial period,
so we give them a reason for learning to be selfish. With identical agents,
our initial population is uniform with bj(1) = 20,Vi=1,... ,n.13

Group Size Figure 2 displays the society’s average contribution to the pub-
lic good for three simulation runs with n =50, n = 200and n = 500agents.
Independent of the population size, the contributions converge towards the
free riding level b = 0 in the ultra long—run. Nevertheless, it becomes ob-
vious from Figure 2 that convergence requires a considerable amount of
time. In fact, the main reason for this is the initially homogeneous popu-

13 At this point recall our critique on replicator dynamics, where a initially homogeneous
population would not learn anything.

13



25

20 + m

15 B

SN
oo, — P e TN
’“"»?urfér:”:ywdr Kl "-JF"»‘«W:;’;':‘ SOl AT “'ﬁhv‘w\;z;

L ‘ it : en s SR

0
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Figure3: Convergence and Population Size: Random initial Population

lation of strategies bj(1) = 20 which does not give way to imitative learn-
ing. Learning progress can only be achieved by experiments. Once there is
some heterogeneity in the population, imitation is effective and improves
the learning process.

Figure 3 displays the simulation runs for an identically specified model,
except for the initial population. In this case the initial population of strate-
gies is randomized. The initial contributions bj(1) are i. i. d. and restricted
to the interval b;(1) € (O,w). The effects of imitative learning being imme-
diately effective are obvious. Convergence occurs within a fraction of time
required by the uniform—population algorithm. Our results are a direct ap-
plication of the Fisher principle (Metcalfe, 1994; Birchenhall et al., 1997) which
says that learning occurs faster the more heterogeneous a population is.

Propensity to Experiment Another result displayed in Figure 2 as well as
in Figure 3 is that larger populations converge considerably faster than
smaller ones. This effect can primarily be attributed to the propensity to
experiment. The chance (i. e. probability) of finding an agent, who carried
out a comparably large and successful experiment is greater in a large pop-
ulation than in a small one. Thus, we expect the effects of experimentation
to be more significant in larger populations. This outcome contradicts the
results from laboratory experiments on voluntary contributions to a public
good (see Miller and Andreoni, 1991, and references therein), where the
speed of convergence was found to be inversely related to group size.

14
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Figure4: Convergence and Propensity to Experiment

How can these contradictory results be explained? We believe that ad-
ditional factors have to be taken into account. The group size ranged from
4 to 100 agents in the laboratory experiments cited above. In such small
groups, an agent receives a comparably stronger feedback to his contribu-
tion than in a larger ones. The effect of his own actions on the aggregate
provision level of the public good G is no longer negligible. For this rea-
son, we think that the agent might be inclined to respond stronger to payoff
signals by undertaking more or bigger experiments in order to find out the
optimal strategy. We suggest that in small groups the propensity to experi-
ment, 02, should be higher than in large ones. Figure 4 displays the society’s
mean contribution level for an initially homogeneous population of size of
n =50, with B and w as specified above. We let the mutation variance vary
according to the following values 62 = {0.01, 0.02, 0.03, 0.05, 0.1}. Figure 4
shows the expected result, that a high propensity to experiment accelerates
the convergence process.

Impure Altruism The qualitative result we expect from the assumption of
exclusive utility received from individual donations is: A Nash equilibrium
is characterized by a situation where each agent significantly offers a posi-
tive contribution to the public good. The amount crucially depends on the
preference weight a. We simulated the learning process with a group of size
n =200 a comparably high propensity to experiment 0 = 0.05, and let the
preference parameter vary according to the values a = {0.25, 0.50, 0.75, 1}
which corresponds to the Nash equilibria b = {5, 10, 15, 20}. Truthful rev-

15
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Figureb: Impure Altruism

elation of B is the dominant strategy, if the contribution is a private good.
The simulation results in Figure 5 show, that obviously free riding strate-
gies are learned faster. For small values of a, the agents does not put too
much weight on the ‘warm glow of giving’. Hence, the principles of free rid-
ing are learned quite fast. The utility gains from free riding (small b) and
the utility gains from the contribution (large b) start to offset each other, as
a increases. This slows down the learning process and leads to deviations
from the Nash—strategy which may last a considerable amount of time.

Extent of Convergence We finally turn to the last question, namely, to what
extent convergence of the learning process occurs. From the theoretical so-
lution we know, that especially in large groups, the optimal individual level
of contribution is b = 0. From laboratory experiments we know that exact
free riding is hardly ever observed. Our simulations replicate the results
from experimental economics and thus differ from the evolutionary learn-
ing dynamics discussed by Miller and Andreoni (1991). Our results can
mainly be ascribed to the fact that the agents of our model never stop to
experiment.14 So, what we derive is pretty close to the Nash—solution: The
subjects learn the principles of free riding but never stop to look for a better
strategy.

14 Astonishingly experimentation does not even stop if the mutation rate is endogenized.
First results on Meta—mutation indicate that the propensity to experiment does not con-
verge to zero as the learning process approaches the free riding solution.
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6 Conclusions

In this paper, we explored the question whether or not boundedly rational
agents learn optimal strategies over time, when requested to voluntarily
contribute to a public good. Our analysis relied on the standard Nash-
Cournot approach of public economic theory that predicts free riding be-
havior, which — in the special case discussed in this paper — even increases
with the group size.

The agents of our model played a repeated one—shot game and were
endowed with only a minimum of information regarding the structure of
the economy. The learning process was modeled by means of an evolution-
ary algorithm and analytically decomposed into two learning mechanisms:
learning by imitation and learning by experiments. We demonstrated that the
first concept in expectation equals the replicator dynamics discussed in evo-
lutionary game theory.

Simulations support our major theoretical result, that boundedly ratio-
nal individuals actually learn the principles of free riding. Better strategies
are adopted over time and the provision level of the public good converges
towards zero. The convergence speed is affected by the size of the popula-
tion and the propensity to experiment, both positively correlated to learning
progress. The learning process never comes to a rest in a situation of exact
free riding, which reproduces results from laboratory experiments. This
finding is due to the fact, that the agents of our dynamic model never stop
to experiment in order to find a better strategy. In our view, this is an intu-
itively plausible and realistic description of individual behavior. Learning
is slowed down, if the initial population is homogeneous. In this case, im-
itative learning is ineffective and the learning progress is mainly achieved
by means of experiments.

We found that impure altruism slows down the learning process. The
result can be ascribed to the counterworking direct and indirect way the
individual contribution affects utility.

We discussed a rather elementary dynamic learning model which by
intention was close to the standard game-theoretic approach. A straight-
forward extension to this model would be to allow for more heterogeneity
regarding preferences or endowments. Another noteworthy extension is to
discuss the effects of discrete public goods on the learning process. In our
model, a positive amount of the public good was always provided as long
as an agent decided to offer a positive contribution. The strategic situa-
tion changes substantially if at least a number k of n agents must announce
a positive contribution to the public good, which otherwise would not be
provided (Gradstein, 1992; Dixit and Olson, 2000).
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