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Abstract

In capital budgeting problems future cash–flows are discounted us-

ing the expected one period returns of the investment. In this paper

we establish a theory that relates this approach to the assumption

that markets are free of arbitrage. Our goal is to uncover implicit

assumptions on the set of cash–flow distributions that are suitable

for the capital budgeting method. As results we obtain that the

set of admissible cash–flow distributions is large in the sense that

no particular structure of the evolution of the distributions is im-

plied. We give stylized examples that demonstrate that even strong

assumptions on the return distributions do not restrain the shape

of the cash–flow distributions. In a subsequent analysis we charac-

terize the cash–flow distributions under the additional assumption

of a deterministic dividend yield. In this case strong properties for

the evolution of the distributions can be obtained.
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1. Introduction

It is well known today that in arbitrage free markets the value of a claim

is given by the sum of its expected cash–flows discounted at the riskless

interest rate. The expectation is taken with respect to the so–called risk

neutral measure that is usually different from the subjective probability

measure of the investor. In the context of project valuation both scientist

and practitioners tend to use the so called net present value method,

which consists in discounting the expected cash–flows with the period–

by–period cost of capital. The expectation is now taken with regards to

the subjective probability of the investor. The cost of capital are given by

the expected rate of return of the investment. In this paper we establish

a theory that relates the latter approach to the assumption that markets

are free of arbitrage. Our goal is to uncover implicit assumptions on the

set of cash–flow distribution that are suitable for the capital budgeting

method.

If the discount rate is derived from an equilibrium model as the CAPM

the above problem reduces to the question under what assumptions a

myopic valuation principle can be applied. This problem was considered

by Fama (1977), Sick (1986), Black (1988) and Franke (1984).

Fama (1977) investigated the case of a single cash–flow realization in

some future period. Later Fama (1996) has pointed out that in this case

the distribution of cash–flows tend to become more and more skewed

right in later periods when the distribution of one–period single returns

are roughly symmetric. Sick (1986) investigated comparable additive or

multiplicative cash–flow process (his assumptions A2 and A3). In Black

(1988) both the cash–flows of the project and the cash–flow of the market

portfolio are joint normal.

Whereas Fama (1977), Sick (1986) and Black (1988) considered cash–

flows having a particular stochastic structure, Franke (1984) instead made

no assumptions for the (exogenous) dividend process except regularity

conditions. Using a multiperiod exchange economy with HARA investors

he derived conditions for a period–by–period application of one–period
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asset pricing models. Since we will not use an equilibrium model our

paper does not directly compare to these results.

Within an arbitrage model, Richter (2001) tackled the problem of con-

stant discount rates. He used a binomial model and was able to derive

equations that implied a constant discount rate for future cash–flows.

Therefore, a particular stochastic structure of the cash–flows is evident.

In particular, within the binomial model only one ratio of the growth rate

for up– and down–movements will lead to a constant discount rate.

In our short note we relate the question of constant cost of capital not

to an equilibrium concept. Furthermore, we do not want to restrict our-

selves to a particular distribution of future cash–flows. Instead, we will

use a fairly general model to derive our results. We start with a defini-

tion of discount rates as future returns and ask under what assumptions

these discount rates can be used in capital budgeting and are in particular

constant. It turns out that the set of admissible cash–flow distributions

is large in the sense that no particular structure can be found.

A first example shows that even in a model where cash–flows posses

any given structure in every future time period, cost of capital can be

constant. Therefore, maybe counterintuitively, the variance or the skew-

ness of the cash–flow distributions do not change through time. If we

add another assumption about the dividend yield of the firm it will turn

out that the cash–flow increments have to be uncorrelated. This is much

weaker than saying that the increments are independent as it is usually

assumed in the random walk hypothesis.1 These conditions are not only

sufficient but in a particular sense also necessary for the cost of capital

to be constant.

The next section presents an example of a firm where the cash–flows

have an arbitrary stochastic structure in any future time but cost of cap-

ital are constant and the market is free of arbitrage. A theory of cost of

capital used in capital budgeting is given in the following section. The

last section closes the paper.

1Uncorrelated variables are necessarily independent only if they are joint normal.
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2. Constant Cost of Capital: An Example

Let (Ω,F , P) be a probability space and a filtration Ft (for details see

Williams (1991)). The world ends in T , T = ∞ is possible. A firm realizes

uncertain cash–flows C̃Ft that are Ft–measurable. The value of the firm

at time t is Ṽt . The riskless interest rate is for simplicity time independent

and rf . If the market is free of arbitrage there is a risk neutral probability

measure Q such that the following is true (for a proof see for example

Back & Pliska (1991))

(1) Ṽt−1 =
EQ[Ṽt + C̃Ft|Ft−1]

1+ rf
,

where EQ[·|Ft] is the conditional expectation under the risk neutral

probability. Our purpose is to clarify the relationship between arbitrage

free markets and capital budgeting. To this end we now define the rate

of return: At any future time t the rate of return one period ahead from

holding a share of the company is

(2) r̃t := Ṽt + C̃Ft
Ṽt−1

− 1.

In a world with uncertainty r̃t will be a random variable. The expectation

of the rate of return r̃t with respect to the information Ft−1 will be de-

noted as the cost of capital of the investment in period t. Therefore, the

cost of capital are the conditional expectations of the one period returns:

(3) k̃t = E[r̃t|Ft−1]

Let us now turn to the capital budgeting problem. From (2) it imme-

diately follows that

Ṽt−1 =
E[Ṽt + C̃Ft|Ft−1]

1+ k̃t
.

But for capital budgeting it is necessary to assume that the cost of capital

are deterministic. Only in this case (2) implies

Ṽt−1 =
E[C̃Ft|Ft−1]

1+ kt
+ E[Ṽt+1 + C̃Ft+1|Ft−1]

(1+ kt+1)(1+ kt)
.
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Notice that for deterministic cost of capital the rate of returns will be

necessarily serially uncorrelated. For s > t:

Cov[r̃s , r̃t] = E[r̃s r̃t]− E[r̃s]E[r̃t] = E[r̃tE[r̃s|Ft]]− kskt
= E[r̃tks]− kskt = 0.

This is a priori not restraining much the distribution of C̃Ft and Ṽt . In-

deed, since the one period returns divide between dividends (C̃Ft) and

capital gains (Ṽt − Ṽt−1) almost any sequence of future cash–flows or al-

ternatively any sequence of future firm values can be constructed that

imply rate of returns as described by (2). If market conditions allow for

estimating the one period returns according to the CAPM or the ICAPM,

this restricts the set of acceptable return distributions r̃t , but does not

change anything to the indeterminacy of the cash–flow distribution as

we will show in an example below.

To this end consider a sequence of iid random variables C̃Ft for all t.
Let two probability measures Q,P given such that

EQ[C̃Ft] = rf , E[C̃Ft] = k 6= rf .

The filtration Ft is implicitly determined by the sequence of random

variables C̃F1, . . . , C̃Ft . The value of the firm is equal to one

Ṽt := 1.

Notice that the value of the firm is not a random variable anymore, al-

though we continue to use the tilde. It is straightforward to verify that

this model is free of arbitrage: given the definition of the riskless interest

rate we have

EQ[C̃Ft + Ṽt|Ft−1]
Ṽt−1

= 1+ rf .

showing our model is free of arbitrage. On the other hand, the cost of

capital are given by

E[C̃Ft + Ṽt|Ft−1]
Ṽt−1

= 1+ k.
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We arrive at a situation where the cost of capital of our firm are constant

although the risk of the cash flows does not change: in every period

the cash flows are given by the same random variable. The risk of the

cash–flows does not increase. The value of the firm can be evaluated by

discounting the expected cash–flows using the cost of capital. In this

case the value of the firm obtains as

V0 =
∞∑
t=1

E[C̃Ft]
(1+ k)t = 1

Notice that in our example the expectation and even the variance of

the future cash–flows remain constant. Hence, constant cost of capital

do not imply a greater risk measured in terms of variance. This effect is

only obtained when the cash–flows under consideration are correlated.

In our example this is the case. A straightforward calculation shows that

any two cash–flow increments are highly correlated.2

In this sense the behavior of cash–flows and returns observed in our

example is only obtained under the very special conditions the exam-

ple was built on. In a real world environment this seems to be a rather

unusual behavior since the value of the firm is not a random variable any-

more. In the following we are interested in the behavior of cash–flows

when we prevent this sort of correlation. In this case it turns out that

much more can be said about the implications of constant or determin-

istic cost of capital.

3. Cash–flows with a deterministic dividend yield

Define the dividend ratio of a cash–flow distribution as

(4) d̃t := C̃Ft
Ṽt
.

2When C̃Ft are independent, then obviously the increments C̃Ft − C̃Ft−1 are corre-

lated with

Cov[C̃Ft − C̃Ft−1, C̃Ft+1 − C̃Ft] = −Var[C̃Ft].
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It is a standard assumption in multiperiod valuation problems to assume

that this ratio is deterministic.3 If both the dividend ratio and the cost of

capital are deterministic then the cash–flows have to satisfy the relation

(5) ∀t E[C̃Ft+1 − C̃Ft|Ft] = gt+1 · C̃Ft.

where gt is deterministic. Before proving our main result we want to

discuss the above property of future cash–flows. We claim that our as-

sumption is equivalent to saying that the increase in future cash–flows

are (conditional) uncorrelated. This is much weaker than saying (as it

is usually assumed in the random walk hypothesis) that the increments

are independent from past cash–flows. Only for normally distributed

random variables uncorrelated variables are necessarily independent.

Proposition 1. For condition (5) to hold it is sufficient and necessary that

the cash–flows can be written as

(6) C̃Ft+1 = (1+ gt+1)C̃Ft + ε̃t+1

where εt are uncorrelated with expectation zero.

Proof. Let ε̃t be defined as in (6). Using (5) these εt obviously have

expectation zero. The correlation between two increments can be written

as

Cov(ε̃t+1, ε̃s+1) = E[(C̃Ft+1−(1+gt+1)C̃Ft)·(C̃Fs+1−(1+gs+1)C̃Fs)].

Let s < t, then using the law of iterated expectation (see for example

Williams (1991, p. 88)) this can be rearranged to

Cov(ε̃t+1, ε̃s+1) = E[(C̃Fs+1−(1+gs+1)C̃Fs)·E[C̃Ft+1−(1+gt+1)C̃Ft|Fs+1]].

But the right hand side is zero since

E[(C̃Ft+1−(1+gt+1)C̃Ft)|Fs+1] = E[E[(C̃Ft+1−(1+gt+1)C̃Ft)|Ft]|Fs+1] = 0

3This is for instance the underlying assumption in Merton’s proportional dividend–

yield option pricing model, see Merton (1974). Geske is more general and used an

independent dividend yield in his model, see Geske (1978).
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and hence one part of our claim is shown. The other direction is trivial.

�

We furthermore notice that the claimed structure of future cash–flows

(5) seems to be the discrete time analog of the assumption of a Brownian

Motion. In the later case the stock price process satisfies

dS
S
= (r + d)dt + σdW

and this is the same as to say that the (infinitesimal) increase dS is un-

correlated to the current stock prize.

At first glance it is not clear what rôle the assumption of a determin-

istic dividend ratio plays. Therefore we will show a much stronger result.

We will prove that this deterministic dividend yield is an undispensible

condition. We show in the context of capital budgeting that determinis-

tic cost of capital and our cash–flow assumption imply a deterministic

dividend yield. Furthermore, it will turn out that our cash–flow property

is not only necessary for cost of capital to be constant but also sufficient.

Our result is summarized in the following proposition.

Proposition 2. Assume the market is free of arbitrage. If two of the

following conditions are satisfied the third follows

(i) the cost of capital k̃t are deterministic,

(ii) there are real numbers gt > −1 such that the relation (5) holds,

(iii) the dividend ratios d̃t are deterministic with dt > 0.

Proof. We start with (i), (ii) =⇒ (iii). From (3), (5) and the law of

iterated expectation it follows for all t

Ṽt = C̃Ft ·
T∑

s=t+1

(1+ gt+1) · · · (1+ gs)
(1+ kt+1) · · · (1+ ks)

=: C̃Ft · d−1
t

hence, the dividend ratios dt is deterministic.
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Now (ii), (iii) =⇒ (i). We have from (1), (3) and

1+ k̃t =
E[(1+ d−1

t ) C̃Ft|Ft−1]
d−1
t−1C̃Ft−1

= (1+ d−1
t )(1+ gt)dt−1

and hence the cost of capital must be deterministic.

To show (i), (iii) =⇒ (ii) we start with

(1+ kt)Vt−1 = E[C̃Ft + Ṽt|Ft−1]
1+ kt

1+ d−1
t
dt−1 C̃Ft−1 = E[C̃Ft|Ft−1] since (4)

and this is indeed (5). �

In our present formulation we assume that the distributions of cash–

flows satisfy C̃Ft ≠ 0 in every period t ≤ T . This rules out for instance

the case of distributions having a single cash–flow C̃FT at time T and no

cash–flows at any other time. In this case condition (5) would enforce

E[C̃FT ] = 0. In order to allow for zero cash–flows at some periods, C̃Ft
can be replaced by Ṽt in (5) leaving all results of the proposition valid.

Note that under the assumptions of proposition 3 the expected re-

turns kt are not only the appropriate cost of capital for the entire firm,

but every single cash–flow C̃Ft is to be valued using kt as discount fac-

tors. This obtains as follows. Capital budgeting in arbitrage free markets

establishes the following equation for Ṽu

Ṽu =
T∑

t=u+1

EQ[C̃Ft|Fu]
(1+ rf )t−u

=
T∑

t=u+1

E[C̃Ft|Fu]∏t
s=u+1(1+ ks)

.

We now demonstrate that not only both sums lead to the same result but

that this is also true for every single entry. Hence, cost of capital turns

out to be a simple way of evaluating the expected cash–flows under the

subjective probability measure. Cost of capital are not only expected

returns but also appropriate discount factors:

Proposition 3. If the conditions of proposition 3 are satisfied for any

t > s ≥ 1, then the value of a single cash–flow C̃Ft at time s obtains as

(7)
EQ[C̃Ft|Fs]
(1+ rf )t−s

= E[C̃Ft|Fs]∏t
u=s+1(1+ ku)

.
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Proof. We show the claim for s = t − 1. Since the dividend ratio is

deterministic we have

EQ[d−1
t C̃Ft + C̃Ft|Ft−1]

1+ rf
= Ṽt−1 =

E[d−1
t C̃Ft + C̃Ft|Ft−1]

1+ kt

=⇒ EQ[C̃Ft|Ft−1]
1+ rf

= E[C̃Ft|Ft−1]
1+ kt

.(8)

which is the claim for s = t − 1.

By taking the expectation E[·|Ft−2] and using (5) the equation (8) can

be further modified to

EQ[C̃Ft|Ft−2]
1+ rf

= EQ[(1+ gt)C̃Ft−1|Ft−2]
1+ kt

Using (8) (with t − 1 instead of t) the right hand side simplifies to

EQ[C̃Ft|Ft−2]
1+ rf

=
(1+ gt)

(1+rf )E[C̃Ft−1|Ft−2]
1+kt−1

1+ kt

or with (5)

EQ[C̃Ft|Ft−2]
(1+ rf )2

= E[C̃Ft|Ft−2]
(1+ kt)(1+ kt−1)

.

This is the claim for s = t − 2. Continuing our calculations we arrive at

the desired result. �

Another consequence of our assumptions concerns the shape of the

distribution of future cash–flows. Projecting forward from time s < t,
C̃Ft is given as

(9) C̃Ft = C̃Fs(1+ r̃s+1) · · · (1+ r̃t)
d−1
s · · ·d−1

t−1

(1+ d−1
s+1) · · · (1+ d−1

t )
.

Therefore the shape of the cash–flow distributions further ahead is prin-

cipally given by the product of the one period return distributions. Ob-

viously with such a multiplicative structure certain regularities of the
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return distributions will lead to strong properties of the cash–flow distri-

butions. For instance, if the distribution of the returns are identical with

a positive variance, then the projected distribution of the cash–flows will

have increasing variances through time. This is a result that has been

noticed by Fama (1996) in the case of a single cash–flow realization in

the last period. In applied work many other interesting properties of the

cash–flow distributions can be deduced from the return distribution and

vice versa with equation (9).

4. Conclusion

Capital budgeting of future uncertain cash–flows with risk adjusted dis-

count rates implies deterministic cost of capital. Beside, no further re-

striction on the shape or the evolution of the distribution of the cash–

flows is required when projects with many cash–flow realizations are

considered. Therefore our intuition that cash–flows further ahead in the

future should be more uncertain is wrong in general. Only when addi-

tional assumptions either on the dividend yield of the investment or on

the cash–flow increments are made further properties of the cash–flow

evolution can be deduced.

Therefore we believe that further progress in the understanding of

capital budgeting problems will not arise in focussing the research on

the behavior of the investment returns alone as has been done in the

past but rather along meaningful assumptions on the relationship of the

cash–flows themselves. A functional relationship between returns and

cash–flows is obtained only when certain regularities of the evolution

of the cash–flows are given, which might be the case in many applied

problems.
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