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Abstract

Recent literature shows that learning in oligopoly games might in the
long run result in the Cournotor in the Walras equilibrium. Which outcome
is achieved seems to depend on the underlying learning dynamics. This paper
analyzes the forces behind the learning mechanisms determining the long run
outcome. Apart from the fact that there is a difference between social and
individual learning, the key parameter is shown to be the degree of rationality
of the learning agents: Learning the Cournot strategy requires the agents to
acquire a large amount of information and to use sophisticated computational
techniques, while the Walras strategy can be shown to be a particular ‘low
rationality result‘.

Zusammenfassung

Neuere Veröffentlichungen zeigen, dass Oligopolspiele auf lange Frist
sowohl im Cournot– als auch im Walras–Gleichgewicht enden können. Wel-
ches Ergebnis erreicht wird, scheint von den zugrundeliegenden Lerndyna-
miken abzuhängen. Dieses Papier widmet sich der Frage, welches die Kräf-
te hinter den Lernmechanismen sind, die das langfristige Resultat bestim-
men. Neben dem Unterschied zwischen sozialem und individuellem Lernen
kann als wichtigster Einflussfaktor der Grad der Rationalität der lernenden
Agenten identifiziert werden: Um die Cournot–Strategie zu lernen, benöti-
gen die Agenten viele Informationen und komplizierte Techniken, während
das Walras–Gleichgewicht als „Niedrig–Rationalitäts–Resultat“ identifiziert
werden kann.
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1 Introduction

The Cournot model of oligopolistic quantity choice is one of the oldest and one of
the best analyzed and most widely understood models in game theory. For years,
things seemed to be very clear: As long as there is a finite number of players in
this game, the result will be the Cournot–Nash equilibrium. But, since the work on
evolutionary learning in the Cournot game byVega-Redondo(1997), at the latest,
things are not so clear any more:Vega-Redondoshows that under the regime of
evolutionary forces, the unique long run outcome of the game will no longer be the
Cournot–, but the Walrasian competitive market equilibrium. This result holds for
any finite number of players. The question remains: What is it that decides whether
the outcome of learning in the Cournot model is Cournot or Walras? This paper
gives some answers to this question.

It has been shown that the driving force leading to the surprising result ofVega-
Redondo(1997) is to be found in the underlying dynamics, which are forms of the
usual replicator dynamics. Thus, it can be concluded that it is the type of learning
in the model that determines the type of outcome. A paper in this direction of
thought is the one byVriend (2000), who argues that the most important influence
is the difference between individual and social learning. FollowingVriend, social
learning processes lead to the Walrasian outcome, while individual learning tends
to converge to Cournot. This paper will show that it is indeed the type of learning
which determines the outcome, but that a distinction into social and individual
learning is not enough. While social learning will inevitably lead to the Walrasian
outcome, under the regime of different types of individual learning both, Cournot
or Walras, can be the result. The second force influencing the quality of the result
is the degree of rationality of the learning firms or agents: If agents are smart, they
will learn to play Cournot, if they are not, the result will be Walras.

This paper proceeds as follows. First, the model of this paper will be briefly
introduced, which is a simple model of the Cournot type. This model will provide
the economic background for every type of learning dynamics analyzed throughout
this paper.

Then, in a second step, the field of social learning will be visited. The section
starts with an informal and intuitive review of the main driving force of evolutionary
dynamics in this model, the spite effect. Making use of the concept of spite, it is
shown that the Walrasian outcome does indeed represent the only stable symmetric
Nash equilibrium of the Cournot game under the regime of social learning.

After that, the paper briefly describes the concept of stochastic stability, which
is the major technical concept underlying the results ofVega-Redondo(1997). A
look at the structure of agent based models relying on dynamics generated by evo-
lutionary algorithms (EAs)1 shows that these algorithms are capable of closely re-

1Evolutionary algorithms are a family of simulation methods based on the principles of the Dar-
winian evolution. The most prominent member of the EA family is the genetic algorithm (Hol-
land, 1992; Goldberg, 1989), which has been successfully used in economics before, see e.g.Dawid
(1999); Riechmann(2001b).
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sembling the evolutionary dynamics of replicators,Vega-Redondo’s 1997results
are based on. In the following, based on these algorithms, an inductive method is
developed which opens the chance of analyzing the long run results even of models
which cannot be described analytically. This method still keeps the spirit of the
concept of stochastic stability. Thus, at the end of the section on social learning,
the EA based method for the analysis of long run results is applied to a variant
of the evolutionary Cournot model which closely resembles the original setup by
Vega-Redondo(1997). It is shown that the method does indeed reproduceVega-
Redondo’s results.

In the next section, the paper turns to individual learning. First, the general
structure of individual learning models in contrast to the structure of social learning
models is illustrated. After that, three models of individual learning are introduced
representing processes of learning by agents with different degrees of rationality.
For each of the models, the information and the abilities agents need in order to
‘learn’ are explicitely accounted of. The model representing a high degree of ra-
tionality is a model with agents learning by using the best response technique. The
outcome of this learning method is Cournot. The second model, in contrast, is a
model of naive low rationality learning, a learning method often applied in text-
book cobweb models. Cobweb learning in the model of this papers and for a given,
well behaved, parameter set, leads to convergence towards the Walras equilibrium.
The third model is a model of medium rationality: Agents learn by computing a
best response to last period’s market price, at the same time taking account of the
fact that they are able to influence the current market price. This type of learning
is shown to result in the Cournot equilibrium in the long run. The results of these
three models are then used to stress the central hypothesis of this paper: The more
rational agents are, the more likely they are to learn to play Cournot. The paper
ends with a summary.

2 The Model

The model is a simple variant of the standard textbook Cournot model of quantity
choice in oligopolies.

The demand of the market in periodt, Dt , is time invariant and exogenously
given as

Dt = A−B pt (1)

with A, B as positive parameters andpt giving the equilibrium price in periodt.
Let si,t denote the quantity firmi supplies in periodt. Assume that firms must

supply non–negative quantities and let firms be restricted by a maximum capacity
smax, such thatsi,t ∈ S = [0,smax]. Aggregate supply int, St is given as the sum of
the supplied quantities of then firms involved with the model:

St =
n

∑
i=1

si,t . (2)
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From (1) and (2), the equilibrium price int, pt results as

pt =
1
B

(
A−

n

∑
i=1

si,t

)
. (3)

Each of then firms involved has the same cost functionC(·) which is quadratic
in the quantity produced

C(si,t) =
1
2

δs2
i,t . (4)

Fixed costs can be neglected without loss of generality. Marginal cost are constant.
The profit of each firmi in t is given by

πi,t = pt si,t −C(si,t) . (5)

Substitutingpt in (5) by (3) shows that the problem is problem of state dependence,
or, to put it shorter, that the problem constitutes a game. The profit of firmi depends
on the supply strategies ofall firms in the market:

πi,t =
1
B

(
A−

n

∑
j=1

sj,t

)
si,t −C(si,t) . (6)

Assuming identical equilibrium behavior of all firms and letting them all max-
imize their profit by selecting the best quantity while considering that every other
firm will do the same leads to the usual Cournot–Nash equilibrium. In the case
of the model presented here, this means that the optimal quantitysi,t = sC ∀ i, t is
given by

sC =
A

Bδ +n+1
. (7)

It is important to keep in mind thatsC is the optimal quantity computed by
firms knowing that their influence on the market price is non–negligible. If, on the
other hand, firms do not care about their influence on the market price and behave
as mere price takers instead, the outcome will differ from the Cournot quantity (7).
In this case, the outcome will be all firms producing the usual competitive market
equilibrium quantity, for convenience labeled as the ‘Walras–quantity’ in the rest
of this paper. This quantity,si,t = sW ∀ i, t, is

sW =
A

Bδ +n
. (8)

It is easy to recognize that for large populations the difference between the
Cournot and the Walras quantity vanishes:

lim
n→∞

∣∣sC−sW
∣∣= 0. (9)

An interesting question to ask is which of the possible quantities, or even dif-
ferent ones, firms would produce if they developed their quantity decisions over
time under the regime of different kinds of learning process.
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3 Social Learning

Social learning means learning processes with agents learning from one another.
Thus, models based on populations of truely interacting agents are models of social
learning. Figure1 displays the general structure of social learning processes for the
Cournot game. Each firm is characterized by only one piece of data, which is its
strategy or the quantity it plans to supply at the market. Learning takes place in form
of an inter–agent process i.e. from firm to firm. By this method, firms update their
strategies in order to use them at the market. There, at the market, by the interaction
of aggregate demand and aggregate supply, the market price is generated, which is
the most important feedback to the agents, signaling the quality of their strategies.

Market

firm
quantity

firm
quantity

firm
quantity

firm
quantity

firm
quantity

. . .

aggregate demand

aggregate supply

firm
quantity learning

Figure 1: General Structure of Social Learning Models

In recent literature, there are mainly two types of models aiming to describe so-
cial learning in games. One type of models are models from evolutionary game the-
ory, having their dynamics based on replicator equations. The other type of models
are agent based models, grounding their dynamics on evolutionary algorithms.

3.1 Social Learning and the Spite Effect

It has been mentioned above that evolutionary learning in the Cournot model leads
to a long run outcome which is Walras. The technical reasons for this will be re-
viewed below (Secs.3.2and3.3). The intuitive behavioral reason for this outcome
is the so called ‘spite effect’ which is discussed in the following.

The driving force of evolutionary dynamics is relative rather than absolute pay-
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off or fitness, i.e. the difference between a player’s payoff and the population mean
payoff or, alternatively, the proportion of a players payoff at the aggregate payoff of
the player’s population. At the start of a new period, agents engage in the process
of imitation, which is a kind of imitation of the population of the period before:
Agents in the current population imitate those agents that performed relatively well
in the last period. Imitation here means imitation of success, i.e. the imitation of
betteror beststrategies of the last period. The proportion of a certain strategy in
a population of strategies grows the faster, the larger the difference between this
strategy’s payoff and the population mean payoff, i.e. relative payoff, is. In order to
spread throughout the population, a strategy has to be better than most of the other
strategies. Again: It is relative, not absolute payoff that counts. Thus, the kind
of behavior evolutionary dynamics implies is maximization of relative, not maxi-
mization of absolute payoff. Seen this way, evolutionary dynamics are not truely
appropriate for modeling agents’ learning to maximize their profits. In fact, all that
agents do under the regime of these dynamics is (try to) maximize the difference
between their own and the other agents’ profits.

This idea can be clarified by a simple example. Table1 gives the normal form
of a 2–player–2–strategy stage game. According to the usual rules in evolutionary
game theory, players are restricted to playing pure strategies only.

Player B
s1 s2

s1 a, a c, b
Player A

s2 b, c d, d

Table 1: Spite Game, absolute payoffs;a> b> c> d

Strategys1 is a strictly dominant strategy for both players. Thus, both players
should be expected to play the dominant equilibrium(s1, s1). If, however, the vital
criterion of success is relative payoff (or relative fitness), things change dramati-
cally: Now each player is better off deviating froms1 and playings2. While A’s
payoff of playings1 against B’ss1, πA(s1, s1) = a is the maximum absolute pay-
off, A’s relative payoff can be increased: If A switches tos2 (assuming that B still
playss1), her relative payoff is greater than before.πA(s2, s1) = b and B’s payoff
is πB(s2, s2) = c, which means that by playings2, A performs better than B (but
not better than before). A has lost absolute but at the same time gained relative
payoff. In order to make this even clearer, Table1 is transferred into Table2 by
transforming absolute into relative payoffs. Relative payoffs for playerk playing
strategyi against player−k playing j, πr

k, in Tab.2 are calculated as the absolute
payoff to playerk minus the mean absolute payoff to playersk and−k:

πr
k (si , sj) = πk (si , sj)−

1
2

[πk (si , sj)+ π−k (si , sj)] . (10)

This reflects the most frequently used way of calculating relative payoffs in contin-
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Player B

s1 s2

s1 0, 0 1
2 (c−b) , 1

2 (b−c)
Player A

s2
1
2 (b−c) , 1

2 (c−b) 0, 0

Table 2: Spite Game, relative payoffs

uous time replicator dynamics (Samuelson1997, p. 66;Weibull 1995, pp. 72–74).
It is clear to see that in this game, explicitely accounting for relative payoffs, the

profile (s2, s2) constitutes a dominant equilibrium. Thus, if it is relative payoff that
counts as criterion of success, both players will plays2. Note, that in the example,
not the game itself has changed, but only the way of measuring success.

In other words: If relative payoff is the measure of success, it pays to hurt
yourself (in terms of absolute payoff) as long as by hurting yourself you hurt your
opponent even more. This is the true meaning of the term ‘spite effect’. Note
that this type of spiteful behavior is a result of the dynamics implied, not of the
game itself. Deciding to use evolutionary dynamics as a model of social learning
in gamesautomaticallymeans imposing spiteful behavior to the agents.

Social learning in models of this type means agents learning from one another.
The crucial point at social learning is the fact that people need not hold spiteful
motives in order to display spiteful behavior. If the only way to find a better strat-
egy is to look around what others do and than to eventually imitate one of the better
strategies other agents use, this way of imitation automatically gives rise to the
spite effect. Agents in these models do not intentionally maximize relative pay-
off (maybe because they hate each other) but imitate better strategies just because
these strategies are better than the ones the agents applied before. If agents are
not allowed to learn by introspection (or if they are not capable of doing so), the
imitation of others is the only way of learning that is left. As long as learning by
imitation means imitation of other agents’ behavior, and not by imitation of one’s
own behavior from the past, this type of social learning leads to spiteful behavior
even if agents do not have spiteful motives. To put it in sufficiently short words:
Social learningmeansspiteful behavior. This implication is independent of the
degree of rationality of the agents.2

Based on this idea, it is straightforward to ask what would be the optimal strat-
egy if behavior is spiteful. The next section (Sec.3.2) will be devoted to this ques-
tion. It shows that under the regime of spite agents’ optimal strategy is to play
Walras.

2Of course, the mere fact that agents feel that they must be learning by imitation of others and are
thus incapable of introspective learning might be a hint that these agents are not too rational.
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3.2 Spiteful Behavior in the Cournot Model

In contrast to the game of Tabs.1 and2, in most types of games, there is no par-
ticular effect of spiteful behavior. In most games, the structure of payoff tables
written in absolute and relative payoffs is simply the same. This of course means
that in most types of games, spiteful behavior generates the same results ‘normal‘
maximization of absolute payoff does. The Cournot game is a rare exception to
this rule. While for ‘normal’ profit maximization, the only Nash–equilibrium is
the Cournot–Nash equilibrium, for spiteful behavior, it is the Walrasian competi-
tive market equilibrium. This can easily be shown using the model introduced in
Section2.

Each firm has absolute payoff depending on its current strategysi and the mar-
ket pricep as given in (5) above.3 Population mean payoff is given by

π =
1
n

n

∑
i=1

πi (si) . (11)

Relative payoff of firmi is given by the difference of the firm’s payoff and the
population mean payoff:

πr
i (si) = πi (si)−π . (12)

Assuming symmetric behavior of all firmsj 6= i, i.e. sj = s−i ∀ j 6= i, (12)
becomes

πr
i (si) =

n−1
n

[πi (si)−π−i (s−i)] . (13)

Maximization ofπr
i with respect tosi yields

p =
∂C(si)

∂si
+(s−i−si)

∂p
∂si

. (14)

For the given example, the best response function implicitly given in (14) can
be derived explicitely:

s?i =
A

Bδ
− n

Bδ
s−i . (15)

For totally symmetric behavior, i.e.si = s−i = s∀ i, (15) gives

s? =
A

Bδ +n
. (16)

It is easy to recognize that the resulting optimal quantitys? from (16) is the
same as the Walrasian quantitysW given in (8).

Note that, as the intersection ofn best reply functions, the Walrasian equilib-
rium formed by each of then payers playingsW, in the Cournot game in relative
payoffs, the Walrasian equilibriumis a Nash equilibrium.

The general conclusion to be drawn from this is the following: Irrespective of
the particular learning method involved: As long as players behave spitefully, the

3As the outline given here needs no dynamics, the time indicest are omitted.
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best (symmetric) form of behavior they can find is the Walrasian type of behavior.
Thus, the result establishes a benchmark result for social learning methods: A suf-
ficiently good learning method should be able to make agents learn to co–ordinate
their behavior to the Walrasian solution.

3.3 Evolutionary Game Theory

In the field of evolutionary game theory, it has been shown byVega-Redondo(1997)
that evolutionary dynamics in a setting like the model presented above will in the
long run lead to the Walrasian equilibrium rather than the Cournot–Nash equilib-
rium of the game in absolute payoffs. The central concept underlying this result
is the concept of ‘stochastic stability’ (Foster and Young, 1990; Young, 1993).4

Evolutionary dynamics are population dynamics. In economics, they describe the
development of a distribution of behavioral strategies in a population of agents over
time. Evolutionary dynamics based on pure imitation, e.g. dynamics described by
the usual forms of replicator equations, are known to lead to homomorphic popula-
tions, i.e. populations with all agents playing the same strategy. In order to prevent
the dynamics from (possibly premature) convergence to such a homomorphic state,
a second evolutionary force is introduced: mutation. Mutation means some agents
spontaneously changing their strategy. They discard the strategy they adopted in the
process of imitation and use a different one instead. Mutation is usually interpreted
as mistakes in imitation (Alchian, 1950) or as a form of learning by experiments.
In order not to disturb the process of imitational learning too severely, mutation
is usually assumed to take place with only a small mutation probability. More
formally, evolutionary dynamics as described by replicator equations can be char-
acterized as a population Markov process: Due to the special form of dynamics,
the composition of a population only depends on the composition of the population
before. Thus, evolutionaryimitation dynamics establish a Markov process with a
number of absorbing states. Every homomorphic population is such an absorbing
state: Once a population consisting of only one strategy is reached, no other strat-
egy can be imitated any more. In a way, evolutionary pure imitation dynamics are
processes of the continuous dying out of strategies until there is only one strategy
left. This single surviving strategy is the final state of the pure imitation process.
Adding mutation changes the scene: Now, there is an anti–force against the dying
out of strategies. Consequently, the new learning process is still Markov, but it has
no absorbing states any more. Nevertheless, the Markov process is ergodic. This
means that for a constant mutation probability, the process has a unique long run
distribution of states, the so called limit distribution of the process. This is true for
every value of the mutation probability. Particularly interesting, of course, is the
limit distribution of the process if the mutation probability becomes deliberately
small, i.e. for a learning process withalmost nomutation, a learning process which
is nearly the same as learning by pure imitation. The limit distribution for learning

4A related concept is the one of ‘long run equilibria’ byKandori et al.(1993); Kandori and Rob
(1995).
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processes with a mutation probability approaching zero establishes the notion of
‘stochastically stable states’: Every state with a positive mass in the limit distri-
bution of this learning process is such a state. It is intuitively obvious that these
stochastically stable states should be monomorphic states, as they are the absorb-
ing states of the process of learning by imitation alone. But, what is appealing
about the concept of stochastic stability is that it helps to distinguish between ho-
momorphic states which are visited with positive probability over the long run of
the process and such homomorphic states which are almost surely not visited at all.
Vega-Redondo(1997) shows that the limit distribution of the evolutionary learning
process including imitation and mutation for the Cournot model is in fact a degen-
erate distribution: It contains only one state with positive mass. This state is the
one that establishes the Walrasian market equilibrium.

3.4 Agent Based Models and Evolutionary Algorithms

Cournot models have been analyzed by means of agent based models and evo-
lutionary algorithms before. Some examples are the papers byArifovic (1994);
Dawid and Kopel(1998) andFranke(1998). Nevertheless, it seems as if in most of
these papers (an exception from this is the paper byVriend 2000), the true nature
of the economic model analyzed has to some extent been misunderstood by the
authors themselves. The models are mostly called models of the ‘Cobweb’ type,
indicating that the question addressed is of macroeconomic rather than game the-
oretic nature. Consequently, what the authors do is analyze the question whether
EA dynamics are capable of generating a Walrasian market equilibrium. The fact
that this equilibrium is indeed the global attractor of the EA dynamics is thus no
surprise to the authors. At a closer look at the models, their true nature becomes
evident, though: As it is impossible to conduct EA simulations based on infinitely
large populations, in these models, the number of firms in focus is finite. For finite
populations, however, models of quantity choice areby definitionmodels of the
Cournot type. Accordingly, without further knowledge, the simulations should be
expected to lead firms to chose the Cournot– rather than the Walrasian quantity.

Nevertheless, the aim of the above cited papers was not to distinguish Wal-
rasian from Cournot outcomes, but rather to determine the form and quality of EA
dynamics as such. Consequently, it is not surprising thatArifovic (1994, p. 24)
states she found her EA simulations to converge to ‘rational expectations equilib-
rium values’, clearly meaning the Walras equilibrium. (Although, in a Cournot
game, the rational expectations equilibrium should of course be the Cournot–Nash
equilibrium.) Thus, in a way, at least some authors knew EAs in Cournot games to
converge to the Walrasian outcome for long, but in a way they did not know that
they knew this.5

5A second reason for the authors not recognizing the full value of their results might be the
following: According to (9), even for relatively small populations, the Walras– and the Cournot–
quantity (and the resulting equilibrium prices) become so similar, that in the presence of the ‘noise’
caused by the mutation operator, it is nearly impossible to tell if a certain simulation result is Cournot
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In this paper, the Cournot model will be explicitely faced as such, i.e. as a game
involving only finitely many players. It has been shown before, that evolutionary
algorithms in agent based economic models are appropriate tools of analyzing evo-
lutionary games (Riechmann, 2001a). Moreover, it has been found that EAs, too,
establish Markov processes (Dawid, 1994; Riechmann, 1999) which parallel the
evolutionary dynamics of replicator equations without and with mutation. It has
already been demonstrated that evolutionary replicator dynamics and the dynam-
ics of replication as used in evolutionary algorithms are equivalent (Riechmann,
2001c). Thus, it should be no surprise that EAs tend to generate the same long run
results as replicator dynamics.

Nevertheless, EAs provide a suitable way of analyzing the long run results of
learning processes, even if these learning processes arenot Markovand can thus
not be analyzed with the help of the concept of stochastic stability, e.g. learning
processes based on agents with certain forms of personal memory. What can be
done is the following: Set up an agent based EA driven model of the respective
economics and code it as a computer simulation. Then run the computer simula-
tion many times6 and let each simulation run for a long time, i.e. very many rounds.
Eventually, the last population of agents in every one of these simulations repre-
sents a result of the process after many periods of learning. The aggregate of all
populations of the many different runs of the simulation then represents (due to the
law of large number) a kind of mean learning result. In order to check if this result
is a ‘long run’ result, it can be tested if two aggregate populations i.e. one recorded
in period 900 000 and one recorded in period 1 000 000, are identical. If this is the
case, this should be an evidence that both of these populations represent a kind of
limit distribution of the learning process. As, of course, it is not completely sure if
these distributions are truely the limit distribution, they will simply be called ‘long
run distributions’ in this paper.

There is a problem to this method, though: Due to technical restrictions, it is
not possible to set up simulations for mutation probabilities ‘approaching zero’.
The best thing that can be done in EAs is to use very small mutation probabilities
in order to record the long run results of the respective simulations. Thus, the long
run distributions do represent an approximation for limit distributions, but not for
the limit distribution of a process whose mutation probability approaches zero.

3.5 EA Simulations

In order to show that an agent based model with EA dynamics is able to fully resem-
ble the results analytically obtained byVega-Redondo(1997) (and, for a broader
range of dynamics, bySchenk-Hoppé2000), the following model is set up. The
economic model is the one introduced above (Sec.2). The agent based setup is a

or Walras.
6Of course, in order to produce sensible results, each simulation run has to be started with a

different initial setting of the random number generator
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simple evolutionary algorithm with each agent fully characterized by her one shot
strategy, i.e. the quantitysi,t . Strategies are coded as real valued numbers.

Learning by imitation is modeled by a selection operator, which displays ex-
treme evolutionary pressure: In every period, agents adopt the strategy of the agent
that performed best in the last period, i.e. the agent with the highest payoff in the
period before. This kind of ‘imitate the best’ replication displays more selective
pressure than the usual ‘biased roulette wheel‘–replication (Goldberg, 1989), which
is equivalent to replication in the usual discrete time non overlapping generations
replicator dynamics (Samuelson, 1997, pp. 63). Nevertheless, this type of repli-
cation has all characteristics needed to belong to the class of replication processes
capable of generatingVega-Redondo’s (1997) results.7 As usual in EAs, replica-
tion is a process of drawing with replacement agents (i.e. strategies) from the old
population and copying them into the new. This process is repeatedn times, i.e.
there is one draw per agent in the population. The replication probabilityPi,t is the
probability of an agent playing strategysi,t to be drawn and thus replicated into the
next population. For the ‘imitate the best’ replication used in this paper, replication
probabilities are given by

Pi,t =

{
1 for πi,t = maxj

{
π j,t
}
,

0 for πi,t <maxj
{

π j,t
}
.

(17)

It can be seen from (17) that this type of replication is a quasi–deterministic process.
The driving force, though, is relative rather than absolute payoff. This means that
(17) implies spiteful behavior of the agents.

Learning by mistakes or experiments, i.e. mutation, is modeled by agent’s
switching to a random quantity from the definition set of quantitiesS . Let s′i,t
denote the strategy agent (firm)i learned by imitation. Then, with the small muta-
tion probabilityε, the agent switches to a different strategysi,t , which is randomly
drawn and i.i.d. inS :8

si,t =

{
s′i,t with probability1− ε ,
s∼ i.i.d.∈ S with probabilityε .

(18)

Altogether, the EA consists of many rounds, which themselves consist of a
‘playing mode’ and a ‘learning mode’ (Binmore and Samuelson, 1994; Binmore
et al., 1995). The playing mode means firms selling their quantity at the market,
thus collecting their payoffs and experiencing the quality of their strategies. During
the learning mode, agents update their strategies by replication and mutation. EAs
are generally a mere repetition of these two modes.

Note, that the learning behavior this type of dynamics implies to the agents is
a very ‘low rationality’ kind of learning. All the information the agents need is
the information which strategy was the best in the last period. Agents do not even

7In fact, this is the same process as the one used byVega-Redondo(1996, pp. 128).
8This type of mutation is used by e.g.Binmore et al.(1995).
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need to remember what they did themselves last period. All that agents need to do
then, is imitate the previously best strategy. This is the reason why social learning
processes modeled by EAs or replicator dynamics are processes forveryboundedly
rational agents.

In order to check for the long run results of this learning process, 5 000 EA
simulations with the operators described above are run for 1 000 000 periods each,
using a mutation probability ofε = 1

100000. In each simulation, the populations in
period 900 000 and in the last period, i.e. period 1 000 000, have been recorded.
Then out of the 5 000 period–900 000 and the 5 000 period–1 000 000, one aggre-
gate population each is generated. If these giant populations should both represent
the limit distribution, they should not differ from each other. Thus, these popu-
lations, in form of probability distributions of supplied quantities, are tested for
equality. The result is, that these populations are indeed extremely similar. Then,
the period–1 000 000 population is plotted as a histogram representing the long run
distribution of quantities. This plot is given in Fig.2. The economic parameters

50 53.2

0.1

0.2

0.3

0.4

0.5

46

Cournot

Walras

rel.frequency

quantity

Figure 2: Long Run Distribution of Results in a Model of Social Evolutionary
Learning

underlying the simulation models are:A = 1000,B = 10, δ = 1, n = 10. Conse-
quently, the Walras–quantity should besW = 50, the Cournot–quantitysC = 47.6.
It is obvious that the Walras–quantity is the most frequent one, while the Cournot–
quantity is not too frequent. This result is perfectly in line with the theoretical
results byVega-Redondo(1997) and shows that an EA simulation is an appropriate
tool to simulate the respective evolutionary dynamics.9

9Statistical characteristics of the distribution given in Fig.2 are: mean = 50.07, median = 50.00,
std.dev. = 2.23.
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3.6 Summary: Social Learning

The optimal choice of behavior in social learning variants of the Cournot game
is the Walrasian behavior. Both types of social learning models discussed in this
paper lead to this strategy. Consequently, it can be concluded that both methods
represent sensible and sufficiently good forms of learning behavior. Moreover, it
has been shown that EA simulations do even resemble the transitory dynamics ana-
lytically formulated evolutionary games display. Based on this notion, EAs provide
a method of analyzing evolutionary learning dynamics even of such systems which
are out of the scope of the traditional analytical methods.

4 Individual Learning

In contrast to social learning, individual learning does not require the interaction
of agents during the learning mode. Agents clearly do interact while going to the
market, selling their quantity and thus generating the market price as the main
device of information. But after that, when it comes to updating their strategies,
agents act for themselves and isolated from each other.

Market

idea
idea
idea

...

idea

idea
idea
idea

...

idea

idea
idea
idea

...

idea

. . .

firm
quantity

firm

learning

quantity

firm

learning

quantity

learning 

aggregate supply

aggregate demand

Figure 3: General Structure of Individual Learning Models

Figure3 displays the general structure of the models for individual learning.
Each firm is characterized by a set ofideas, i.e. a pool of potential quantities the
firm could use at the market. The process of learning is applied in order to select
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one of these ideas as the one to really use in the market. Agents in these models do
not learn by imitating one another but rather by introspection, i.e. isolated from each
other. In the market, the interaction of the agents forms the aggregate supply, which
together with the exogenously given aggregate demand generates the market price.
The market price is the main piece of information flowing back to the agents and
thus enabling them to experience the quality of their strategy and thus to develop a
new strategy for the next period. In the following, three different kinds of learning,
i.e. determining a supposedly good strategy for the market, will be analyzed.

The main difference between individual and social learning in the Cournot
model is the fact, that for individual learning, there is no spite effect. (SeeVriend
2000for further discussions of this point). With individual learning, the game in
focus is the ‘regular’ Cournot game in absolute payoffs. Consequently, the opti-
mal strategy is the Cournot strategy, which in these models forms the only stable
symmetric Nash equilibrium.

But, the mere absence of the spite effect does not automatically mean that
the outcome of individual learning processes cannot be Walras or even must be
Cournot. The opposite is true: It will be shown that it even takes a large amount of
rationality (or: sophistication) of the agents to individually learn to play Cournot.
Apart from the effect of the presence or absence of spiteful behavior, there is an
additional force influencing the quality of the results: the level of rationality of
the agents. The more the agents know and the more sophisticated methods they
use to determine their strategy, the more likely it is that the result will be Cournot.
In other words: With individual learning, the Walrasian strategy turns out to be a
kind of ‘low rationality behavior’, whereas playing the Cournot strategy requires a
remarkable amount of knowledge and behavioral sophistication. In the following,
three types of individual learning will be considered in order to stress this hypoth-
esis. All of these learning methods represents learning by agents with a different
degree of rationality.

4.1 Best Response Learning

One of the most sophisticated forms of individual learning is best response learn-
ing.10 In order to compute a best response to the opponents’ strategies of last period
or, alternatively, to last period’s market price, an agent needs the following infor-
mation: Form and parameters of the aggregate demand function, i.e.A andB in
our model, as well as the knowledge thatDt is linear in the market price; form and
parameters of the cost function, i.e.δ, and the knowledge thatC(·) quadratic; her
own quantity chosen in the preceeding period,si,t−1 (i.e. some form of memory);
and last period’s aggregate supplySt−1 or, alternatively, the market price of the
last period,pt−1.11 Equipped with all this knowledge and information, an agent
can compute her reaction function describing the best response to every possible

10For a textbook version of this adjustment process, seeFudenberg and Levine(1998, pp. 8–10).
11Due to (2) and (3), pt−1 can be calculated fromSt−1 and vice versa.
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aggregate supplysi,t = Bs(St−1) or to every possible market pricesi,t = Bp(pt−1):

si,t = Bs(St−1) =
A−St−1 +si,t−1

Bδ +2
(19)

= Bp(pt−1) = si,t−1 +
pt−1

(Bδ +2) B
. (20)

These highly informed agents can thus compute their best response to the given
circumstances. For the model discussed in this paper, it is known that this type of
‘classical’ best response learning will quickly lead the dynamics into the Cournot
equilibrium. Moreover, under the regime of these dynamics and for the parameters
chosen in the above example, the Cournot–Nash strategy is a best response to itself,
while the Walras–strategy is not. Thus, the Cournot–Nash strategy is asymptoti-
cally stable under best response dynamics, while the Walras–strategy does not even
establish a (Nash–) equilibrium.

A slightly different variant of generating a similarly sophisticated best response
is presented byVriend (2000). Vriend lets each of his firms apply aclassifier sys-
tem(CFS,Holland1992; Goldberg1989) in order to find a best response to a se-
ries of combinations of supplied quantities and market prices connected with these
quantities. Classifier systems are techniques from the field of artificial intelligence,
which are known to be capable of efficiently computing optima of complicated
mathematical functions. Thus, it is no surprise thatVriend finds his model to con-
verge towards the Nash–Cournot equilibrium.

4.2 Cobweb Learning

If agents do not know or simply neglect the state dependent nature of the problem,
i.e. the fact that they do have an influence on the market price, the outcome of in-
dividual learning will be the Walras equilibrium. The reason for this is straightfor-
ward: If agents do not think or do not know they can influence the market price, the
best thing they can do is compute a best response to last period’s equilibrium price.
Moreover agents assume that even the reactions of other agents do not change the
price. Consequently they expect the price of the current period to be the same as the
price of the period before:pe

t = pt−1. This myopic expectation can be interpreted
as a symptom of the agents’ bounded rationality. Consequently, agents adjust their
quantity to the seemingly given price. This is exactly the way agents are supposed
to update their strategies in the classical cobweb model (dating back to the seminal
work byLeontief1934), sometimes labeled as ‘naive’ or simply ‘cobweb’ learning.
This kind of behavior results in following the well–known rule ‘Select exactly the
quantity that equals your marginal costs and the market price’, i.e.

s?i,t+1 : pt =
∂C
(

s?i,t+1

)
∂s?i,t+1

. (21)

Of course, this quantity is the Walras quantity as given in (8):

s?i,t+1 = sW. (22)
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For the given model, the cobweb reaction is given as

si,t =
pt−1

δ
. (23)

The required knowledge for the generation of a cobweb response is form and
parameters of the cost function, or at least the function of marginal costs, i.e.δsi,t

in the given model, as well as last period’s market price,pt−1. In order to find
a cobweb response, agents must be capable of computing a function like the one
given in (23). This act of finding a best answer to a given price can alternatively
be modeled by an EA, which represents a particularly ‘low rationality’ method to
solve this intra–agent learning task. It has been mentioned before that there exists
a broad range of papers showing that EA learning in Cobweb models leads to the
Walrasian outcome, i.e.Arifovic (1994); Dawid and Kopel(1998); Franke(1998).

It is a standard textbook issue12 to prove that the Walras–equilibrium under the
regime of these dynamics is asymptotically stable at least for the model and the
parameter set13 presented above.

There are more variants of the cobweb model, which mainly differ in the way
agents form their expectations about the current market price. All of these models
are known to eventually converge to the Walras equilibrium, even if the number
of players is finite. The key to this behavior seems to be the level of ignorance of
the agents: As long as agents do ignore their personal influence on the price, they
reach the Walras solution.

4.3 State Dependency Learning

In order to make the above point clearer, a model of ‘medium rationality’ will be set
up. Agents know that they can influence the market price with their decision. And,
although they do not know the exact form of the aggregate demand function, they
will be equipped with the knowledge of the elasticity of demand, or, to be more
exact, the slope of the demand function∂Dt

∂si,t
. Thus, agents are not too smart, but at

least they know that the problem they face is a state dependent one. Consequently,
just in order to give a name to this learning method, this type of learning will be
labeled ‘state dependency learning’.

Again, agents try to find a best response to the market price, but this time they
do take into account their influence on the price. (What they still neglect, though,
is the fact that there is an influence of all other agents on the price, as well.)

Thus, what agents do is try to find a quantitysi,t which will maximize their ex-
pected profitsπe

i,t+1 while keeping in mind that the current price will be changed by
their quantity decision. Thus, they optimize under the assumption that the current
price results as last period’s price minus their own change in supply times the slope
of the demand curve:

max
si,t

πe
i,t = pe

t si,t −C(si,t) (24)

12See e.g.Chiang(1984, pp. 561).
13The parameter set establishes a so called ‘cobweb stable’ situation.
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s.t. pe
t = pt −α∆si,t

with α =
∂Dt

∂si,t

and∆si,t = si,t −si,t−1 .

Thus, the information needed in order to compute this kind of response is last
period’s market price, the price elasticity of demand, and form and parameters of
the cost function. In the simulations constructed in order to generate the long run
distribution of strategies, each agent tries to solve (24) with the help of an evolu-
tionary algorithm. Simulations were run for the same parameter set as before, i.e.
for A = 1000,B = 10,δ = 1, n = 10. Again, these parameters establish the follow-
ing theoretical benchmark results: In the model, the Walrasian quantity issW = 50,
and the Cournot quantity issC = 47.6. For these parameters, 1 000 simulations
were run over 5 000 periods with a mutations probability ofε = 1

10000 in order to
record the long run distribution of learned quantities. Figure4 shows the results.14

The figure makes clear that under the regime of state dependency learning, in the
long run, agents tend to play Cournot, not Walras.

46 47.6 50

0.1

0.2

0.3

0.4

rel. frequency

quantity

Cournot

Walras

Figure 4: Long Run Distribution of Results in a Model of Individual State Depen-
dency Learning

Note that agents in this model posses a medium level of rationality. They need
more information than for cobweb learning, but not as much as for best response
learning. But agents are aware of the fact that they have a non–negligible influence
on the market price (although they ignore the fact that other agents have this influ-
ence as well). This seems to be the key information needed to generate Cournot
instead of Walras outcomes in models with individual learning.

14Statistical analysis results in: mean=47.68, median=47.75, std.dev.=0.89.
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5 Summary: Degrees of Rationality and Learning Results

It should have become clear that the long run result of learning in the Cournot
game crucially depends on the type of learning and, if learning means individual
learning, on the degree of the agents’ rationality. Social learning, due to the spite
effect, always leads to the Walrasian outcome. With individual learning, agents
need a positive minimum degree of information and analytical sophistication to be
able to learn to play Cournot. The degree of rationality, in this paper, is measured by
three things: The amount of information needed to conduct the respective learning
method, the question if agents need a personal memory, and the computational
abilities an agent needs.

Table3 summarizes the results of the paper.

Learning Level Necessary Memory Necessary

Method of Rationality Information needed computational

abilities Result

social best quantity no imitation Walras

of others

individual

cobweb low cost function: no maximization Walras

marginal costs

price

state medium agg. demand: quantity maximization Cournot

dependency elasticity or EA

cost function:

form and parameters

price

best response high agg. demand: quantity maximization Cournot

form and parameters or CFS

cost function:

form and parameters

agg. supply or price

Table 3: Summary

It can be clearly seen that social evolutionary learning requires the least level
of rationality. Agents only need a minimum of information and capabilities. This
type of learning leads to the Walras outcome. Best response learning, as the other
extreme case, needs agents that can aquire a large amount of information, hold some
personal memory and have command of some very sophisticated technical methods.
This is clearly the most ‘high rationality’ learning scheme and, consequently, leads
to the Cournot outcome.

18



To put the results of the paper into one sentence: The more sophisticated agents
are, the more likely they are to learn the Cournot strategy.
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