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1 Introduction

The application of unit root tests, such as the Augmented Dickey-Fuller (ADF)
and the Phillips-Perron (PP), has become standard in applied time series econo-
metrics. In some areas of economics, however, their frequent inability to reject
the null of nonstationarity contradicts well-established theoretical expectations.

One example is the purchasing power parity (PPP) hypothesis. In its abso-
lute form, it states that a common basket of goods, when quoted in the same
currency, costs the same in all countries. Due to several factors like taxes, tariffs,
trade restrictions and other market imperfections, the relationship may only be
expected to hold in the long run. In empirical studies, however, the null hy-
pothesis of a unit root in the deviations from parity can often not be ruled out
using ordinary testing procedures.

As a possible explanation, Dumas (1992), Sercu, Uppal and Van Hulle (1995)
and Michael, Nobay and Peel (1997) consider models of real exchange rate
determination which take transactions costs into account. Their theory suggests
that the larger the deviation from PPP, the stronger the tendency to move back
to equilibrium. The result is a nonlinear, mean-reverting stochastic process.
They claim that standard unit root tests might lack power in such cases, and
thus the evidence against PPP in the literature might be the result of a type II
error.

It has been demonstrated by Michael et al. (1997), Sarno (2000), Taylor,
Peel and Sarno (2001) and Baum, Barkoulas and Caglayan (2001), amongst
others, that the exponential smooth transition autoregressive (ESTAR) model
is an effective way to describe such processes. This is part of the general class
of STAR models, which constitute a broad and flexible family of nonlinear time
series models, that has recently been applied in various fields of economics. For
an excellent survey, see van Dijk, Teräsvirta and Franses (2002).

The problem is that these authors assume stationarity a priori, without using
formal inference. Therefore Kapetanios, Shin and Snell (2003) develop an ADF
type test called tNL in that framework, and confirm its superiority over its linear
counterpart in some situations. Our paper extends their work by proposing two
new test statistics using a semi-parametric approach along the lines of Phillips
(1987) and Phillips and Perron (1988). We give analytical expressions for the
asymptotic distributions, which are free of nuisance parameters. By simulation,
we also study the performance in small samples and compare it to both their
linear counterparts and the tNL.

The plan of the paper is as follows. Section 2 describes the theoretical
framework and derives some important asymptotic results. In Section 3, the
new tests are developed along with their limit distributions. Finite sample
properties are assessed in Section 4, while an emprirical application is presented
in Section 5. Finally, Section 6 concludes. A more technical theorem is given in
the Appendix.

Some words on notation. Throughout the paper, ‖X‖r = (E(|X|r))1/r de-
notes the Lr norm, W denotes a standard Wiener process on [0, 1], and ”⇒”
denotes weak convergence in distribution.
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2 The nonlinear ESTAR framework

Consider the case of a simple STAR(1) model given by

yt = φ1yt−1(1−G(yt−1, θ)) + φ2yt−1G(yt−1, θ) + vt, (1)

where G(yt−1, θ) is called the transition function, is continuous and bounded
between 0 and 1, and {vt} is a mean zero innovation sequence whose exact
properties will be discusses in more detail below. The easiest way to think of
such a nonlinear model is as a weighted average of two regimes corresponding
to AR(1) processes, with dynamically changing weights determined by the level
of the process in the previous period. To begin with, we will assume that {yt}
is a mean zero stochastic process. Other cases will be discussed in Section 3.

While there are various transition functions being considered in the litera-
ture, our focus will be on the exponential one, which is of the form

G(yt−1, θ) = 1− exp(−θy2
t−1), (2)

with θ ≥ 0. This function is symmetrically U-shaped around zero and tends to
1 as yt−1 gets large in absolute value, provided that θ is positive. In this case,
the value of the θ determines the curvature of the function and thus effectively
the speed of the transition between the two regimes. When θ = 0, however, the
function is zero everywhere and no transition takes place.

For our particular application, we follow Kapetanios et al. (2003) and impose
φ1 = 1, and −1 < φ2 < 1. In other words, the two regimes of our STAR
model are assumed to correspond to a unit root process and a stable AR(1),
respectively.

Combining these restrictions with (1) and (2), we can write our model in
the following, reparameterized form:

∆yt = γyt−1(1− exp(−θy2
t−1)) + vt, (3)

where γ = φ2 − 1. When −2 < γ < 0, which we assume holds, and θ > 0,
the process is globally mean-reverting towards the long-run level zero, while it
locally acts like a unit root process when being close to that same level. We will
say that the time series has a partial unit root in this case. For θ = 0, there is
no mean-reverting behaviour and the process has a full unit root.

It seems likely that standard linear unit root tests such as the ADF or PP
have difficulties to distinguish between these two cases, i.e. they lack power
against the nonlinear alternative described above. For the former test, this was
shown by Kapetanios et al. (2003), while simulation evidence on the latter one
is presented in Section 4 of this paper. We will therefore describe their approach
to test for a unit root that takes the specific alternative into account.

The hypothesis is

H0 : θ = 0 vs. H1 : θ > 0. (4)

Note that the parameter γ is not identified under the null. Loosely speaking,
this means that nothing can be learned about γ from the data if H0 is actually
true. This highly affects standard inferential procedures (see Davies (1987)),
and thus a direct testing procedure is not feasible. However, following Luukko-
nen, Saikkonen and Teräsvirta (1988), the problem can be overcome by using a
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Figure 2.1: Undisturbed relationship between yt and yt−1 for the ESTAR(1) model (3)
and corresponding Taylor approximation (5), using γ = −1, θ = 0.01. The bisecting
line represents a unit root process

first order Taylor series approximation of the exponential function around zero,
leading to the auxiliary regression

∆yt = δy3
t−1 + ut, (5)

where δ = θγ, ut = vt + γyt−1R(yt−1, θ) and R(yt−1, θ) is the remainder of the
Taylor approximation. Here the identification problem is no longer present.

To get an idea of the goodness of the approximation, Figure 2.1 depicts
the undisturbed relationship (i.e. without the error term) between consecutive
observations implied by the respective regressions. As one can see, differences
are only getting obvious when yt−1 becomes large in absolute value. Auxiliary
regression (5) therefore captures the dynamics of the true process quite well.

In the regression (5) our hypotheses stated above are equivalent to

H0 : δ = 0 vs. H1 : δ < 0. (6)

Now, the idea is to base inference on estimates of δ and the respective t ra-
tios. Note that although our regression is only an approximation, under the
null hypothesis this does not influence the properties of the error term, since
R(yt−1, θ) ≡ 0 and thus ut = vt when H0 is true. Consequently, it does not
affect the asymptotic distribution theory under H0.

Denote the ordinary least squares (OLS) estimate of δ by

δ̂ =
∑T

t=1 y3
t−1∆yt∑T

t=1 y6
t−1

. (7)

Then the corresponding conventional t statistic is given by

tδ̂ =
δ̂√

Var(δ̂)
=

∑T
t=1 y3

t−1∆yt√
σ̂2

∑T
t=1 y6

t−1

, (8)
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where

σ̂2 =
1
T

T∑
t=1

(∆yt − δ̂y3
t−1)

2 (9)

is the usual estimator of the error variance.
To derive the asymptotics of δ̂ and tδ̂, we have to be precise about the

structure we are going to allow for the error term {vt}. Kapetanios et al. (2003)
only consider the t statistic and show that for an i.i.d. sequence with finite
second moments the limit distribution is given by

tδ̂ ⇒
1
4W (1)4 − 3

2

∫ 1

0
W (r)2dr√∫ 1

0
W (r)6dr

. (10)

They also demonstrate that this asymptotic distribution is the same in the case
of an autoregressive process of order p, when the auxiliary regression (5) is
extended with lagged first differences, as in Said and Dickey (1984), to

∆yt = δy3
t−1 +

p∑

i=1

ρj∆yt−i + εt, (11)

where εt is i.i.d. (0, σ2) under the null. Given that p increases with the sample
size in a suitable way, it can be shown that this also holds for general stationary
and invertible ARMA processes.

In this paper, we will use a much more general framework based on the
concept of strong mixing process as used in Hansen (1992). The main advantages
of this approach is that besides its flexibility in terms of dependence structures,
it also allows the possibility of unconditional or conditional heteroskedasticity,
which is important for many economic applications. Furthermore, it also seems
unintuitive to restrict the attention to linear error sequences in the general
context of nonlinear time series.

More precisely, we make the following assumption about {vt}:
Assumption 2.1. For some p > β > 2, {vt} is a zero mean, strong mixing
sequence with mixing coefficients αm of size −pβ/(p − β) and supi≥1 ‖vi‖p =

C < ∞. In addition, (1/T )E
((∑T

1 vi

)2
)
→ λ2 > 0 as T →∞.

The basic idea behind that assumption is that there should be a trade-off
between the existence of moments and the mixing decay rate in order to prevent
single observations from being too influential. For example, if extreme realiza-
tions occur relatively often (as will be the case when relatively few moments
are finite), then the effect of such observations should wear off at a faster rate
(requiring a larger size). Assumption 2.1 thus assures that the functional cen-
tral limit theorem (FCLT) and results regarding the convergence to stochastic
intergrals will apply to certain normalized partial sums of {vt}.

The parameter λ2 is called the long-run variance. Note that while the second
moments of {vt} are not assumed to be constant over time, a strong law of large
numbers (McLeish 1975) asserts that

1
n

n∑

i=1

v2
i

a.s.−→ σ2 = lim
n→∞

1
n

n∑

i=1

E(v2
i ). (12)
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Hence there is a parameter σ2 that can be interpreted as the average error
variance. When {vt} is a sequence of i.i.d. variables, we obviously have λ2 = σ2.

Having defined the theoretical framework, we can now establish some con-
vergence results that will be essential for the further asymptotic development.

Lemma 2.1. Let Assumption 2.1 hold with β = 6 and H0 be true. Then, as
T →∞, we have:

(a) T−2
T∑

t=1

y2
t−1 ⇒ λ2

∫ 1

0

W (r)2dr

(b) T−4
T∑

t=1

y6
t−1 ⇒ λ6

∫ 1

0

W (r)6dr

(c) T−2
T∑

t=1

y3
t−1vt ⇒ 1

4
λ4W (1)4 − 3

2
σ2λ2

∫ 1

0

W (r)2dr

Proof. Both (a) and (b) are standard results that follow from the FCLT and the
continuous mapping theorem (CMT), whereas (c) is a result of Theorem A.1 in
the appendix, its subsequent remark, and the Itô formula.

Now we can start to discuss the properties of the quantities in (7)-(9). Our
first concern is whether the estimates are consistent. This is ensured by the
following theorem.

Theorem 2.1. Under the conditions of Lemma 2.1, we have

(a) δ̂
p→ 0, δ̂ = Op(T 2)

(b) σ̂2 p→ σ2, σ̂2 − σ2 = Op(T )

Proof. Part (a) can be shown by a comparison of the convergence rates of the
nominator and denominator in (7), which are Op(T−2) and Op(T−4), respec-
tively. To prove (b), write

σ̂2 =
1
T

T∑
t=1

v2
t −

2δ̂

T

T∑
t=1

y3
t−1vt +

δ̂2

T

T∑
t=1

y6
t−1 (13)

and note that the first term converges to σ2 in probability by (12), and the last
two terms are both Op(T ). Hence, the result follows.

Part (a) of the theorem implies that δ̂ converges to its true value zero under
H0 at rate T 2, which is even faster than the usual rate T encountered in ordinary
time series regressions with a unit root. Using this and the previous results, we
can now derive the asymptotic distributions of the appropriately scaled version
of δ̂ and of tδ̂.

Theorem 2.2. Under the conditions of Lemma 2.1, we have

(a) T 2δ̂ ⇒
1
4λ4W (1)4 − 3

2σ2λ2
∫ 1

0
W (r)2dr

λ6
∫ 1

0
W (r)6dr

(b) tδ̂ ⇒
1
4λ4W (1)4 − 3

2σ2λ2
∫ 1

0
W (r)2dr√

σ2λ6
∫ 1

0
W (r)6dr
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Proof. Part (a) follows directly from Lemma 2.1 (b) and (c) and the CMT,
whereas part (b) additionally requires Theorem 2.1 (b).

3 The ZNL test

Unfortunately, the limiting distributions derived in Theorem 2.2 depend on un-
known nuisance parameters, and hence the respective test statistics cannot di-
rectly be used. We solve the problem by the semi-parametric approach proposed
in Phillips (1987) and Phillips and Perron (1988). Without specifying an ex-
plicit model for {vt}, we use consistent estimates of λ2 and σ2 to modify the test
statistics in such a way that the parameters cancel each other asymptotically.

Let us assume for the moment that we have two such estimators, named λ̂2

and σ̂2, without worrying about their exact functional form. These consistent
estimates can now be used to develop Phillips-Perron-type test statistics, whose
limiting distributions do not depend on nuisance parameters.

Define

ZNL(δ) = λ̂2T 2


δ̂ − 3

2

T∑
t=1

y2
t−1

(
λ̂2 − σ̂2

) (
T∑

t=1

y6
t−1

)−1

 (14)

and

ZNL(t) =
σ̂

λ̂
tδ̂ −

3
2

T∑
t=1

y2
t−1

(
λ̂2 − σ̂2

) (
λ̂2

T∑
t=1

y6
t−1

)−1/2

, (15)

where the first term is a transformation of the OLS estimate δ̂ and the se-
cond term is one of the corresponding t-statistic tδ̂. The respective asymptotic
distributions of the two quantities are given by the following theorem:

Theorem 3.1. Under the conditions of Lemma 2.1, we have

a) ZNL(δ) ⇒
1
4W (1)4 − 3

2

∫ 1

0
W (r)2dr∫ 1

0
W (r)6dr

b) ZNL(t) ⇒
1
4W (1)4 − 3

2

∫ 1

0
W (r)2dr√∫ 1

0
W (r)6dr

Proof. Both (a) and (b) are a direct consequence of Theorem 2.2, Lemma 2.1
and the CMT.

As they are free of unknown parameters, these limiting distributions can
now directly be used to obtain critical values for a test of H0. A nice parallel to
the standard linear Phillips-Perron tests is that the distributions coincide with
the ones of the unmodified statistics T 2δ̂ and tδ̂ when {vt} is an i.i.d. sequence
and we thus have λ2 = σ2 (see Theorem 2.2).

Figure 3.2 depicts the limit distributions of the two statistics under H0. It
turns out that the one of ZNL(δ) is heavily left skewed, whereas the one of
ZNL(t) is much more concentrated and only relatively mildly skewed.
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Figure 3.2: (a) Estimated probability density function of the ZNL(δ) statistic. (b)
Estimated probability density function of the ZNL(t) statistic.

Table 1: Asymptotic critical values of the ZNL(δ) and ZNL(t) statistics

ZNL(δ) ZNL(t)
Fractile (%) Case 1 Case 2 Case 3 Case 1 Case 2 Case 3
1 -131.184 -260.396 -504.780 -2.802 -3.481 -3.944
5 -50.834 -121.848 -279.798 -2.202 -2.934 -3.404
10 -28.927 -73.395 -200.390 -1.916 -2.652 -3.126

Cases refer to raw, demeaned, and demeaned and detrended data, respectively.

Up to now, we have confined our analysis to stochastic processes with mean
zero, which certainly limits the usefulness of the results for empirical applica-
tions. To accommodate for nonzero means and/or deterministic linear trends,
we use the same minor modifications as in Kapetanios et al. (2003). In case
of a nonzero mean, i.e. when our model is xt = µ + yt, we use the demeaned
data, ŷt = xt − x̄, where x̄ is the sample mean. The new limiting distributions
are basically the same as in Theorem 3.1, but with W (r) replaced by W ∗(r), a
standard de-meaned Wiener process on [0, 1]. Similarly, when we assume both
a nonzero mean and a linear trend, i.e. when our model is xt = µ + βt + yt,
we will use the demeaned and detrended data, ŷt = xt − µ̂ − β̂t, where µ̂ and
β̂ are the simple OLS estimates. In this case, W (r) is replaced by W#(r), a
demeaned and detrended standard Wiener process defined on [0, 1].

Asymptotic critical values for these three constellations, termed case 1, case
2 and case 3, are given in Table 1. They were obtained by simulating the
respective statistics with T = 1, 000 observations and 50,000 replications.

Finally, we have to discuss the estimation of the nuisance parameters. In the
case of σ2, the usual estimator σ̂2 has already shown to be consistent under the
null hypothesis in Theorem 2.1 (b). There is also a large number of long-run
variance estimators proposed in the literature (see Den Haan and Levin (1997)
for a comprehensive review). While roughly speaking any consistent estimator
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will do the job, in this paper we will use the Newey-West estimator (Newey and
West 1987)

λ̂2 = Γ̂(0) + 2
T−1∑

i=1

w

(
i

lT

)
Γ̂(i), (16)

where Γ̂(τ) = T−1
∑T

t=τ+1 ûtût−τ , w(·) is the Bartlett kernel and the lag trun-
cation parameter lT is set at

⌊
4(T/100)2/9

⌋
. While the specific functional for

the estimator is not important for the asymptotic development, it may well af-
fect the tests’ finite sample performance. It should therefore be stressed, that
our particular choice is rather an ad hoc decision than based on theoretical con-
siderations. The question whether other approaches might be more favourable
in our context is beyond the scope of this paper.

4 Simulation results

In order to assess the properties of the new test statistics and to compare their
performance with the procedures proposed by Kapetanios et al. (2003), Phillips
and Perron (1988) and Said and Dickey (1984), we conduct a series of simulation
experiments. For brevity, we only consider the first of the three cases described
above, with the data being neither demeaned nor detrended. Although the
power is lower for the last two cases, the performances of the tests relative to
each other are similiar.

Our first concern is the size of the tests in finite samples, and thus we
construct a null model with moving average errors by

yt = yt−1 + vt with vt = et + ρet−1 (17)

where the et are i.i.d N(0, 1), and we consider ρ = {0,±0.2,±0.5,±0.8}.
To evaluate the power of the two testing procedures against a globally mean-

reverting ESTAR(1), we generate the data by

∆yt = γyt−1(1− exp(−θy2
t−1)) + vt with vt = et + ρet−1, (18)

and consider θ = {0.01, 0.05, 0.1, 1} and γ = {−1.5,−1,−0.5,−0.1}. We also
used various specifications of the error process, but for brevity only the cases
where ρ = {0, 0.5} and the et are i.i.d N(0, 1) are reported here.

For both size and power simulations, the nominal level of the tests is 5%, the
sample size being considered is T = {50, 100}, and the number of replications
is set at 10,000.

In contrast to Kapetanios et al. (2003), we do not assume that the DGP is
known when applying the tests to the data. In particular, we determine the
number of augmentations used for the tNL and ADF tests by minimizing the
Schwartz Information Criterion SIC in the respective regressions. While the
question whether this approach is efficient or not is beyond the scope of this
paper, it certainly gives a more realistic impression of the properties of the tests
than just using the ”true” order.

Table 2 shows the results on the size of the various tests. For ρ = {0, 0.2, 0.5}
all sizes are generally close to the nominal level of 5%. We also observe the
tendency to overreject the null somewhat when ρ = {−0.2, 0.8}. For large
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Table 2: The size of alternative test

Error Process ZNL(δ) ZNL(t) tNL Z(α) Z(t) ADF
T=50
ρ = 0.8 0.090 0.091 0.077 0.085 0.080 0.072
ρ = 0.5 0.066 0.068 0.077 0.067 0.062 0.069
ρ = 0.2 0.040 0.044 0.044 0.047 0.046 0.050
ρ = 0 0.036 0.056 0.054 0.049 0.048 0.050
ρ = −0.2 0.053 0.094 0.111 0.077 0.083 0.106
ρ = −0.5 0.160 0.290 0.219 0.256 0.283 0.230
ρ = −0.8 0.507 0.713 0.379 0.651 0.706 0.466
T=100
ρ = 0.8 0.093 0.091 0.056 0.089 0.083 0.051
ρ = 0.5 0.066 0.065 0.073 0.066 0.060 0.064
ρ = 0.2 0.046 0.047 0.046 0.048 0.047 0.046
ρ = 0 0.044 0.056 0.051 0.052 0.051 0.050
ρ = −0.2 0.069 0.094 0.112 0.084 0.087 0.104
ρ = −0.5 0.203 0.284 0.134 0.237 0.252 0.152
ρ = −0.8 0.719 0.811 0.289 0.683 0.722 0.385

Note: Data under the null is generated by (17).

negative values of ρ, however, size distortions are extreme for all of the six tests,
with the ADF type test being a little less affected. This is a well known result for
the linear unit root tests, which was already mentioned by Phillips and Perron
(1988) in their original work. The problem seems to persist in the nonlinear
case, so that none of the tests is recommendable when the error process almost
has a negative moving average unit root.

Results of the power simulations are presented in Table 3 and 4. The finding
of Kapetanios et al. (2003) was that their tNL test performed better than the
ADF for small values of θ. In that case, the process is highly persistent. When
θ grows, however, the average values of the transition function G(yt−1, θ) get
closer to one and the process more and more resembles a stable, linear AR(1).
So eventually, the power of the ADF dominates.3 In their empirical application,
they find that estimates of θ are usually indeed quite small in the case of foreign
exchange rates, and conclude that their test should be used in that situation.
Our simulations confirm these findings and show that basically the same holds
for the two linear Phillips-Perron tests Z(α) and Z(t). Their performance turns
out to be marginally worse than the ADF’s one, but they beat the tNL provided
that θ is sufficiently large.

All of the six tests have in common that their power is close to one when γ is
small. This comes as no surprise, as in these cases the process is less persistent.

Regarding our two new tests, we make the following observations. First,
comparing ZNL(δ) and ZNL(t), we note that the power of the latter dominates
the one of the former, particularly when θ is small. In addition, ZNL(δ) performs
similar or worse than all its linear competitors, leading to the conclusion that
this test should not be applied in practice. This comes as a surprise, since unit
root tests based directly on regression coeficients are usually found to be more

3Note that θ is not a scale free parameter and that thus it is difficult to say which values
are actually ”small” or ”large”.



4 SIMULATION RESULTS 10

T
a
b
le

3
:

T
h
e

p
ow

er
o
f
a
lt

er
n
a
ti

v
e

te
st

w
it

h
i.
i.
d
.

er
ro

rs

θ
=

0.
01

θ
=

0.
05

Z
N

L
(δ

)
Z

N
L
(t

)
t N

L
Z

(α
)

Z
(t

)
A

D
F

Z
N

L
(δ

)
Z

N
L
(t

)
t N

L
Z

(α
)

Z
(t

)
A

D
F

T
=

50
γ

=
−1

.5
0.

30
1

0.
63

1
0.

62
3

0.
33

6
0.

42
0

0.
46

9
0.

94
6

0.
95

1
0.

96
9

0.
96

4
0.

97
5

0.
97

9
γ

=
−1

.0
0.

17
5

0.
49

6
0.

48
1

0.
21

0
0.

28
3

0.
30

4
0.

81
5

0.
88

9
0.

91
7

0.
84

8
0.

88
5

0.
93

2
γ

=
−0

.5
0.

06
7

0.
26

1
0.

24
3

0.
10

9
0.

15
9

0.
16

8
0.

42
3

0.
69

2
0.

69
3

0.
47

8
0.

55
3

0.
62

5
γ

=
−0

.1
0.

02
6

0.
08

3
0.

07
5

0.
05

0
0.

08
2

0.
08

1
0.

05
3

0.
17

1
0.

15
2

0.
08

8
0.

13
7

0.
13

8
T

=
10

0
γ

=
−1

.5
0.

96
7

0.
96

3
0.

97
9

0.
91

1
0.

92
5

0.
97

5
1.

00
0

0.
99

9
1.

00
0

1.
00

0
1.

00
0

0.
99

9
γ

=
−1

.0
0.

85
3

0.
89

5
0.

92
1

0.
75

9
0.

79
2

0.
89

1
1.

00
0

0.
99

8
0.

99
9

1.
00

0
1.

00
0

0.
99

9
γ

=
−0

.5
0.

47
4

0.
68

4
0.

69
2

0.
41

0
0.

47
1

0.
52

4
0.

98
6

0.
97

1
0.

98
6

0.
97

1
0.

97
9

0.
99

3
γ

=
−0

.1
0.

07
2

0.
14

9
0.

14
3

0.
09

4
0.

11
8

0.
11

3
0.

25
6

0.
43

9
0.

43
2

0.
27

0
0.

32
8

0.
34

0
θ

=
0.

1
θ

=
1.

0
Z

N
L
(δ

)
Z

N
L
(t

)
t N

L
Z

(α
)

Z
(t

)
A

D
F

Z
N

L
(δ

)
Z

N
L
(t

)
t N

L
Z

(α
)

Z
(t

)
A

D
F

T
=

50
γ

=
−1

.5
0.

99
3

0.
98

8
0.

99
3

0.
99

8
0.

99
9

0.
99

4
0.

99
9

1.
00

0
0.

89
7

1.
00

0
1.

00
0

0.
99

8
γ

=
−1

.0
0.

96
2

0.
96

2
0.

97
8

0.
98

4
0.

98
9

0.
98

3
0.

99
5

0.
99

4
0.

96
0

1.
00

0
1.

00
0

0.
99

6
γ

=
−0

.5
0.

68
3

0.
83

0
0.

86
0

0.
74

8
0.

80
2

0.
87

6
0.

91
0

0.
87

8
0.

93
6

0.
99

8
0.

99
8

0.
98

9
γ

=
−0

.1
0.

08
7

0.
23

3
0.

21
3

0.
12

7
0.

18
1

0.
18

8
0.

18
2

0.
30

1
0.

29
1

0.
28

5
0.

35
7

0.
35

6
T

=
10

0
γ

=
−1

.5
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
0.

96
0

1.
00

0
1.

00
0

1.
00

0
γ

=
−1

.0
1.

00
0

0.
99

9
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
0.

98
5

1.
00

0
1.

00
0

1.
00

0
γ

=
−0

.5
0.

99
9

0.
98

9
0.

99
6

0.
99

8
0.

99
9

0.
99

8
1.

00
0

0.
99

1
0.

99
1

1.
00

0
1.

00
0

1.
00

0
γ

=
−0

.1
0.

41
6

0.
53

4
0.

52
9

0.
44

3
0.

49
9

0.
53

0
0.

56
6

0.
53

9
0.

57
5

0.
71

1
0.

74
4

0.
77

3
N

ot
e:

D
at

a
un

de
r

th
e

al
te

rn
at

iv
e

is
ge

ne
ra

te
d

by
(1

8)
w

it
h

ρ
=

0.



4 SIMULATION RESULTS 11

T
a
b
le

4
:

T
h
e

p
ow

er
o
f
a
lt

er
n
a
ti

v
e

te
st

w
it

h
M

A
(1

)
er

ro
rs

θ
=

0.
01

θ
=

0.
05

Z
N

L
(δ

)
Z

N
L
(t

)
t N

L
Z

(α
)

Z
(t

)
A

D
F

Z
N

L
(δ

)
Z

N
L
(t

)
t N

L
Z

(α
)

Z
(t

)
A

D
F

T
=

50
γ

=
−1

.5
0.

62
4

0.
79

0
0.

72
4

0.
54

7
0.

58
4

0.
58

1
0.

97
1

0.
98

5
0.

96
7

0.
94

5
0.

95
2

0.
94

3
γ

=
−1

.0
0.

47
2

0.
66

3
0.

62
5

0.
42

3
0.

46
4

0.
48

4
0.

90
2

0.
95

4
0.

90
7

0.
85

7
0.

87
5

0.
83

9
γ

=
−0

.5
0.

27
2

0.
41

6
0.

42
2

0.
25

2
0.

29
4

0.
30

9
0.

68
3

0.
79

3
0.

73
1

0.
63

6
0.

66
8

0.
65

1
γ

=
−0

.1
0.

07
8

0.
13

9
0.

15
5

0.
08

6
0.

11
7

0.
12

3
0.

16
6

0.
26

3
0.

27
6

0.
17

9
0.

22
4

0.
24

2
T

=
10

0
γ

=
−1

.5
0.

99
6

0.
99

5
0.

97
6

0.
97

4
0.

97
6

0.
93

7
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

0.
99

9
γ

=
−1

.0
0.

97
7

0.
97

6
0.

94
0

0.
92

6
0.

93
1

0.
87

5
1.

00
0

1.
00

0
0.

99
7

0.
99

9
0.

99
9

0.
99

5
γ

=
−0

.5
0.

82
6

0.
87

9
0.

81
7

0.
72

1
0.

74
0

0.
71

5
0.

99
7

0.
99

3
0.

97
2

0.
99

1
0.

99
2

0.
96

1
γ

=
−0

.1
0.

19
4

0.
30

7
0.

32
1

0.
19

1
0.

22
0

0.
23

7
0.

51
9

0.
57

4
0.

53
9

0.
51

1
0.

54
4

0.
51

2
θ

=
0.

1
θ

=
1.

0
Z

N
L
(δ

)
Z

N
L
(t

)
t N

L
Z

(α
)

Z
(t

)
A

D
F

Z
N

L
(δ

)
Z

N
L
(t

)
t N

L
Z

(α
)

Z
(t

)
A

D
F

T
=

50
γ

=
−1

.5
0.

99
5

0.
99

6
0.

99
2

0.
99

5
0.

99
6

0.
99

0
0.

99
9

0.
99

8
0.

98
1

1.
00

0
1.

00
0

0.
99

7
γ

=
−1

.0
0.

97
3

0.
98

3
0.

96
4

0.
96

3
0.

97
4

0.
95

7
0.

98
7

0.
97

6
0.

95
7

1.
00

0
1.

00
0

0.
99

5
γ

=
−0

.5
0.

82
7

0.
87

7
0.

81
1

0.
81

7
0.

83
9

0.
78

3
0.

89
8

0.
83

2
0.

77
2

0.
98

7
0.

98
6

0.
94

3
γ

=
−0

.1
0.

22
8

0.
30

9
0.

31
2

0.
24

4
0.

29
1

0.
30

5
0.

28
0

0.
32

5
0.

32
7

0.
33

4
0.

37
2

0.
37

2
T

=
10

0
γ

=
−1

.5
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
0.

99
5

1.
00

0
1.

00
0

1.
00

0
γ

=
−1

.0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
0.

98
5

1.
00

0
1.

00
0

1.
00

0
γ

=
−0

.5
0.

99
9

0.
99

7
0.

98
8

0.
99

9
0.

99
9

0.
99

2
0.

99
9

0.
98

1
0.

94
4

1.
00

0
1.

00
0

1.
00

0
γ

=
−0

.1
0.

60
4

0.
60

6
0.

57
0

0.
62

8
0.

65
5

0.
61

8
0.

66
1

0.
58

8
0.

54
6

0.
75

4
0.

77
0

0.
72

4
N

ot
e:

D
at

a
un

de
r

th
e

al
te

rn
at

iv
e

is
ge

ne
ra

te
d

by
(1

8)
w

it
h

ρ
=

0.
5.



5 EMPIRICAL APPLICATION: PPP 12

re
al

.fx

1990 1995 2000 2005

0.05

0.10

0.15

0.20

0.25

0.30

Figure 5.3: Quarterly (log) real bilateral exchange rate of the Australian and New
Zealand Dollar.

powerful than the ones based on t-ratios (Phillips and Xiao 1998).
Secondly, it emerges from Table 4 that ZNL(t) is marginally more powerful

than tNL when the error sequence is an MA(1). For i.i.d. errors, Table 3
shows that both test perform equally well in terms of power for all parameter
constellations considered here. The small differences between the respective
values are probably the result of simulation errors.

Note that in the latter case both the augmentations and the semiparametric
correction of the test statistics would not be necessary under normal circum-
stances. But since we consider only an approximation, the regression residuals
will exhibit serial correlation due to the inclusion of the remainder from the
Taylor series approximation. Both the ZNL(t) and the tNL, however, seem to
handle that problem equally well.

5 Empirical Application: PPP

As an empirical application of the unit root test developed in the previous
chapter, consider the case of real exchange rates, defined as

Qt = St · P ∗t
Pt

, (19)

where St is the nominal exchange rate and P ∗t , Pt are the foreign and domestic
price levels at time t, respectively. It is common, however, to use the logarithmic
form

qt = st + p∗t − pt, (20)

where all lower case variables are the log of the respective upper case counter-
part. As outlined in the introduction, the theory of purchasing power parity, or
PPP, predicts that the time series qt should be mean reverting, since short run
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Table 5: Test statistics and corresponding p-values.

ADF Z(t) tNL ZNL(t)
Statistic -2.3357 -2.5842 -3.3622 -3.1861
p-value 0.1600 0.0952 0.0145 0.0247

deviations from parity should be arbitraged away by market forces in the long
run. Note that this is equivalent to saying that st, p∗t and pt are cointegrated
with known cointegration vector (1, 1,−1)′. Standard unit root test however are
often not able to reject the null of a unit root in qt, which has been attributed
to possible nonlinearities in the process. We expect our ZNL(t) test (and the
similarly constructed tNL) to be more powerful than the usual procedures in
this case.

For our illustration, we consider the case of Australia and New Zealand.
Due to their geographical situation and common history as British colonies,
the countries have strong economic ties. Furthermore, with the 1983 Closer
Economic Relations Trade Agreement (known as CER), most trade restrictions
have successively been removed. All this makes it more likely to find evidence
in support of PPP.

Our dataset, obtained from the IMF’s International Financial Statistics On-
line service, contains the nominal exchange rate of the Australian to the New
Zealand Dollar, together with the consumer price indices (CPI) of the respective
countries as proxies of the price level. Observations were sampled at quarterly
intervals, starting in 1986, after which both currencies were floating freely, and
running to 2004. The resulting real exchange rate is displayed in Figure 5.3. It
can be observed that the two countries’ series has roughly stayed constant over
the inspected time period, although there have been substantial fluctuations.

We applied four unit root tests to each of the time series: the linear ADF
and PP tests based on the t-statistic, the tNL from Kapetanios et al. (2003),
and our ZNL(t) test. Other procedures discussed earlier were omitted since
the simulation results in the previous section suggest that their finite sample
properties are at most similar, if not inferior, compared to the others. Since
there is no theoretical justification for a linear trend in real exchange rates, we
included only an intercept in the regression for the two linear tests, and used
demeaned data for the two nonlinear ones. The resulting test statistics and
corresponding simulated p-values are presented in Table 5.

As one can see, the evidence in favour of PPP from the linear tests is not
really compelling. In contrast, the two nonlinear ones strongly reject the hy-
pothesis of a unit root in the real exchange rate, in line with economic theory.

In addition to that, we estimated the ESTAR model from (3) for yt − µ by
nonlinear least squares (NLS), yielding

∆yt = −0.2473
(0.1019)

(yt−1 − 0.1880
(0.0173)

)(1− exp(−207.6174
(295.8460)

(yt−1 − 0.1880
(0.0173)

)2)) + v̂t, (21)

where the numbers in parentheses are the corresponding standard errors. A fur-
ther analysis of the residuals shows no sign of serial dependence, which demon-
strates that the model is well specified. It is also strongly favoured over a linear
AR model with intercept by both the AIC and SIC.

As pointed out by van Dijk et al. (2002), the large standard error of the
estimate of θ should not be interpreted as evidence against nonlinearity, since
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the asymptotic distribution is nonstandard when θ = 0 due to the identification
problem. In fact, the reason is that the residual sum of squares function is
rather flat with respect to θ, and thus a precise estimate is hard to obtain.

6 Concluding Remarks

In various fields of economics, theory suggests processes to be stationary or
at least mean-reverting. A prime example is the theory of purchasing power
parity, which we use to motivate our study. The frequent inability of standard
testing procedures to reject the null of a unit root in these cases has long caused
discomfort amongst applied researchers. Recently, this has been attributed to
a lack of power of those tests against nonlinear alternatives.

This paper contributes to the literature in this field by proposing two new
test statistics in the framework of the exponential smooth transition autoregres-
sive (ESTAR) model. We derive their non-standard limit distributions analyt-
ically and assess the finite sample properties through a simulation study. As
a result, one of the tests turns out to have slightly favourable properties over
a procedure suggested by Kapetanios et al. (2003), the only one available in
this context so far. In a small empirical application to real exchange rates we
demonstrate that the approach is at least a promising one to solve the puzzle
of purchasing power parity.

As always, there is some room for improvements. First, the model considered
under the alternative is still somewhat restrictive. One might want to allow for
a more complex structure, involving a higher order of lagged variables, or a
non-constant mean or time trend, changing smoothly with the regimes. Other
transition functions, such as the logistic one, would be interesting to consider
as well, as they allow for asymmetric adjustment.

Second, solving the identification problem under the null hypothesis by other
means than linearization could be considered. The issue is discussed, inter alia,
by Andrews and Ploberger (1994) and Hansen (1996). In a much more general
context than the one presented in this paper, they suggest calculating the test
statistics as a function of the unidentified nuisance parameters, and then use
the supremum or average over all possible values to conduct inference. The
respective limit distributions will typically be non-standard and critical values
are again obtained via simulation. Theoretical considerations suggest that these
procedures will yield a better test. However, our approach presented in this
paper has the advantage of greater conceptual and computational simplicity.

A Mathematical Appendix

For the following convergence theorem, consider a time series of the form

yi = yi−1 + vi, i = 1 . . . n, (22)

and define Vt =
∑t

i=1 vi and Vn(s) = n−1/2Vbnsc for s ∈ [0, 1].

Theorem A.1. Let Λ = limn→∞ n−1
∑n

i=1

∑∞
j=i+1 E(vivj). If Assumption 2.1

holds with β = 6, then
∫ s

0

Vn(r)3dVn(r) ⇒
∫ s

0

B(r)3dB(r) + 3Λ
∫ s

0

B2(r)dr,
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where B = λW is a Brownian motion with variance λ2.

Proof. To begin with, recall that by the FCLT Vn(·) ⇒ B(·) and hence V 3
n (·) ⇒

B3(·) by the CMT. The following derivation extensively uses Theorem 3.1 to
3.3 from Hansen (1992), which will be refered to as H1 to H3, respectively.

Let Ft = σ(vi : i ≤ t) be the smallest sigma-field containing the past history
of {vt}, and define

εi =
∞∑

k=0

(E(vi+k|Fi)− E(vi+k|Fi−1)) , (23)

zi =
∞∑

k=1

E(vi+k|Fi). (24)

Then εi + zi−1 − zi = E(vi|Fi) = vi and it is easy to show that {εt,Ft} is
a martingale difference sequence. With Yn(s) = n−1/2

∑bnsc
i=1 εi, one directly

obtains the equality
∫ s

0

V 3
n (r)dVn(r) =

∫ s

0

V 3
n (r)dYn(r) + Λ∗n(s), (25)

where

Λ∗n(s) =
1
n2

bnsc∑

i=1

(V 3
i − V 3

i−1)zi − 1
n2

V 3
bnsczbnsc+1. (26)

Then, by H1, we obtain
∫ s

0

V 3
n (r)dYn(r) ⇒

∫ s

0

B3(r)dB(r) (27)

Now consider the bias term

Λ∗n(s) =
1
n2

bnsc∑

i=1

(V 3
i − V 3

i−1)zi − 1
n2

V 3
bnsczbnsc+1 (28)

=
1
n2

bnsc∑

i=1

(3V 2
i−1vi + 3Vi−1v

2
i + v3

i )zi + op(1) (29)

=
3
n2

bnsc∑

i=1

V 2
i−1vizi +

3
n2

bnsc∑

i=1

Vi−1v
2
i zi +

1
n2

bnsc∑

i=1

v3
i zi + op(1) (30)

First, by the triangle inequality and Hölder’s inequality,

E sup
0≤s≤1

∣∣∣∣∣∣
1
n2

bnsc∑

i=1

v3
i zi

∣∣∣∣∣∣
≤ E sup

0≤s≤1

1
n2

bnsc∑

i=1

∣∣v3
i zi

∣∣ (31)

≤ 1
n2

n∑

i=1

E
∣∣v3

i zi

∣∣ (32)

≤ 1
n2

n∑

i=1

∥∥v3
i

∥∥
4
3
‖zi‖4 (33)

≤ 1
n2

n∑

i=1

‖vi‖34 ‖zi‖4 → 0 (34)



A MATHEMATICAL APPENDIX 16

as n → ∞, since by Assumption 2.1 and the proof of H1, respectively, both
‖vi‖4 and ‖zi‖4 are bounded.

Second, set ei = vizi−Λ, which by H2 satisfies the conditions of H3, yielding

sup
0≤s≤1

∣∣∣∣∣∣
1
n2

bnsc∑

i=1

V 2
i−1ei

∣∣∣∣∣∣
p→ 0 (35)

and hence we have

3
n2

bnsc∑

i=1

V 2
i−1vizi =

3
n2

bnsc∑

i=1

V 2
i−1Λ +

3
n2

bnsc∑

i=1

V 2
i−1ei (36)

⇒ 3Λ
∫ s

0

B2(r)dr (37)

Finally,

E sup
0≤s≤1

∣∣∣∣∣∣
3
n2

bnsc∑

i=1

Vi−1v
2
i zi

∣∣∣∣∣∣
≤ E sup

0≤s≤1

3
n2

bnsc∑

i=1

∣∣Vi−1v
2
i zi

∣∣ (38)

≤ 3
n2

n∑

i=1

E
∣∣Vi−1v

2
i zi

∣∣ (39)

≤ 3
n2

n∑

i=1

‖Vi−1‖2
∥∥v2

i zi

∥∥
2
→ 0 (40)

as n →∞. To see this, note that by Hölder’s inequality
∥∥v2

i zi

∥∥
2

= (E|v4
i z2

i |)1/2 ≤ ‖vi‖26 ‖zi‖6 (41)

and thus is bounded. Furthermore,

3
n2

n∑

i=1

‖Vi−1‖2 =
3
n2

n∑

i=1

(
E(V 2

i−1)
)1/2

(42)

=
3

n3/2

n∑

i=1

(
1
n

E(V 2
i−1)

)1/2

(43)

≤ 3
n3/2

n∑

i=1

(
1
n

E(V 2
n )

)1/2

→ 0, (44)

as n →∞, since n−1E(V 2
n ) is O(1) and thus bounded.

REMARK: Note that since E(Vn) = 0 for all n,

λ2 = lim
n→∞

Var
(

1√
n

Vn

)
(45)

= lim
n→∞


 1

n

n∑

i=1

E(v2
i ) +

2
n

n−1∑

i=1

n∑

j=i+1

E(vivj)


 (46)

= σ2 + 2Λ (47)
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