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Abstract:

This paper presents a survey on panel data methods in which I emphasize new developments.
In particular, linear multilevel models with a new variant are discussed. Furthermore, non-
linar, nonparametric and semiparametric models are analyzed. In contrast to linear models
there do not exist unified methods for nonlinear approaches. In this case FEM are domina-
ted by CML methods. Under REM assumptions it is often possible to use the ML, method
directly. As alternatives GMM and simulated estimators exist. If the nonlinear function is
not exactly known, nonparametric or semiparametric methods should be preferred.

Zusammenfassung: Der Beitrag gibt einen Uberblick iiber Methoden zur Paneldatenana-
lyse, wobei neuere Methoden im Vordergrund stehen. Insbesondere werden lineare Mehrebe-
nenmodelle unter Beriicksichtigung einer neuen Variante diskutiert. Auferdem ist die Ana-
lyse auf nichtlineare, nicht- und semiparametrische Verfahren ausgerichtet. Im Gegensatz zu
linearen Modellen existiert bei nichtlinearen Ansdtzen keine einheitliche Schétzstrategie. Im
Falle von Fixed-Effects-Modellen dominiert die bedingte ML-Methode. Unter den Annah-
men eines Random-Effects-Ansatzes ist es oft moglich, die ML.-Methode direkt zu nutzen.
Alternativen bilden GMM-Schétzer und simulierte Schitzer. Wenn die nichtlineare Funktion
nicht genau bekannt ist, sind nicht- oder semiparametrische Schétzer zu préferieren.

JEL-Classification: C14, C23, C24, 025

Keywords: panel data, linear multilevel, nonlinear, non- and semiparametric models

IT



1 Introduction

The use of panel data regression methods has become popular as the availability of longitu-
dinal data sets has increased. Panel data usually contain a large number of cross sectional
units (individuals, households, companies, regions, countries), which are repeated observed
over time. The advantages of panel data compared with cross sectional data on the one one
hand and time series data on the other hand are the following: Firstly, the large number
of observations give more informative data, less multicollinearity, more degrees of freedom
and a higher efficiency of econometric estimates. Secondly, it is possible to separate between
cohort, period and age effects. Thirdly, the analysis can determine intra- and interindivi-
dual effects. Fourthly, panel data allow researchers to control for unobserved heterogeneity.
Pure time series and pure cross sectional data are usually contaminated by these effects.
Fifthly, longitudinal observations improve the possibilities of evaluating the effects of poli-
cy interventions and it is possible to determine under which conditions the effects can be
interpreted as causal effects. The availability of panel data allows us to estimate treatment
effects consistently without assuming ignorability of treatment and without an instrumen-
tal variable, provided the treatment varies over time and is uncorrelated with time-varying
unobservables that affect the response. Problems with panel data are possible by attrition,
time-varying sample size and structural changes. Furthermore, it must be considered that a
panel data survey is very cost-intensive.

A wide range of methods was developed in the last 40 years. The major contributions to
this topic have been in four volumes edited by MADDALA (1993) and BALTAGI (2002).
Furthermore, recent textbooks and surveys of panel econometrics exist (ARELLANO 2003,
ARELLANO/HONORE 2001, BALTAGI 2005, CAMERON/TRIVEDI 2005, HSTAO 2004,
HUBLER 2003, LECHNER 2002, LEE 2002, MATYAS/SEVESTRE 1996, WOOLDRIDGE
2002). The modelling of panel data approaches distinguishes in the time dependence, in the
assumptions of the error term and in the measurement of dependent variables. Due to the
specific assumption, consequences for the estimation methods follow. Beside the classical
methods in panel data econometrics like least squares and maximum likelihood estima-
tors we find conditional and quasi ML estimators, GEE (generalized estimating equations),
GMM (generalized methods of moments), simulated, non- and semiparametric estimators.
For linear panel data models with predetermined regressors we can apply conventional tech-
niques. The main objective is to eliminate and determine unobserved heterogeneity. Two
situations are distinguished: regressors and unobserved heterogeneity are independent or
interact. Much less is known about nonlinear models. Simple first differences methods but
also conditional likelihood approaches fail for many models to eliminate unobserved hete-
rogeneity. As the specification of nonlinearity is often unknown non- and semiparametric
methods are preferred.

We distinguish between several types of panel data models and proceed from general to more
specific models. The endogenous variable y;; can be determined by observed exogenous time
invariant (#;) and time-varying (x;;) variables, unobserved time invariant regressors («;.)
and a time-varying error term (u;). The term m(-) tells us that the functional relation
is unknown, i.e. nonparametric approaches are formulated, which may vary between the
periods (m;). If y;+ is not directly determined by &;, 1, ;. and u;; but across an unobservable
variable we call this a latent model, expressed by ¢(-). This relation may also be time-
varying (¢:(-)). Furthermore, we assume that besides the individual and the time dimension



(¢t = 1,..,N;t = 1,...,T) L further levels such like firms, sectoral or regional level are
observable which can induce specific effects:

o Generalized time-varying multilevel nonparametric latent model
Yire = gema(T L, i, o, wing)]

The major problem to handle this model is the high nonlinear dimensionality. There-
fore, it is helpful to consider more specific models:

o Generalized additive time-varying nonparametric latent model
Yir = glmae(@i) + mar(our) + wi

The determinants are additively separated in observed variables, unobserved individual
terms and the error term. Additionally, observed time invariant determinants may be
incorporated (3 ms:(¥)). Nevertheless, also this type is still to general for practical
estimations.

e Additive nonparametric multilevel model

K L
Yit = Z my (i) + Z o+ Ui

In contrast to the latter approach the effects are additively split within one variable
group. Now, the curse of dimensionality is solved.

e Partial linear model
yir = my(wine) + 257 + i + ug

As an alternative to the additive formulation of observed variables now only one or
few regressors are described by an unspecific nonparametric form while the remainder
is defined by a linear combination.

o Linear model with individual effects and time varying coefficients
Yir = w;tﬁt + a1 + Uy

This is the conventional panel data model defined by an unobserved individual effect
and time-varying coefficients.

o Linear model
Yir = €00 + wir.
This represents the most simple panel data model without any specific panel character.

The last three types can be found in applications, whereas the other types have, until now,
only been used in more specific formulations.



2 Parametric Models

2.1 Linear Models

Standard panel data analysis starts with linear models
Yir = 00+ wi i=1,...N t=1,..T (1)

where y is the dependent variable, x is a Kx1 regressor vector, 3 is a Kx1 vector of
coefficients and u is the error term. The number of cross sectional observations is N and
these units are repeatedly measured. When the cross sectional data are only pooled over
T periods, the coefficients can be estimated by OLS under classical assumptions about the
error term. The advantage of panel data in this case should be improved efficiency. But
let us note that in very large samples too many effects of regressors are significant. This
“curse of large number” should be considered in significance comparisons with cross sectional
estimates.

Some modifications follow if cross sectional heteroscedastic or cross sectional correlated and
time-wise autoregressive models are analyzed with panel data. Conventional EGLS estimates
are the consequence. But the main objective of all panel data analyzes is the consideration
of unobserved heterogeneity and its estimation. The methods which are developed for this
purpose depend on the assumptions of the error term, the regressand, the regressors and
the coefficients of the model. Furthermore, it is important to recognize whether all cross
sectional units are observed in the same periods. Sometimes there will be gaps in the data.
Some individuals have dropped out and can no longer be included in the panel and new
entrants have emerged over the sample period. Some panel data sets cannot be collected
every period due to lack of resources or cut in funding. This missing value problem leads
to unbalanced panels. E.g. WANDSBEEK and KAPTEYN (1989) or DAVIS (2002) study
various methods for this unbalanced model. In many cases, methods developed for a balanced
panel can also be employed for an unbalanced panel with only slight modifications as long
as the incompleteness is due to randomly missing observations.

2.1.1 Individual effects under alternative specifications

Conventional panel data analysis starts with a simple linear model and an unobserved time
invariant individual term o

Yir = T B+ o + € =1 25,8 + uyy. (2)

The basic task is to estimate the unobserved heterogeneity. If we assume under classical
conditions of €; that «; is uncorrelated with €; and the observed regressors z;;, we call this
a “random effects model - REM® or “error component model*. Standard procedures exist to
separate the estimation of § and «;. In a random effects approach the distribution of «; is

parameterized. This makes the model fully parametric. BALESTRA and NERLOVE (1966)

were amongst the first who solved this problem.

The coefficient vector # can be determined by OLS of the transformed model
Yie — Oy; = (i — 5@)/5* + uiy — b, (3)
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where

6.2

§=1— .
o2+ To2
The variance of € can be estimated by the residuals of the within estimator, the OLS
estimator of (4), and the estimated variance of & follows by

N
~2 1 ~2 1A2

oL = — U — =0
* N-K: e’

T

=1

where the average residuals @ are determined by the between estimator, i.e. the OLS esti-
mator of

K
Ui =Y Tl + Ui
h=1

BREUSCH and PAGAN (1980) have developed a Lagrange multiplier test based on OLS
residuals to determine whether random effects exist. WOOLDRIDGE (2002, 265) prefers
a statistic which is distributed asymptotically as standard normal, also based on residuals,
but without an assumption of the error term distribution.

If a; and the regressors are correlated we call the approach “fixed effects model - FEM*. In
this case one attempts to find ways to estimate the parameters making only minimal as-
sumptions on «; which can be eliminated by a first difference estimator or a within estimator.
In the latter case the weighted LS estimator

N N
Bw = [Z XX, ZXnyi

follows where () = Iy — %LTL/T. This coincides with the OLS estimator of the transformed
model

Yit — Ui = (20 — &) 0" 4 wie — w, (4)

where (0* is the coefficient vector without a constant term. The estimated individual effect
is

& = (Yir — Ui) — (T — i‘z)/ﬁ* (5)

The significance of individual effects can be tested by a conventional F test where the
residuals of the pooled model are compared with those of the model that incorporates the
individual effect. Whether the REM or the FEM is preferred can be decided by a Hausman
test (HAUSMAN 1978). In practice, we can integrate into the transformed REM (3) the
transformed FEM

yie = 89i = (wi — 82:)' B + (2 — &)’ B + wi (6)
and test whether B is significantly different from zero.

The model can be extended by fixed time effects a;. An elimination by a within estimator is
usually not necessary because the number of periods is small and therefore the time effects
can directly be estimated jointly with the coefficient vector 3

Yir = T3 + €+ a; + €y,
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where ¢ is a unit vector and & = (&1, &g, ..., &)’ The next step to more advanced panel data
models is to have fewer restricted assumptions of the error term. First order serial correla-
tion and heteroscedasticity can be allowed. For example, a four step procedure solves the
problem of determining the autocorrelation coefficient, p, and [ where two transformati-
ons are necessary (HUBLER 1990). If lagged dependent or jointly dependent variables or
errors in the exogenous variables exist a GMM estimator suggested by ARRELANO and
BOND (1991) is preferred (HUBLER 1990, ARRELANO 2003). Alternatives are usually

less efficient or even inconsistent. If, for example, the simple lagged dependent model exists

Yot = YVYip—1 T 0 + € = VY —1 + Ust,

conventional first differences eliminate the individual term

Yit — Yit—t = V(Yir—1 — Yit—2) + it — €iu—1,

however, an OLS estimator of the first differences is biased and even inconsistent under auto-
correlation. Instrumental variables solve the problem. GMM estimators, which incorporate
all valid instruments, are preferred compared to simple IV estimators. Valid instruments are
those which are uncorrelated with the error term. This means, if observations from T waves
are available, valid instruments 7 fulfil the following orthogonality conditions

dus - dyn
duy - dyn
duy - dyiz

dugr - dy;q

du;r - dyir—2 1,41

Z; = diag[dy1, ..., dys] s=1,...,7 -2
dyi
dyirdyio

dyi ... dyiT-2 (T-2)xm

dui = [duz'g, . ,dUiT]/,

where du;; = wiy — w1, dya = Yir, dyis = Yit — Yi—1 for t =2,...,T = 2.

Coefficients are determined by a minimum distance estimator
arg min(€ — (&)W (€ — E(&,) = arg min€ W, 7)
where W is a weighting matrix and estimation of 7 is based on the empirical moments

£ =E(&) = (1/N)S. Zldu; = (1/N)Z'du.

=1
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Z = (Z1,....75) is a N(T — 2) x m matrix and du = (duy,...,duy)" is a N(T —2) x 1
vector. The GMM estimator is

dy' 2V 7' dy (8)
dy 2Vt Zldy_y’

arg min EWE =Aamm =
where the optimal weighting matrix W is the inverse of the covariance matrix of ¢;

) LN -1 | N -1

=1
For practical applications we need preliminary consistent estimates of the error term.

This procedure can be extended to models with additional regressors

Vit = VWit-1 T8+ ai e

= 7.0+ uy. (9)
Under the assumptions
. =0 fort' >t B .
E(Ziteir) { 40 otherwise kE=1,... K,

which means that all regressors and error terms of the same period or later are uncorrelated,
we obtain as optimal instrumental variable matrix

) 1=1,...,N
Z; = diag |:dyi17...7dyi57d$;17...7d$,/i75+1i| S=1....T—9 (10)
Then the GMM estimator is
Soan = [(DX)Y 2V 2/(DX)| (DX Y 2V Z'dy, (11)

where matrix DX is composed of (T'— 2)N x K elements of di;.

Thus far, we have assumed that all coefficients including the individual effect are time
invariant. The following modification is less restrictive

Yit = Velfig—1 T Tl By 4 i + i (12)

Time-varying individual effects ©;1; seem undesirable, because in conventional models the
individual effects a; is defined in contrast to the idiosyncratic error term ¢;; as time invari-
ant. Nevertheless, it can be argued that the effect varies e.g. with cyclical ups and downs,
although individual characteristics stay the same. Conventional differences or within esti-
mators do not eliminate the individual effect. CHAMBERLAIN (1984, p.1263) suggests a
solution to determine the coefficients in (12). This equation in period t-1 is multiplied by
ry = ¢ /1p;—1 and this expression is subtracted from (12), i.e. y;z — r4y;:—1. So therefore the
individual effect vanishes. A simultaneous equation system results

Yis = (Y3 4 r3)yi2 — r3Yeyin + ¥ha B3 — raxly 0 + (€45 — raciz)
Yia = (Ya 4 ra)yis — raysyi2 + @4y B4 — raxly O + (€44 — racis)



Yir = (yr + r7)yir—1 — TTYT-1Yi,7—2 + T Or
=@} p_yBr-1 + (€ir — TTELT1) (13)

Equation y;; and y;; are suppressed as we have no information about y;o and y; _;. As the
error terms and the lagged dependent variables are correlated instrumental variables are
used. Therefore, y;5 is also eliminated, because not enough instruments can be constructed.
Altogether, the equations of period 4 to T can only be used to determine the coefficients.
This residual system is expressed by

Y=WB+e¢, (14)
7)

where Yis a (T—3)N x1 vector, Bisa (T—3)(342(K —1))x1 vector, W = diag(Wj,..., W.

isa (T—3)N x (T =3)[3+2(K —1)] block diagonal matrix, Wy = (yi—1, Ys—2, 1, 2} _1, 25_5) =
(Y7, X7 ) isa N x (342(K —1)) matrix. HOLTZ-EAKIN/NEWEY /ROSEN (1988) develop
a twostep procedure, which combines the GMM estimator and the twostep instrumental
variables estimator (251V) suggested by WHITE (1982). In the first step a conventional
2SLS estimator can be applied as an IV estimator. Based on these residuals an estimated
covariance matrix (V) is calculated and used in the second step. The instrumental variable

model Z'y = Z' X3 + Z'u is estimated by EGLS. The White estimator is
Bosiv = (X' ZV'Z'X) ' X' 2V 7'y,

When the regressors are also correlated with the error term, the instrumental variable matrix
is

Zy = (Yem2e Yi-1, 1, Ximgy Xioq) ~ N X (34 2(K —1)).

Then a two-step approach follows:
Step 1:
Equation-wise the 2515 estimator of the instrumental approach is determined:

L{yt = Z;WtBt + Z{@t t=4 T.

9o ey

By = (W/Z(Z[2,) 7 ZW,) "W, 20 Z]2,) ™ Zy,

Step 2:
The simultaneous EGLS estimator of the instrumental variables approach of all equations
is

ZY =Z'"WB+ 7'c

where 7 = diag(Z4,...,Z7). The covariance estimator of the error term in V(Z'c) =
E(Z'ee'Z) is
A G T T
V(Z'e)y=1] : :
Ve Vs o0 Vpr
where
A ! (X zieni) (s ziprnéan) oo (5 2ienban) (i ziwr jéirr)
Vir = N : : :

(Y zin i) i ziwnliv) oo (i zin€u) (i ziw j€iv)



1 N
A A 7
= N E Eqlit! 2 Sy
=1

9o ey 9o ey

J=34+2(K —1), zit = (zit1,- - -, zit;) die i-te Zeile von z. The final estimator is:

~ ~ -1 ~
Bysrvamm = (W'Z(V(Z’s))_lZ’W) W' Z(V(Z'e))~tZ'Y.

2.1.2 Multilevel models

A critical assumption of the previous models with the exception of the last one is the
general constancy of individual effects. E.g. we cannot expect that unobserved individual
abilities have the same effects in different situations. One possibility, the time dependence, is
described in (12). If the effects depend on exogenous variables, interaction variables can be
modelled or separated regressions for each individual can be estimated. Then the differences
in the estimated coefficients are due to individual characteristics. As usually only data
from few periods are available, this procedure does not seem successful. But a natural
extension is obtained when units are not only separated by one criterion, i=1,....N, and then
repeated observed over time (t=1,...,T), but further levels are considered, e.g. establishments
and industries. We call these “multilevel models“(GOLDSTEIN 1995, LONGFORD 1993,
RAUDENBUSCH, BRYK 2002). Typically, these models are formulated as “random effects

models®. A three-level model may be expressed by
Yijte = T+ o + aij + o+ €, (15)

where level 1 are the individuals (i=1,...,N), level 2 are the firms (j=1,...,J ) and level 3 are the
industries (I=1,...,L). One individual is assigned to one establishment and one establishment
is assigned to one industry. If the latter two levels are neglected, but if they are effective
on the dependent variable, the influence is incorporated by the former. Then the individual
effect is biased. Other examples of three levels are establishments, districts and countries or
individuals, households and cities. Recently, especially two-level models, i.e. linked employer-
employee panel data (LEEP) models, have been introduced in the literature (ABOWD,
CREEZY, KRAMARYZ 2002, ABOWD, KRAMARZ 1999, 1999a, ABOWD, KRAMARZ,
MARGOLIS 1999, GOUX, MAURIN 1999). In this context some methodological issues are

of special interest. The basic model is described by
Yir = T+ a; + Yy + it

under the assumption Eleyli, J(it), 1, 2] = 0. The firm effect is expressed by (). This
means individual i in period t is assigned to one of the j=1,...,J establishments. The LEEP
approach follows a “fixed effects model*. In matrix notation we have

y=X0G+ Da+ Fi+e, (16)

where y is a N-T'x1 vector, X is a N-T x K matrix. The design matrix for the individual effects
D has the order N-T xN containing unit vectors. Analogously, the design matrix for the firm
effects F is a N-T xJ matrix. This means the number of columns is equal the number of firms.
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The objective is to estimate the coefficients of 3, a and . The conventional technique to
estimate the partitioned regression (16) does not work. The usual way is to “sweep out* the D
matrix and then to determine the firm effects cannot be used in practice. The F matrix is too
large a non-patterned matrix due to the large number of firms. Identification of the individual
and firm effects, in order to estimate using the exact least squares estimator, requires finding
the conditions under which equation (16) can be solved for some subset of the person and
firm effects. ABOWD, CREECY and KRAMARYZ (2002) present a procedure which involves
applying methods from graph theory to determine groups of connected individuals and firms.
Within a connected group identification can be determined using conventional methods from
the analysis of covariance. A group contains all workers who ever worked for any of the firms
in the group and all the firms at which any of the workers were ever employed. The algorithm
constructs G mutually-exclusive groups of connected observations from the N workers in J
firms observed over the sample period. However, usually approximate solutions to (16) are
employed (ABOWD, KRAMARZ, MARGOLIS 1999). For this purpose an extended system

is formulated which is easier managable under specific restrictions
y=X0+Da+Z N+ MzFi{ +e, (17)

where A = (Z'Z)™'Z'F1) is an auxiliary parameter, My = [ — Z(Z'Z)~'Z'. The new matrix
7. contains information or more directly specific columns of X, D and F. The intention
behind creating 7 is to incorporate all the relevant variables which determine interaction
effects between X, F and D so that under the condition of 7, orthogonality conditions
can be formulated. The selection of this information is a similar problem as the choice of
instrumental variables. The following restrictions are imposed: (i) X and D are orthogonal,
given Z, (ii) D and F are orthogonal, given Z. A four-step procedure can then be applied:

(i) Estimate

BV X'MpX X'MpZ 17" [ X' Mpy
S 2Mpx 2 Mpz Z'Mpy |

(ii) Using 3 and A one can determine

N ~

&= (D'D)y'D'(y— XB— ZA).

(iii) Formulate the partitioned auxiliary regression y = F¢» + Zm 4+ v and determine

T = (Z/MFZ)_lleFy.

(iv) With the help of 7 one can calculate
b= (FFY Py - 7).
If the model is extended by a further level e.g. by industry effects we have to consider that
each establishment is assigned to only one industry. The gross firm effect F'i) has to be

separated into the net firm effect (Fip — FAk) and an industry effect (F Ax) Therefore,
model (16) passes into

y=Xp+ Da+ FAc+ (Fy — FAR) + e (18)
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Matrix A assigns firms to a specific industry (a;; = 1, if firm j belongs to industry [ ; a;; =0
otherwise). The firm effect is estimated in dependence of industry effects, i.e. using

Fip = FAk + w,
we obtain
k= (AF'FA)TTAF .
Therefore,
Fip— FAR = Fip — FPA(AF'FA)TTA'F
= (I —FAAF'FA)TTAF ) =2 MpyF
follows. If firm effects are suppressed, but effective, the industry effect is biased except F'A

and Mp4F are orthogonal. Furthermore, individual effects are neglected, we obtain a raw
estimated industry effect from

y=XpB4+ FAk + ¢,
which is a weighted average of individual and firm effects
K= (AP My FA)T'A'F' My Da + (A'F'Mx FA) " A'F' My Fap.

Analogously to the industry effects, it is possible to analyze occupation effects which are
often interpreted as an interaction between the individual and firm effect (GROSHEN
1996). HILDRETH and PUDNEY (1999) discuss issues of non-random missing values and
GOUX/MAURIN consider instrumental variables estimators which are necessary if jointly
dependent variables or errors in variables exist.

While Hausman tests usually reject the random effects model (REM) the fixed effects model
(FEM) has the problem that the within transformation of a model wipes out time invari-
ant regressors as well as the individual effect, so that it is not possible to estimate the
effects of those regressors on the dependent variable. One way to solve this problems is to
replace random individual effects by estimated FE. We call this a “selectivity fixed-random
effects model” and use the acronym SELFREM. The basic idea follows the sample selecti-
on approach. HECKMAN (1979) has substituted the conditional expected error term for
an estimate, which is employed as an artificial regressor. Let us deal with this issue in a
two-level model

Yije = 51?;']‘7:5 + o; + o + o+ €. (19)

In the first step the general individual effects ¢, the general firm effects a; and the firm
specific individual effects a;; is estimated by the within estimator of a FEM.

& = (i—g) — (2 — )8 =65 — 65Y
by = (yj—y) — (g, —2)p" = 5(();) i

by = Wy —Gi— g +9) — (@ — 37—z +3)8 =55 = 650 = 58+ 58, (20)

10



where 3% is the coefficient vector without the constant term. The conventional RE estimator
is not adequate if individual and firm effects, respectively, and regressors are correlated. In
the second step the individual und firm effects are substituted by the estimates of (20).
We incorporate these effects as linear combinations (a1dy;, bidq; and ¢1éy;;) and expect

] = 1,?)1 =1,¢; = 1. OLS estimation of
Yije = T+ arbug + bida + er1dni; + € (21)

leads to new estimates of the individual and firm effects: éy;, &g; and bg;;. If a4, by and ¢
are not equal to one, the unobserved but estimated effects in (21) are substituted by new
linear combinations and further OLS estimates are employed. The iterations (1,...,s) of this
procedure are continued until as, bs and ¢; converge to one. The estimator is consistent if
as — 1, I;S — 1 and ¢, — 1 where N — oo. If ag, I;S and ¢; do not converge to 1, this is
evidence of misspecification. An alternative to (21) is a nonparametric specification

Yije = T8+ m(Gi) + m(Gy) + m(Gag) + e (22)

A simplified version of this approach is analyzed in section 3. It should be mentioned that
the pure individual effects can only be separated from the firm specific individual effects if
the individuals quit the firm and accept a job within the considered period. The general
firm effects can only be determined if we have more than one employee in the firms of our
sample.

If a test for poolability (Baltagi 2005) does not reject the null hypothesis, the unobserved
individual and firms effects can be neglected. In this case another way might be useful
to determine the relationship between individual and firms effects: a model with varying
coefficients. In the first stage, individual observations are only considered and the model

JR— / . .
Yigt = xijtﬁ] + €ijt

is estimated, where y;;; is the endogeous variable with 1 = 1,....N individuals, j = 1,....M
firms and t = 1,...,T periods. This variable is determined by a Kx1-vector of individual
characteristics x;;;. The individual disturbance term is e ¢;;, ~ N(0,5%). We assume that
the Kx1 parameter vector 3; varies between the firms.

In the second stage the individual coefficients 3; are estimated by a 1 xL vector w;” including
a constant term and L-1 firms characteristics

Bi = Wi +uj,
where W; = Ix @w;’ is a KxIK-L-T matrix, w} = (wji1, ..o; WiL1, ooy Wi T, ooy wipT) and 7} =
(’)/]‘111, ceey 7jL117 ...... 5 7j1T17 ceey 7jLT17 ...... 5 ’)/]‘11](, ceey ’YleKa ...... 5 ’)/leK, ceey ’YjLTK- Alternatlvely,

w’; can be substituted by w = (wji, ..., w;r) and analogously the v; has to be adjusted. This
means we assume that the firms effects on [3; are time invariant.

The K-Lx1 parameter vector v; describes systematical firms influences on the individual
y effects. We assume that the Kx1 disturbance term vector on the firms level is u; ~
N(0,T). Additional assumptions are: Cov|e; i, ugje] = 0, Cov|tkjt, €i¢] = 0, Cov|wyje, upj] =
0, Cov|wijt, €;:] = 0 and Cov|@yije, urjt] = 0 for all k, k’ und 1, k = 1...K, 1 = 1...L.. The true
parameter vector 3; is substituted by a firm specific OLS estimator (B])

N

Bi=Wivi +uj+ej,

11



where the disturbance term is e; ~ N(0,V;). A GLS estimation follows

M A
Yo = D_(WIATWH)THWIATE,),

i=1

where A; = Var([;j) = Var(u; + ¢;) = T 4+ V;. The covariance matrix may iteratively
estimated by the ML method. The variance of ¢;;; is modelled by

U?j = cap(cj;a),

where the vector ¢;; incorporates heteroskedasticity inducing variables.

2.2 Nonlinear models

Many methods for nonlinear panel data models with fixed effects rely on the method of
conditional ML, where a sufficient statistic of «; is conditioned on to remove the unobserved
individual effect. But in general nonlinear models it is not always easy and sometimes it
is impossible to find a minimum sufficient statistic for «; that is independent of 3. Under
random effects one can attempt to employ conventional ML methods. However, the com-
bination of typical nonlinear models with panel structures often yields too complex models
to use this procedure. Two alternatives exist. On the one hand, simulated ML estimation is
manageable. Or, on the other hand, the GMM approach is a good alternative.

The most popular examples in microeconometric nonlinear models are logit, probit, count
data, censored and selection models. A general nonlinear model may be characterized by

Yie = m(xy; 0) + g (23)
The conditional mean function is

E(yitlvi) = m(wis; 0).
A simplification follows by linear link functions (McCULLOUGH/NELDER 1983): m(x; 0) =

g(x!,3). The major problem of nonlinear panel data models is the removal of the individual
effect. First differences or within estimates do not solve the elimination problem, 3 and the
individual effect are not independent. The main limitation of much of the literature on non-
linear panel data methods is that the explanatory variables are assumed strictly exogenous.
The discussion is focussed on models, in which the parameter that is usually interpreted as
an intercept is allowed to be individual specific. Unfortunately, the features of the model
that do not depend on «; tend to be different for the different functional forms for m(-) in
(23) and do not always exist, as for example in the case of a fixed effects probit model. The
resulting estimation procedures are therefore different for different models. One then ends
up estimating, say, a logit model in a way that is fundamentally different from the way one
would estimate, say, a censored model. This is somewhat unsatisfactory.

2.2.1 Logit models

If the dependent variable is a dummy variable, most popular approaches are logit and
probit models. Conditional maximum likelihood estimators can be applied to logit models
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with fixed effects (HSIAO 2004). The basic model is
yh, = 04 it e =al,0+ uy
B I ity >0
Yie = { 0 , otherwise (24)

and the probability is

exp (23 + ai)

Plys = 1 ,
e =1 = T (Bt o))

where ¢+ = 1,...,N;t = 1,....,T. A simple ML estimator is inconsistent as FEM’s allow a
correlation between x and «. But in the literature on the estimation of nonlinear fixed effects
panel data models have been developed alternative estimation strategies. The general idea is
that, although the model does not have features that are linear in the «;’s, it is nonetheless
sometimes possible to find features of the model that do not depend on «;. One way is to
use the conditional maximum likelihood estimation (CML)

N
1 =TT P0G = e Ve — ]
t

=1

P(yilz_;yﬁ) = exp((zxﬁyﬁ)’ﬁ)/Zexp((;wﬁdﬁ)’ﬁ),

=1 deB;

where B; = (dit,...,di7)|d;y are 0 or 1 and ¥, diy = 3, yit. Under this condition the condi-
tional ML estimator of 3 does not depend on «;.

BZ' describe alternative data sets in relation to y;;, which fulfil the condition >, y;;. When T
observations exist, the number of elements with 1 can assume the following sum

T
> yp=0,1,...,T.
t=1

Yy = 0and Yy =T do not contribute to the likelihood function, as in this case only one
combination exists. Therefore, the corresponding probability is equal to one and only the
sum from 1 to T-1 is relevant. Alternatives exist if 1 <> y;; < T'. In other words, relevant
for the estimation are only those individuals who change the status of the regressand once
or more. We demonstrate this for the simple case T' = 2. The conditional probability then
follows

P(wizl)
P(wzzl)—l—P(wZ:())

Plwi=1lyan +tyn=1) =

B cxpl(zi2 — 1) 5] _ Tro — 1)
L4 exp[(win—xa)'B] Fllea =) B

where w; = 1, if (yi1;yi2) = (0;1), and w; = 0, if (y;1; yi2) = (1;0). This result demonstrates
that for an individual for whom y changes, the probability that it changes from 1 to 0 or vice
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versa is a logit with explanatory variables (2,5 — 2;1). Since this probability does not depend
on «;, one can estimate [ without making assumptions on «; by considering only those
individuals for whom y;; + y;2 = 1 and then estimating the logit model. The conditional
likelihood function

e

InL° = Y fw InFl(en —eu)B]+ (1 - w) W[l = Fl(ei — za)5))}

=1

can be maximized by conventional methods of a simple logit model. The problem becomes
more complicated if lagged dependent variables representing state dependence also appear
in specification (24). In that case we need T' > 4 waves for the identification of a logit model.

A generalization of the standard logit panel data model is presented by REVELT and
TRAIN (1998). They analyze a multinomial panel model and allow that the parameters
associated with each observed variable vary randomly across individuals. Conditional on f3;,
the probability that person i chooses alternative 1 in period t is

exp (3:/%)
Sizy exp (23:)

The unconditional probability over all values of 3; depends on the parameters of the distri-

Py = 1) =: Ly (5:). (25)

bution of ;. For ML estimates we need the probability of each sampled person’s sequence
of observed choices. Conditional on f;, the probability of person’s i observed sequence of
choices is the product of standard logits (5;(5;) = H;FP;:(0*)). The unconditional probability
for the sequence of choices is

PA0T) = [ SiBYS(B107)dB: (26)

where 0* are the parameters of the density f(8*). The objective is to estimate 6*, the popula-
tion parameters that describe the distribution of the individual parameters. Exact maximum
likelihood estimation is not possible since the integral in (26) cannot be calculated analyti-
cally. Instead, it is possible to approximate the probability by simulation and maximize the
simulated log likelihood. For a given value of 8, a value of (3; is drawn from its distribution.
Then S;(5;) is calculated. This process is repeated. The average of the replicated results is
taken as the estimated choice probability: SP;(6) = 1/R Zle Si(Biyj0) where R is the num-
ber of replications. This is an unbiased estimator of P;(#). The estimated parameters of the
simulated log likelihood function SLL(0) = 3, In(SP,(8)) are consistent and asymptotically
normal under regularity conditions. The simulated score for each person is

dlnSP;(0)
(0) = ——~
SS5:(9) 50
1 Ly aﬁz{'rwxilt
= - Si(Bisr i L.y : ,
[SPZ'(@)]RT; (8: Iﬁ)[zlzzt: 1t — Lierlo) 90 — ]
where d;;; = 1, if individual i choose alternative 1 in period t and zero otherwise. These

mixed logit approaches do not require the independence of irrelevant alternatives and general
patterns of correlation over alternatives and time are allowed.
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2.2.2 Probit models

As not so much is known about how to deal with fixed effects, it is often appealing to make
assumptions on the distribution of individual effects. We cannot find simple functions for
the parameters of interest that are independent of the nuisance parameter «; for probit
models. Starting point is the model (24), but the individual effect have to be uncorrelated
with z;;, and «; is a random variable where a normal distribution is assumed. Analogously
to the linear model the variance of the error term is

Viug) = Ve, +en) = 02 + 03

and square of correlation coefficient between the two error terms follows

p° = Corr*(wiuy) = o2 /(02 + o2).

When the individual effects are treated as random variables we may use the FE estimator.
However, this procedure implies a loss of efficiency. It can be even worse. In some cases the
FE estimator is inconsistent. To obtain the ML estimator we must evaluate T-dimensional
integrals

P(Kl :yila--w}/iT:yiT) = / / f(uﬂ,...,uiT)duiT,...,duﬂ.
-z B —zirf

Butler and Moffitt (1982) who follow the Gaussian quadrature procedure simplify the com-
putation

o T
P(Ya =y Ve =uir) = [ floi) [T[F(oola0) = F(=effla)] - dox.

Based on this probability the log likelihood Inl = Y~ InL; is calculated. The score vector can
be used to employ the BHHH estimator where the covariance matrix is determined by the
OPG of the score vector. The combination of random effects and probit approaches suggests
in itself since both assume a normal distribution.

A more efficient alternative suggested by Chamberlain (1984) yields the minimum distance
estimator which avoids numerical integration. This approach starts with a log likelihood
function

N
Inl = Zln[/i
=1
Li = Li(y}y) = Li(ei; i) = Li(yjy|oi) - Ley)

o T
- /_+ II F(lB + ai)’ - (1 — F(a,B + ai))' 7Y - dG(ey),

o0 t=1

where G/(a;) is a univariate distribution function. Following Chamberlain, who assumes

T
/ /
ap =Y ayri + i = a'rvg +

t=1
we can write

o T

L= / F(ayf+d'ei+ )" - (1= F(a},f+ d'ai +n9i) 70 dG (),
T t=1
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where a = (al,---,a}) = (@11, axy, -, a1r, - axr) ~TK x 1, 2, ~TK x 1, F(+) -
standard normal distribution and G*(n) - normal distribution where n ~ N(0,57). Conse-
quence is a multivariate probit model, where

yie = 1,if b8+ d'x; +n + ey > 0.
The components of the error term are independent normally distributed

€1 U
+ : =¢+nt~N {0, (It + U%LL/)} )

€T U

The conditional distribution of y;; due to x; is modelled by
P(ya = 1a:) = Fl(2},8 4 ;) /(1 4 02)*] = F(a}r).

This is a marginal distribution in respect of «. Separated for each period ¢ = 1,---T
univariate probit specification can be determined as ML estimates which jointly converge to

H:m%ﬂu+a@*ﬂ(h®ﬁ’—+b-w,

T x TK Tx1 1xTK

as N = oo. The minimum distance estimator follows if we derive

(7 = F(O)Y Q7 (7 = f(9))

with respect to (3, a and 02, where 77 = vec(ll) ~ KT? are stacked, unrestricted, univariate
estimates, which are based on the ML method of T separate probit models and m = vec(1l) =

f(0) = f((8"a"a2)). () is a consistent estimator of the asymptotic covariance matrix of II,

ie. Q= J'AJ ! where
J1

2
J = " . J=F|—% a2
' C [Fz (1 — Fi) Z]
Jr
KT? x T?°K KT x TK
J-information matrix, A = F[; @ x;2t]; ¢ ~ (T x T') matrix, where a typical element is

yit—Fit
Fit(l‘_FitZ

mator of 7; we write ;. Expected values are substituted with means and 7 by 7 in f;; or Fj,.

Uig Usyr, Uiy = fir are generalized residuals and Fj; = F(a!in), fi = f(alm). As an esti-

In the pure random effects model, one can also estimate the model by a pseudo-maximum li-
kelihood method that ignores the panel structure altogether. The basic idea can be described
as follows: the time correlation structure is only assumed as “nuisance” with subordinated
interest. Due to possible misspecification of this correlation structure, the application of the
ML method is not completely valid. Therefore, in the literature this approach is called a
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quasi- or pseudo-ML estimation (QML). The procedure is the following. We define

Viyie) = F(},8)[L — F(x,53)]
Vi = diag [F(2},8)(1 — F(23,8)) ... F(2i78)(1 — F(ai78))]
Q2 =V,R(0)V; covariance matrix, which yields the smallest KLIC
under misspecification.
R(4) is time correlation structure which depends from the unknown para-

meter vector § - “nuisance®.

The objective is to minimize

where
yi = (i, swir) 0 F() = (F(2hB), ..., FzigB))
If Q is known, the LS estimator fulfils the equation

6F — Fi(+))=0.

If © is unknown, a “working correlation matrix-{ is employed, which is usually misspecified,
e. g. R(0) = I or it is assumed that the correlations outside the main diagonals are equal.
The equations are then called “generalized estimating equations - GEE* and the solution
corresponds to a QML estimation. This result is not identical with the minimization of S,
because % is not considered. If the specification of F'(a},3) is correct, the QML estimator
is consistent and asymptotically normally distributed, provided that the estimation of the

covariance matrix (3 is robust.

If we consider a multinomial probit panel data model, the CML method fails. The Butler-
Moffitt approach is restricted because of the underlying multidimensional integral. As men-
tioned in the introduction of nonlinear models two alternatives exist: simulated estimation
methods and GMM approaches.

GMM estimators are based on the orthogonality conditions implied by the single equation
conditional mean functions

E(yie — F(3,81X:)) = 0,

where F(-) denotes the CDF of the univariate normal distribution. The orthogonality con-
ditions are

(yin — F(‘r%lﬁ))
BLA(X,) (yi2 — 1*?(%'25)) =0, (27)
(yir — F(xipB))
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where A(X;) is a P x T matrix of instrumental variables constructed from the exogenous
data for individual i. The empirical counterpart to the left hand side of (27) substitutes the
expected value with the sample mean so that

) (1 = Py
o) = 3y | e
(vir = Plalz)

and the solution of the various estimators are

Baarar = argmin(gn(3))W (gn(3)). (28)

The GMM estimators differ by the choice of the instrument matrix A and the weighting
matrix W.

By combining classical estimation methods and simulators, several approaches were deve-
loped. For example, simulated maximum likelihood methods (SMLM) including the GHK
estimator can be used (GEWEKE, KEANE, RUNKLE 1997). Keane (1994) derived a com-
putationally practical simulator for the panel probit model. Simulation methods replace the
intractable integrals by unbiased Monte Carlo probability simulators. Further possibilities
are the method of simulated moments, simulated scores and Markov chain Monte Carlo
including the Gibbs and Metropolis-Hastings algorithm. Geweke, Keane and Runkle find
that Gibbs sampling, simulated moments and maximum likelihood method using the GHK
estimator all perform reasonably well in point estimation of parameters in a three alternative
10-period probit model. Monte Carlo studies of nonlinear panel data models (BERTSCHEK,
LECHNER 1998, BREITUNG, LECHNER 1999) show that among different GMM estima-
tors, the ranking is not so obvious while MLFE performs best followed by the GMM estimator
based on the optimal instruments derived from the conditional mean restrictions. GREE-
NE (2004) also finds that the GMM estimator performs fairly well compared to the ML
estimation.

2.2.3 Count data models

The most popular approach of panel data models, where the dependent variable is a count
variable, is the poisson formulation.

, exp(—A)N ,
P(y:J)Zi(j, ) 7=0,1,2,..

In contrast to linear models the individual effect is modelled as a multiplicative factor

(CAMERON/TRIVEDI 1998, pp.275). The basic model can be written by
Yit = O * [hit + Ut
where

Elyileis, 0] = Aie = o - exp(al,B) = exp(a; + x1,0),
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&; =lna;andi=1,--- N;t=1,---,T. Strict exogeneity of regressors x is assumed. Under
fixed effects we can use the CML method analogous to the logit model. The conditional
likelihood function

K ex
s = B = )+ Rl )

is maximized, where ¢ in [nL° means “conditional*. The condition is given by > vy = T'y;;.
HAUSMAN, HALL and GRILICHES (1984) follow this procedure. However, they also esti-
mate a negative binomial model with fixed effects. BLUNDELL, GRIFFITH and WIND-
MELJER (2002) show that under strict exogeneity of the regressors the CML estimator of
the poisson model corresponds to a moments estimator of an mean scale model

~

Yir = e:z;p( ztﬁ) —I_ uzt?

where y; = TS, yar, jis = T30, par and wl, = wy — (pie/ 1 )i The ratio of the two means
measures the individual effect. The method of moments is given by

N T N T 7

Z intu;ﬁ = szit(yit — exp(x ztﬁ)—_) =
=1 t=1 =1 t=1

Under weak exogeneity this condition is not consistent as z; and u}, are correlated via

ui. An alternative presents quasi differences of the condition of moments. These weighted
differences eliminate the individual effect

i t—1 Hit—1
Wyt = Yt — Yip—1 = Ut — Ui ¢—1-
Mt Mt
Using instrumental variables which fulfil the condition
E[Uz’t|04i7 ity 7Zi,t—1] =0
so that
Elwi|zit, -+, zig—1] = Eap[E(wiezia, -+, zi0-1)] = 0,

the GMM estimator can be employed, which minimizes

N
ZwZ YW 1ZZZ(U)Z').
i:l

=1

The optimal weighting matrix is
1 / % a0\
= 2 Ziwilfo)wil o) Z
=1

where wi(ffo) is based on a consistent initial estimator Bo. If the instruments are exact-
ly identified and z;; = x;, the sample moment condition corresponds to the structure of
moment conditions at strict exogeneity

ZZZH‘ 1wzt—ZZZzt 1(Yiio1 — exp(a) Li— 15)y2t):

1=11t=2 1=11t=2
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Only if the variance of the individual effects is relatively large, is this estimator satisfactory,
as Monte Carlo studies demonstrate. Estimators with pre-sample information instead of pro-
spective values in the weights improve the estimates. Then the bias is only small. Analytical
expressions of the unconditional density do not exist for Gaussian RE poisson models. An
alternative is once again simulation estimators. Therefore, Chip/Greenberg/Winkelmann

(1998) employ the MCMC method.

2.2.4 Sample selection models

HECKMAN’s (1979) seminal work and further studies have demonstrated that OLS esti-
mates restricted to subgroups are usually biased. This basic result derived for cross section
data models was generalized for panel data models by HAUSMAN/WISE (1979), VER-
BEEK (1991), VERBEEK and NIJMAN (1992) using random effects models. VERBEEK
(1991), NIJMAN/VERBEEK (1992) and ZABEL (1992) consider analogous fixed effects ap-
proaches. A systematic discussion of fixed effects selectivity models is presented by WOOLD-
RIDGE (1995). Starting point is the formulation of the output function

Yir = TifB + Qi + uy (29)
and the selectivity function
diy = iy + i+ s dig = 1[d7, > 0], (30)

where [[-] is an indicator function which is equals one if the argument in [-] is fulfilled and
otherwise zero. Both unobserved individual effects «; and 1; may be correlated with the
observed regressors z;; and z;;. A special case follows if z;; = ;. The dependent variable y;;
is only observable if d;; = 1. The following restrictions are imposed

Al :n; is linearly dependent on z;
ni =zav + -+ ziryr + ¢

A2 : vy = €y + ¢ is independent of z; and z; vy ~ N(0,07).

A3 : «; is linearly dependent on x; and vy

(Ofi|$ia Vit) = Y + 51?;'1%/)751 + 4+ x;T¢tT + i

A4 : wuy is in mean independent on x; and z; and the conditional expected value depends
linear on v/

E(uit|wi, zi,vi) = E(uilvie) = pvie.

Under the assumptions Al-A4, 3 is identified

21t
),

a .t
2t

Eyit|ws, 2, vig) = 0 + Tyt + -+ igtder + 23,0 + S A
where §; = p; + ¢;. The estimation proceeds in the following steps:
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(i) In each period t the selection function is estimated by a probit approach and from
this result the selection variable A(-) is determined.

(ii) The pooled OLS estimator is applied to the function extended by the selection term

SAE)
zY
yir = WO + e,
where @, = (1, 2}y, ..., @lp, 2,0, ..., 0, Xit, 0, ..., 0). The estimator is
X v g T
0= (%/) Z Z ditwitw;t)_l(z Z thtyn‘
=1 t=1 =1 t=1
(iii) The asymptotic covariance matrix of 0 is defined by
A 1 - A
V(9) = NA_lBA_l,

where

T
A= N0 duwidy); B=N""pipl); i = ¢ — Diy;

T T
3; = Z dztw;tézh D = N_l Z ditﬁ);telvgwﬁ(é)/;

t=1
€it = Yit — wété; i = TZ(S)
The gradient matrix ngﬁ(gg))’ of w;(8)" is evaluated at 5,

ROCHINA-BARRACHINA (1997) develops an approach with first differences to eliminate
the individual term and assumes a trivariate normal distribution. CARRASCO (2001) and
VELLA/ VERBEEK (1999) have presented some further modified approaches.

2.2.5 Censored models
A pooled estimator of a censored model
Vi = 25+ ua

1 if y5 >0
Vie = { yzt -

0 otherwise

is not different from the cross section estimator and under random effects, where u;; = a;+¢;,
a; ~ N(0,62),e; ~ N(0,02), we have only to incorporate the additional variable ;. This
means the log likelihood function is written by

Inl = Zln/ HF “ﬁ )1 vt

00 g 0'E



and is partially derived with respect to 8, where 6 = (', 0., 0,)". The first order conditions
are highly nonlinear. An iterative procedure is necessary to solve the maximization problem.
Gradients have to be determined. Analogously to the RE probit model, the Gauss Hermite
quadrature procedure introduced by Butler and Moffitt can be employed. Chamberlain’s
idea of a correlated RE probit model, where the individual effect «; is a’z; + 1;, can be
transferred to the tobit model detailed presented in Jacubson (1988). FE tobit models are
suggested by Heckman and McCurdy (1980).

3 Non- and semiparametric models

The discussion starts in section 3.1 with pooled models and nonparametric terms. But
usually, individual effects are incorporated in panel data models. This problem is managed
in the next two sections. Furthermore, attrition of observations is a common phenomenon
over a panel. Attrition in one period may be followed by reappearance in future periods.
Section 3.4. discusses this issue.

3.1 Pooled models

In a general formulation the causal dependence of the dependent variable y;; on independent
variables and the error term is typically described by

Yir = glm(i) + wil, (31)

where ¢(-) calls a mapping which induces the variable y;;. Possibly, y;; depends on an un-
observed endogenous variable v = m(a; + wit). If y;; is directly created by x;; and wy, the
relation can be simplified by y;; = m(x::) + u;r and the linear model results if m(x;:) = «f, 5.
While parametric models assume a known structural relation under unknown parameters
and an error term a simple nonparametric panel data model formulates a mean regression

Vi = E(yilei) + wie = m(ai) + wge. (32)

The incentive to use nonparametric instead of parametric methods is the higher degree
of flexibility. The basic problem is the enormous amount of calculations, especially if the
number of regressors increase. Furthermore, it is difficult to interpret the estimation. This is
called “the curse of dimension“. Two possibilities exist to solve this problem. Either additive

or partial linear models are assumed. The former are discussed in HASTIE/TIBSHIRANI

(1997). We focus on the presentation about partial linear models.

If a pooled estimation of panel data are employed the same procedures as with cross sec-
tion data can be used. It is necessary to test whether the pooled procedure is convenient.
Parametric procedures are described by BALTAGI (2001). A nonparametric test present
BALTAGI, HIDALGO and LI (1996). LI and HSIAO (1996) test whether individual effects
exist. When the test does not reject the null hypothesis of poolability, the individual effects
can be neglected. Starting point is a partial linear approach of panel data

yir = 21y + mlxi) + ui (33)
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The fundamental idea is to eliminate the nonparametric part. Then the linear term can
be estimated separately following ROBINSON (1988). In other words, the new regressand
is the difference between y and the conditional expected value which is induced by the
nonparametric regressors. Due to the identity F[m(x)|x] = m(x) the nonparametric term
vanishes by first differences

y = Elyle) = (z = E(z[2))y + u. (34)

Before we can estimate v the conditional expected value has to be determined by a nonpa-
rametric procedure (PAGAN/ULLAH 1999,199). The problem is that the denominator of a

kernel estimator is a random variable

1 Kx” L

N
NT -h ZZ “ Yty

7=11t=1

Qit = E(yz’t|l’n =

where ﬁt = NT v Z] Dy K (=574) is the kernel density estimator and h is the bandwidth.
If we do not only consider a unlvarlate nonparametric term, a multivariate kernel is necessary.
A simplified form can be assumed in this case, namely the product of the univariate kernels,
i.e. K(xy) = M5 K(24:). The denominator can be neglected under a density weighted
estimation (POWELL/STOCK/STOKER 1989, LI/STENGOS 1996), where the density

function follows from a kernel estimation (f). The differences model (34) has to be weighted
fit(yit — Yit) = fit(Zit — 2‘#)'7 + fituit-
The least squares estimator of v follows
N T N T X
y = (ZZ Zzt - Zzt Zzt - Zzt Z Z Zzt - Zzt yn‘ - glt)flzt) (35)
=1 1t=1 =1 t=1

This OLS estimator is consistent. But a GLS estimator presented by LI and ULLAH (1998)
achieves the semiparametric efficiency border and is therefore superior. In the second step
we obtain the multivariate nonparametric term m(x) under a Taylor series approximation

yie — 2y = mlxa) + B(x) (v — x) + Blwi, o) + 2,(y — ) + i
= m(xy) + B(2) (2 — @) + Uit
using a local LS estimator. The parameter vector B(l‘)/ = (m(x), B(x)") results from

T
Kir(yie — 257 — m(x) = (2 — 2)'B(x))’,

A 1 N
fBlx) = argmmNT ; >

=1 t=

where K;; = K(%) and h is the bandwidth. The local linear least squares estimator is

Ha) = [,Nif(x”h”)(x,l | _))1

a—x (xq—a)(x

1

%Z {7(%;:1;) ( vy ) (yie — zirY),

where K(-) is the product of kernel functions of second order.
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3.2 Random effects models

If the following simple nonparametric models with individual effects «; exist
Yie = my(@ie) + (i + €) = Eyi]vit) + wir, (36)

where:s =1,..., Nand t = 1,...,T, all conditional moment procedures can be used to estima-
te the nonparametric term my(x;), if a random effects model is convenient. A known distri-
bution of the individual effects is assumed and «; are identically independently distributed.
Furthermore, the individual effects are independent of the regressors. Under unspecific time
dependence of E(y;|x;:) it is possible to estimate the parameters separately for each wave.
If time invariance is assumed, i.e. my(x;) = m(x;), the pooled procedure can be employed
to determine the nonparametric term. A local linear approach is possible

yie 2 m(x) + (2 — ) B(2) + s + € = T+ o + €y

where & = (1, (x4 — 2)') and B = (m(x),(x)"). In order to determine the nonparame-
tric terms m(x) and ((x) we can choose ULLAH and ROY’s (1998) GLS approach. This
corresponds to the conventional within transformation,where « is eliminated. Under semi-
parametric partial linear panel data models

Yie = m(xi) + 2y + o + € (37)
we can follow LI and STENGOS (1996) analogously to pooled models.

The estimator of the time invariant nonparametric term of a balanced panel can be assigned
to an unbalanced panel (KONIG 1997). An extension to models with time variable nonpa-
rametric models is also possible (KONIG 2002). In this case a wave specific procedure is
suggested.

An alternative to LI and STENGOS is developed by KONIG (2002, 176fF). The advantage
of this method is that the peculiarity of the panel structure can be better considered.
It is also possible to model a time variable nonparametric term. Simple estimators are
supplied. But in this case it is necessary to consider some restrictions. Conventional first
differences and within estimators, well-known from pure linear models can be applied. This
approach is independent from the sensitivity of bandwidth. We can expect better behavior
in small samples. Disadvantages may be possible under asymptotic consideration. But for
applications infinite large samples are less relevant.

The partial linear model may be interpreted as a simple linear model with fixed effects if
nonparametric regressors (x;; = x;) are time invariant

7
Yir = Z57Y T ¢+ €,

where ¢; = m(x;) + ;. The parameter vector v is determined by first differences or within
estimators if the linear regressors are strictly exogenous. Biased estimators result at a direct
application to time variable regressors. The bias can significantly be reduced, if we follow a
suggestion by KONIG (2002, 182). The more the values of two periods differ, the stronger
is the bias. Therefore, only small weights are assigned to those values. Such a weighting
function yields the kernel function. The corresponding estimator is

N T T

F=0_2"> Kymaiy (2t — 2ir )20 — 2i2)) ™"
=1 t=17=1

K3
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Z Z Z A (zit—xir) (Z“‘ - Z”’)(yﬂ‘ ym’) (38)

i=1t=171=1

which is consistent and asymptotically normally distributed. HOROWITZ and MARKA-
TOU (1996) suggest a kernel estimator to determine the CDF of a random effects model
without nonparametric term. The empirical distributions of ¢;; and u;; = a; + ¢;; are sepa-
rately determined. The isolation of ¢; usually takes place by creation of first differences.

€t = (yit - yil) - (Zit - Zz’l)/’AY-

Under weak restrictions the estimator of the density function of u;; and ¢;; is consistent.

3.3 Fixed effects models

In contrast to random effects models there exist an additional problem in nonparametric
panel data models with fixed effects. Due to the allowed correlation between «; and x;; the
conditional expected value of y;; differs from the nonparametric term. Instead we obtain

E(yit|ei) = m(xi) + E(oi]ai).

Therefore, it is not possible to determine the nonparametric part by the conditional moment
approach. The conventional solution by first differences or within estimators breaks down.
The individual effect is eliminated, but not identified by this procedure. ULLAH and ROY

(1998) suggest a Taylor series of the nonparametric expression as a starting point

Om(zi) ,0%m (i)
o sma (o= 0)

Yir = m(z) + (2 — x)’ (Tit — @) + @i + €

=:m(z) + (zi — ) B(z) + Ra(wit, ®) + v + €3

=:m(z) + (vie — ) B(z) + a; + €xit, (39)

where & is assumed within the range = and x;. It is intended to estimate () of this local
linear model. A local within estimator with simple kernel function weights gives biased and
inconsistent estimates due to residual terms (F(Ry(x; .|ty = ) # 0). The same problem
follows under analogous first differences estimators. But a double weighting of first diffe-
rences eliminates the bias (KONIG 2002,61ff). We define the product kernel from period t
and t-1

Tig — X Tjp—1 — X Tit — T Tit—1 — &

K( P . )= K(= ; ) K(= _h Y=t Ky Ky,

where h is again the bandwidth. Instead of weighting with K (¥4=") as in a conventional
differences estimator, the weight is the product of the local kernels

N T N T
ﬁ(l‘)p = {Z Z [X7itlx7i,t—1A$itA$;t}_1 Z Z [(it[(i,t—lAwitAyita (40)
=1 t=2 =1 t=2

where Az = x4 — 2,421 and Ay = yir — yi—1. This estimator is not only consistent, but
also asymptotically normally distributed with a null vector as the expected value vector and
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an asymptotic sandwich covariance matrix. A similar weighting is possible in the within
model. For this case KONIG(2002, 68) derives the following consistent estimator

N T
= {Z Z th“fxzt} ! Z Z [thxztyzty (41)

=1 t=2

where
T

~ [th
Ty = Ty Tt
P tzl T Ku+ Il Ky=0]"

Analogously ;; is defined. [[-] describes an indicator function where the value is 1, if the
condition in [-] is fulfilled. Otherwise, the value is 0. Some similarities can be observed with
BLUNDELL, GRIFFITH and WINDMEIJER’s (2002) suggestion in count data models
with non-strict exogenous variables. It seems plausible to note Z;; as quasi within variable.
The asymptotic variances of the within estimator, which stem from a sandwich covariance
matrix, are not larger than the corresponding variances of the differences estimator if only

two periods exist. If T' > 3, the difference of the asymptotic covariances (Vprrr — Vivrrain)
is positive definite (KONIG 2002, 72).

Semiparametric partial linear models with fixed individual effects can be described by
yir = 1(x) + 2, 8(x) + 25y + ai + &,

where €; = €; + R(xy, x), m(a) = m(x) —2'F(x). The individual term «; may be correlated
with ;; and z;;. The nonparametric term m(x;;) is developed by a Taylor series. In this case
the problem of the parameter estimation () persists also in the conditional expected value
of yis

E(yilzie) = m(x) + 2,8(x) + E(zielaw)'y + Elai]a).

Differences, i.e. y;; — E(yit|xit), eliminate the nonparametric term, but not the individual
term. Therefore, it is necessary to remove o; in the first step. LI and STENGOS (1996)
employ a differences estimator of 7, where the estimator is weighted by the Nadaraya-
Watson kernel estimator

N T N N T
p = {ZZA%AEQJ(%, rie) 3D AZZtAyztf Tits Tig-1)’, (42)

where f(:z;it, x;1—1) is the kernel density estimator and
Agit = Zit — Rig—1 — [E(Zit|$it7 in,t—l) - E(Zi,t—1|xit7 Jii,t—l)]-

Analogously, Aﬁﬁ is defined. By first differences «; disappears but not the nonparametric
term. In order to remove the difference m(x ;) —m(x; :—1) we additionally have to subtract the

difference of the expected values. If AZ = 2 — Zite1— [E(Zﬁ|:1;2t, Tipo1)— E(Zm 1] ity 1))
and the error term is correlated, AZ; has to be instrumented. KONIG (2002, 215) suggests
an alternative estimator without kernel weights

N T . o N T . o
o1 = DY DAZAZ L T Y Y T AZ Ay L, (43)

1=11t=2 1=11t=2
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where [;, = [[7721(:1;2',5,:1;2"75_1) > by] is a trimmed function and by is a threshold value
where by — 0 follows under N — oo. The idea of a trimmed function can be found in

LI/LU/ULLAH (1996) and LI/ULLAH (1998). Again a within estimator can be formulated

N T R

= {ZZ Zzt z,t—z,'.,-)(zit — Zir — z,t z,.,-) zt} ! (44)

1=1t=17r=1

~2>
=

T
A A A

T
Z Zzt Zzt_Zir)(yit - Yir — Eyn—yir)[it

1t=17=1

Mz

7

where Ey”_y” = E(yit — Yir | @i, xir). A further estimator goes back to BERG, LI and
ULLAH (2000). But this estimator is inconsistent, if x;, and z; are not independent, given
Lt

MANSKI(1975, 1985, 1987) has developed nonparametric maximum score estimators for
panel data models with fixed effects and dichotomous endogenous variables. Further models
and an estimator are presented by LEE (1999a) and HONORE/LEWBEL (2002). A survey
on tobit panel data models with nonparametric components which include the standard ca-
se of censored endogenous variables, selection models and censored multivariate models can
be found in KYRIAZIDOU (1995,1997)and HONORE/KYRIAZIDOU (2000). They also
develop some new variants, which do not require the parametrization of the distribution of
the unobservables. However, it is necessary that the explanatory variables are strictly exo-
genous. Therefore, lagged dependent variables as regressors are excluded. KYRIAZIDOU
(1997) obtains values near zero by differences between pairs of observations, because pairs
with a large difference obtain small weights. HONORE (1992) suggests trimmed least abso-
lute deviation and trimmed least squares estimators for truncated and censored regression
models with fixed effects. He exploits the symmetry in the distribution of the latent variables
and finds that when the true values of the parameters are known, trimming can transmit the
same symmetry in distribution to observed variables. One can define pairs of residuals that
depend on the individual effect in exactly the same way, so that differencing the residuals
eliminates the fixed effects.

3.4 Models with sample attrition

DAS (2004) presents a two-step nonparametric random effects panel data model with sample
attrition where the linear part is omitted. The model is

Yie = m(Ti) + e ug = o + €
dit = (0" (@1, ooy Tigy wig) — Mg > 0) =1 [0 (25 — 1it) > 0)

Nit = 0; + Nit, (45)

where z; = (@1, ..., ¥, wir), ¥ and w are vectors of covariates. The latter may contain
elements of x. The attrition indicator is d;; where d;;=1, if there is no attrition. The outcome
variable can only be observed if d=1. It is assumed that d;,z; and w; are completely
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observable. The individual effects in the outcome and in the attrition function («y,d;), are
i.i.d. The error terms ¢; and 7);; are time varying and may be autocorrelated. Furthermore,
it is assumed that F(wi|®i,...,2;) = 0. Under some weak restrictions the nonparametric
term is identified, up to a constant, as an additive component of each h;(xy, p;) where hy(+)

is defined by

E(yit|lzie,die = 1) = m(xi) + ke(pir)
= m(zy)+ gaka(pia) + .. + girca(pir) =: ha(@it, pi)

and

Pit = pt(Zit) = E(dit|zit) = P(dit = 1|Zit)

E(uit|zit7dit = 1) =: /ft(pz’t)-
This is a generalization of HECKMAN’s (1979) sample selection term.

The first step consists of obtaining estimates of probabilities p; by a nonparametric proce-
dure. Simple LS estimates of d! = (d;1, ..., d;7) are given by

B = (5 X)) 5 ) (46)

and
pi = r"(z)' 5. (47)

Let

PP (i) = (rinZie)s oo Lo (7))
represent a vector of approximating functions for p;(z;).

The second step is a nonparametric estimation of y;; on 0 = (a4, p)’. First

i = 3 B ) LB o 49

is determined and
h(Bie) = B (83)' (49)
follows, where b (0;) = (b5 (01), .o, D (Di7)), 05 (051) = dig(030)b5 (842), 7(0) = TTI, (7} <

v; < 7,0 <7/ < 7" <1, 7/ and 7! are prespecified constants and J = dim(v). The

dependence of Z;I((ﬁit) on d; implies that possibly different subsets on the N observations
contribute to the regression for each t.

Second, the estimation of the nonparametric term yields

K
(i) =Y Aubrr (i) (50)
k=1
A sandwich estimator is suggested to determine the covariance matrix.
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4 Concluding remarks

Many new methods to estimate panel data models were developed in the past. The focus
in this paper was directed on multilevel and nonlinear models. As the functional form of
nonlinearity is usually unknown nonparametric estimates are corollary. Nowadays several
methods are implemented in conventional packages such as STATA or S-PLUS, but others
still require programming. In contrast to linear fixed effects panel data models, it is more
difficult to manage the individual term in combination with a nonparametric term. Conven-
tional differences and within estimators do not help to eliminate the latter. There do not
exist uniform methods of nonlinear models. We have only specific estimation methods for
several forms of nonlinearity and the results depend on the assumptions. While estimation
of random effects panel data models is based on a fully specified model in which one can
determine all the quantities of interest, fixed effects panel data models typically result in
the estimation of some finite dimensional parameter from which one cannot calculate all
functions of the distribution. Nevertheless, progress can also be observed in the estimation
of fixed effects panel data models. Estimates of random effects models are usually more
efficient. But very often the violation of the distributional assumptions yields inconsistent
estimates. Fixed effects models make fewer assumptions and they react less sensitively to
violations of the assumptions. Random effects models are usually preferable for prediction.

In future we have to analyze more completely the dynamic character of the panel data
models. Almost nothing is known about nonlinear models with lagged dependent variables.
Furthermore, non- and semiparametric methods should also be applied to multilevel models.
In many situations it seems advantageous to start with nonparametric estimates. However,
the next step would be to derive more fully specified parametric models based on the results
of the first step.
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