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Abstract:This paper presents a survey on panel data methods in which I emphasize new developments.In particular, linear multilevel models with a new variant are discussed. Furthermore, non-linar, nonparametric and semiparametric models are analyzed. In contrast to linear modelsthere do not exist uni�ed methods for nonlinear approaches. In this case FEM are domina-ted by CML methods. Under REM assumptions it is often possible to use the ML methoddirectly. As alternatives GMM and simulated estimators exist. If the nonlinear function isnot exactly known, nonparametric or semiparametric methods should be preferred.Zusammenfassung: Der Beitrag gibt einen Überblick über Methoden zur Paneldatenana-lyse, wobei neuere Methoden im Vordergrund stehen. Insbesondere werden lineare Mehrebe-nenmodelle unter Berücksichtigung einer neuen Variante diskutiert. Auÿerdem ist die Ana-lyse auf nichtlineare, nicht- und semiparametrische Verfahren ausgerichtet. Im Gegensatz zulinearen Modellen existiert bei nichtlinearen Ansätzen keine einheitliche Schätzstrategie. ImFalle von Fixed-E�ects-Modellen dominiert die bedingte ML-Methode. Unter den Annah-men eines Random-E�ects-Ansatzes ist es oft möglich, die ML-Methode direkt zu nutzen.Alternativen bilden GMM-Schätzer und simulierte Schätzer. Wenn die nichtlineare Funktionnicht genau bekannt ist, sind nicht- oder semiparametrische Schätzer zu präferieren.JEL-Classi�cation: C14, C23, C24, C25Keywords: panel data, linear multilevel, nonlinear, non- and semiparametric models
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1 IntroductionThe use of panel data regression methods has become popular as the availability of longitu-dinal data sets has increased. Panel data usually contain a large number of cross sectionalunits (individuals, households, companies, regions, countries), which are repeated observedover time. The advantages of panel data compared with cross sectional data on the one onehand and time series data on the other hand are the following: Firstly, the large numberof observations give more informative data, less multicollinearity, more degrees of freedomand a higher e�ciency of econometric estimates. Secondly, it is possible to separate betweencohort, period and age e�ects. Thirdly, the analysis can determine intra- and interindivi-dual e�ects. Fourthly, panel data allow researchers to control for unobserved heterogeneity.Pure time series and pure cross sectional data are usually contaminated by these e�ects.Fifthly, longitudinal observations improve the possibilities of evaluating the e�ects of poli-cy interventions and it is possible to determine under which conditions the e�ects can beinterpreted as causal e�ects. The availability of panel data allows us to estimate treatmente�ects consistently without assuming ignorability of treatment and without an instrumen-tal variable, provided the treatment varies over time and is uncorrelated with time-varyingunobservables that a�ect the response. Problems with panel data are possible by attrition,time-varying sample size and structural changes. Furthermore, it must be considered that apanel data survey is very cost-intensive.A wide range of methods was developed in the last 40 years. The major contributions tothis topic have been in four volumes edited by MADDALA (1993) and BALTAGI (2002).Furthermore, recent textbooks and surveys of panel econometrics exist (ARELLANO 2003,ARELLANO/HONORE 2001, BALTAGI 2005, CAMERON/TRIVEDI 2005, HSIAO 2004,HÜBLER 2003, LECHNER 2002, LEE 2002, MATYAS/SEVESTRE 1996, WOOLDRIDGE2002). The modelling of panel data approaches distinguishes in the time dependence, in theassumptions of the error term and in the measurement of dependent variables. Due to thespeci�c assumption, consequences for the estimation methods follow. Beside the classicalmethods in panel data econometrics like least squares and maximum likelihood estima-tors we �nd conditional and quasi ML estimators, GEE (generalized estimating equations),GMM (generalized methods of moments), simulated, non- and semiparametric estimators.For linear panel data models with predetermined regressors we can apply conventional tech-niques. The main objective is to eliminate and determine unobserved heterogeneity. Twosituations are distinguished: regressors and unobserved heterogeneity are independent orinteract. Much less is known about nonlinear models. Simple �rst di�erences methods butalso conditional likelihood approaches fail for many models to eliminate unobserved hete-rogeneity. As the speci�cation of nonlinearity is often unknown non- and semiparametricmethods are preferred.We distinguish between several types of panel data models and proceed from general to morespeci�c models. The endogenous variable yit can be determined by observed exogenous timeinvariant (~xi) and time-varying (xit) variables, unobserved time invariant regressors (�i:)and a time-varying error term (uit). The term m(�) tells us that the functional relationis unknown, i.e. nonparametric approaches are formulated, which may vary between theperiods (mt). If yit is not directly determined by ~xi, xit; �i: and uit but across an unobservablevariable we call this a latent model, expressed by g(�). This relation may also be time-varying (gt(�)). Furthermore, we assume that besides the individual and the time dimension1



(i = 1; :::; N ; t = 1; :::; T ) L further levels such like �rms, sectoral or regional level areobservable which can induce speci�c e�ects:� Generalized time-varying multilevel nonparametric latent modelyiLt = gt[mt(~xiL; xit; �iL; uiLt)]The major problem to handle this model is the high nonlinear dimensionality. There-fore, it is helpful to consider more speci�c models:� Generalized additive time-varying nonparametric latent modelyit = g[m1t(xit) +m2t(�iL) + uit]The determinants are additively separated in observed variables, unobserved individualterms and the error term. Additionally, observed time invariant determinants may beincorporated (Pm3t(~x)). Nevertheless, also this type is still to general for practicalestimations.� Additive nonparametric multilevel modelyit = KXk=1m1(xit) + LXl=1 �il + uitIn contrast to the latter approach the e�ects are additively split within one variablegroup. Now, the curse of dimensionality is solved.� Partial linear model yit = m1(xi1t) + z0it + �i1 + uitAs an alternative to the additive formulation of observed variables now only one orfew regressors are described by an unspeci�c nonparametric form while the remainderis de�ned by a linear combination.� Linear model with individual e�ects and time varying coe�cientsyit = x0it�t + �i1 + uitThis is the conventional panel data model de�ned by an unobserved individual e�ectand time-varying coe�cients.� Linear model yit = x0it� + uit:This represents the most simple panel data model without any speci�c panel character.The last three types can be found in applications, whereas the other types have, until now,only been used in more speci�c formulations.2



2 Parametric Models2.1 Linear ModelsStandard panel data analysis starts with linear modelsyit = x0it� + uit i = 1; :::; N t = 1; :::; T (1)where y is the dependent variable, x is a K�1 regressor vector, � is a K�1 vector ofcoe�cients and u is the error term. The number of cross sectional observations is N andthese units are repeatedly measured. When the cross sectional data are only pooled overT periods, the coe�cients can be estimated by OLS under classical assumptions about theerror term. The advantage of panel data in this case should be improved e�ciency. Butlet us note that in very large samples too many e�ects of regressors are signi�cant. This�curse of large number� should be considered in signi�cance comparisons with cross sectionalestimates.Some modi�cations follow if cross sectional heteroscedastic or cross sectional correlated andtime-wise autoregressive models are analyzed with panel data. Conventional EGLS estimatesare the consequence. But the main objective of all panel data analyzes is the considerationof unobserved heterogeneity and its estimation. The methods which are developed for thispurpose depend on the assumptions of the error term, the regressand, the regressors andthe coe�cients of the model. Furthermore, it is important to recognize whether all crosssectional units are observed in the same periods. Sometimes there will be gaps in the data.Some individuals have dropped out and can no longer be included in the panel and newentrants have emerged over the sample period. Some panel data sets cannot be collectedevery period due to lack of resources or cut in funding. This missing value problem leadsto unbalanced panels. E.g. WANDSBEEK and KAPTEYN (1989) or DAVIS (2002) studyvarious methods for this unbalanced model. In many cases, methods developed for a balancedpanel can also be employed for an unbalanced panel with only slight modi�cations as longas the incompleteness is due to randomly missing observations.2.1.1 Individual e�ects under alternative speci�cationsConventional panel data analysis starts with a simple linear model and an unobserved timeinvariant individual term �iyit = x0it� + �i + �it =: x0it� + uit: (2)The basic task is to estimate the unobserved heterogeneity. If we assume under classicalconditions of �it that �i is uncorrelated with �it and the observed regressors xit, we call thisa �random e�ects model - REM� or �error component model�. Standard procedures exist toseparate the estimation of � and �i. In a random e�ects approach the distribution of �i isparameterized. This makes the model fully parametric. BALESTRA and NERLOVE (1966)were amongst the �rst who solved this problem.The coe�cient vector � can be determined by OLS of the transformed modelyit � �̂�yi = (xit � �̂�xi)0�� + uit � �̂�ui; (3)3



where �̂ = 1 � �̂2��̂2� + T �̂2� :The variance of �̂ can be estimated by the residuals of the within estimator, the OLSestimator of (4), and the estimated variance of �̂ follows by�̂2� = 1N �K NXi=1 �̂u2 � 1T �̂2� ;where the average residuals �̂u are determined by the between estimator, i.e. the OLS esti-mator of �yi = KXk=1 �xik�k + �ui:BREUSCH and PAGAN (1980) have developed a Lagrange multiplier test based on OLSresiduals to determine whether random e�ects exist. WOOLDRIDGE (2002, 265) prefersa statistic which is distributed asymptotically as standard normal, also based on residuals,but without an assumption of the error term distribution.If �i and the regressors are correlated we call the approach ��xed e�ects model - FEM�. Inthis case one attempts to �nd ways to estimate the parameters making only minimal as-sumptions on �i which can be eliminated by a �rst di�erence estimator or a within estimator.In the latter case the weighted LS estimator�W = [ NXi=1X 0iQXi]�1 NXi=1X 0iQyifollows where Q = IT � 1T �T �0T . This coincides with the OLS estimator of the transformedmodel yit � �yi = (xit � �xi)0�� + uit � �ui; (4)where �� is the coe�cient vector without a constant term. The estimated individual e�ectis �̂i = (yit � �yi)� (xit � �xi)0�̂�: (5)The signi�cance of individual e�ects can be tested by a conventional F test where theresiduals of the pooled model are compared with those of the model that incorporates theindividual e�ect. Whether the REM or the FEM is preferred can be decided by a Hausmantest (HAUSMAN 1978). In practice, we can integrate into the transformed REM (3) thetransformed FEM yit � �̂�yi = (xit � �̂�xi)0� + (xit � �xi)0 ~� + !it (6)and test whether ~� is signi�cantly di�erent from zero.The model can be extended by �xed time e�ects �t. An elimination by a within estimator isusually not necessary because the number of periods is small and therefore the time e�ectscan directly be estimated jointly with the coe�cient vector �yit = x0it� + �0t� + �i + �it;4



where � is a unit vector and � = (�1; �2; :::; �t)0. The next step to more advanced panel datamodels is to have fewer restricted assumptions of the error term. First order serial correla-tion and heteroscedasticity can be allowed. For example, a four step procedure solves theproblem of determining the autocorrelation coe�cient, �, and � where two transformati-ons are necessary (HÜBLER 1990). If lagged dependent or jointly dependent variables orerrors in the exogenous variables exist a GMM estimator suggested by ARRELANO andBOND (1991) is preferred (HÜBLER 1990, ARRELANO 2003). Alternatives are usuallyless e�cient or even inconsistent. If, for example, the simple lagged dependent model existsyit = yi;t�1 + �i + "it = yi;t�1 + uit;conventional �rst di�erences eliminate the individual termyit � yi;t�1 = (yi;t�1 � yi;t�2) + "it � "i;t�1;however, an OLS estimator of the �rst di�erences is biased and even inconsistent under auto-correlation. Instrumental variables solve the problem. GMM estimators, which incorporateall valid instruments, are preferred compared to simple IV estimators. Valid instruments arethose which are uncorrelated with the error term. This means, if observations from T wavesare available, valid instruments Z ful�l the following orthogonality conditionsE 26666666666664 dui3 � dyi1dui4 � dyi1dui4 � dyi2...duiT � dyi;1...duiT � dyi;T�2 37777777777775m�1 = E(Z 0idui) = E(�i) = 0Zi = diag[dyi1; : : : ; dyis] s = 1; : : : ; T � 2= 266664 dyi1 dyi1dyi2 . . . dyi1 : : : dyi;T�2 377775(T�2)�mdui = [dui3; : : : ; duiT ]0;where duit = uit � ui;t�1; dyi1 = yi1; dyit = yit � yi;t�1 for t = 2; : : : ; T � 2.Coe�cients are determined by a minimum distance estimatorargmin (� � E(�i))0W (� � E(�i)) = arg min �0W�; (7)where W is a weighting matrix and estimation of  is based on the empirical moments� = dE(�i) = (1=N) NXi=1 Z 0idui = (1=N)Z 0du:5



Z = (Z 01; : : : ; Z 0N)0 is a N(T � 2) �m matrix and du = (du1; : : : ; duN )0 is a N(T � 2) � 1vector. The GMM estimator isarg min �0W� = ̂GMM = dy0�1ZV �1N Z 0dydy0�1ZV �1N Z 0dy�1 ; (8)where the optimal weighting matrix W is the inverse of the covariance matrix of �iV̂ �1N = " 1N NXi=1 �̂i�̂0i#�1 = " 1N NXi=1 Z 0idûidû0iZi#�1 :For practical applications we need preliminary consistent estimates of the error term.This procedure can be extended to models with additional regressorsyit = yi;t�1 + x0it� + �i + "it= ~x0it� + uit: (9)Under the assumptionsE(~xkit"it0)�= 0 for t0 � t6= 0 otherwise k = 1; : : : ;K;which means that all regressors and error terms of the same period or later are uncorrelated,we obtain as optimal instrumental variable matrixZi = diag hdyi1; : : : ; dyis; dx0i1; : : : ; dx0i;s+1i i = 1; : : : ; Ns = 1; : : : ; T � 2 : (10)Then the GMM estimator is�̂GMM = h(D ~X)0ZV̂ �1N Z 0(D ~X )i�1 (D ~X)0ZV̂ �1N Z 0dy; (11)where matrix D ~X is composed of (T � 2)N �K elements of d~xit.Thus far, we have assumed that all coe�cients including the individual e�ect are timeinvariant. The following modi�cation is less restrictiveyit = tyi;t�1 + x0it�t +  t�i + "it: (12)Time-varying individual e�ects  t�i seem undesirable, because in conventional models theindividual e�ects �i is de�ned in contrast to the idiosyncratic error term �it as time invari-ant. Nevertheless, it can be argued that the e�ect varies e.g. with cyclical ups and downs,although individual characteristics stay the same. Conventional di�erences or within esti-mators do not eliminate the individual e�ect. CHAMBERLAIN (1984, p.1263) suggests asolution to determine the coe�cients in (12). This equation in period t-1 is multiplied byrt =  t= t�1 and this expression is subtracted from (12), i.e. yit � rtyi;t�1. So therefore theindividual e�ect vanishes. A simultaneous equation system resultsyi3 = (3 + r3)yi2 � r32yi1 + x0i3�3 � r3x0i2�2 + ("i3 � r3"i2)yi4 = (4 + r4)yi3 � r43yi2 + x0i4�4 � r4x0i3�3 + ("i4 � r4"i3)...6



yiT = (T + rT )yi;T�1 � rTT�1yi;T�2 + x0iT�T�rTx0i;T�1�T�1 + ("iT � rT "i;T�1) (13)Equation yi1 and yi2 are suppressed as we have no information about yi0 and yi;�1. As theerror terms and the lagged dependent variables are correlated instrumental variables areused. Therefore, yi3 is also eliminated, because not enough instruments can be constructed.Altogether, the equations of period 4 to T can only be used to determine the coe�cients.This residual system is expressed byY = WB + "; (14)where Y is a (T�3)N�1 vector,B is a (T�3)(3+2(K�1))�1 vector,W = diag(W 04; : : : ;W 0T )is a (T �3)N � (T �3)[3+2(K�1)] block diagonal matrix,Wt = (yt�1; yt�2; 1; x0t�1; x0t�2) =(Y �t ;X�t ) is a N � (3+2(K�1)) matrix. HOLTZ-EAKIN/NEWEY/ROSEN (1988) developa twostep procedure, which combines the GMM estimator and the twostep instrumentalvariables estimator (2SIV) suggested by WHITE (1982). In the �rst step a conventional2SLS estimator can be applied as an IV estimator. Based on these residuals an estimatedcovariance matrix (V̂ ) is calculated and used in the second step. The instrumental variablemodel Z 0y = Z 0X� + Z 0u is estimated by EGLS. The White estimator is�̂2SIV = (X 0ZV̂ �1Z 0X)�1X 0ZV̂ �1Z 0y:When the regressors are also correlated with the error term, the instrumental variable matrixis Zt = (yt�2; yt�1; 1; Xt�2; Xt�1) � N � (3 + 2(K � 1)):Then a two-step approach follows:Step 1:Equation-wise the 2SLS estimator of the instrumental approach is determined:Z 0tyt = Z 0tWtBt + Z 0t"t t = 4; : : : ; T:B̂t = (W 0tZt(Z 0tZt)�1Z 0tWt)�1W 0tZt(Z 0tZt)�1Z 0tytStep 2:The simultaneous EGLS estimator of the instrumental variables approach of all equationsis Z 0Y = Z 0WB + Z 0"where Z = diag(Z4; : : : ; ZT ). The covariance estimator of the error term in V (Z 0") =E(Z 0""0Z) is V̂ (Z 0") = 0B@ V̂44 V̂45 : : : V̂4T... ... ...V̂T4 V̂T5 : : : V̂TT 1CAwhere V̂tt0 = 1N 0B@ (Pi zi;t;1"̂it)(Pi zi;t0;1"̂it0) : : : (Pi zi;t;1"̂it)(Pi zi;t0;j "̂it0)... ... ...(Pi zi;t;j"̂it)(Pi zi;t0;1"̂it0) : : : (Pi zi;t;j "̂it)(Pi zi;t0;j "̂it0)1CA7



= 1N NXi=1 "̂it"̂it0z0itzit0t = 4; : : : ; T t0 = 4; : : : ; Tj = 3 + 2(K � 1), zit = (zit1; : : : ; zitj) die i-te Zeile von zt. The �nal estimator is:B̂2SIV GMM = �W 0Z(V̂ (Z 0"))�1Z0W��1W 0Z(V̂ (Z 0"))�1Z 0Y:2.1.2 Multilevel modelsA critical assumption of the previous models with the exception of the last one is thegeneral constancy of individual e�ects. E.g. we cannot expect that unobserved individualabilities have the same e�ects in di�erent situations. One possibility, the time dependence, isdescribed in (12). If the e�ects depend on exogenous variables, interaction variables can bemodelled or separated regressions for each individual can be estimated. Then the di�erencesin the estimated coe�cients are due to individual characteristics. As usually only datafrom few periods are available, this procedure does not seem successful. But a naturalextension is obtained when units are not only separated by one criterion, i=1,...,N, and thenrepeated observed over time (t=1,...,T), but further levels are considered, e.g. establishmentsand industries. We call these �multilevel models�(GOLDSTEIN 1995, LONGFORD 1993,RAUDENBUSCH, BRYK 2002). Typically, these models are formulated as �random e�ectsmodels�. A three-level model may be expressed byyijlt = x0ijlt� + �i + �ij + �ijl + �ijlt; (15)where level 1 are the individuals (i=1,...,N), level 2 are the �rms (j=1,...,J) and level 3 are theindustries (l=1,...,L). One individual is assigned to one establishment and one establishmentis assigned to one industry. If the latter two levels are neglected, but if they are e�ectiveon the dependent variable, the in�uence is incorporated by the former. Then the individuale�ect is biased. Other examples of three levels are establishments, districts and countries orindividuals, households and cities. Recently, especially two-levelmodels, i.e. linked employer-employee panel data (LEEP) models, have been introduced in the literature (ABOWD,CREEZY, KRAMARZ 2002, ABOWD, KRAMARZ 1999, 1999a, ABOWD, KRAMARZ,MARGOLIS 1999, GOUX, MAURIN 1999). In this context some methodological issues areof special interest. The basic model is described byyit = x0it� + �i +  J(it) + �itunder the assumption E[�itji; J(it); t; xit] = 0. The �rm e�ect is expressed by  J(it). Thismeans individual i in period t is assigned to one of the j=1,...,J establishments. The LEEPapproach follows a ��xed e�ects model�. In matrix notation we havey = X� +D� + F + �; (16)where y is a N�T�1 vector, X is a N�T�Kmatrix. The design matrix for the individual e�ectsD has the order N�T�N containing unit vectors. Analogously, the design matrix for the �rme�ects F is a N�T�J matrix. This means the number of columns is equal the number of �rms.8



The objective is to estimate the coe�cients of �, � and  . The conventional technique toestimate the partitioned regression (16) does not work. The usual way is to �sweep out� the Dmatrix and then to determine the �rm e�ects cannot be used in practice. The F matrix is toolarge a non-patterned matrix due to the large number of �rms. Identi�cation of the individualand �rm e�ects, in order to estimate using the exact least squares estimator, requires �ndingthe conditions under which equation (16) can be solved for some subset of the person and�rm e�ects. ABOWD, CREECY and KRAMARZ (2002) present a procedure which involvesapplying methods from graph theory to determine groups of connected individuals and �rms.Within a connected group identi�cation can be determined using conventional methods fromthe analysis of covariance. A group contains all workers who ever worked for any of the �rmsin the group and all the �rms at which any of the workers were ever employed. The algorithmconstructs G mutually-exclusive groups of connected observations from the N workers in J�rms observed over the sample period. However, usually approximate solutions to (16) areemployed (ABOWD, KRAMARZ, MARGOLIS 1999). For this purpose an extended systemis formulated which is easier managable under speci�c restrictionsy = X� +D� + Z� +MZF + �; (17)where � = (Z 0Z)�1Z 0F is an auxiliary parameter,MZ = I�Z(Z 0Z)�1Z 0. The new matrixZ contains information or more directly speci�c columns of X, D and F. The intentionbehind creating Z is to incorporate all the relevant variables which determine interactione�ects between X, F and D so that under the condition of Z, orthogonality conditionscan be formulated. The selection of this information is a similar problem as the choice ofinstrumental variables. The following restrictions are imposed: (i) X and D are orthogonal,given Z, (ii) D and F are orthogonal, given Z. A four-step procedure can then be applied:(i) Estimate " �̂̂� # " X 0MDX X 0MDZZ 0MDX Z 0MDZ #�1 " X 0MDyZ 0MDy # :(ii) Using �̂ and �̂ one can determine�̂ = (D0D)�1D0(y �X�̂ � Z�̂):(iii) Formulate the partitioned auxiliary regression y = F + Z� + v and determine�̂ = (Z 0MFZ)�1Z 0MF y:(iv) With the help of �̂ one can calculate ̂ = (F 0F )�1F 0(y � Z�̂):If the model is extended by a further level e.g. by industry e�ects we have to consider thateach establishment is assigned to only one industry. The gross �rm e�ect F has to beseparated into the net �rm e�ect (F � FA�) and an industry e�ect (FA�) Therefore,model (16) passes intoy = X� +D� + FA�+ (F � FA�) + �: (18)9



Matrix A assigns �rms to a speci�c industry (ajl = 1, if �rm j belongs to industry l ; ajl = 0otherwise). The �rm e�ect is estimated in dependence of industry e�ects, i.e. usingF = FA�+ !;we obtain �̂ = (A0F 0FA)�1A0F 0F :Therefore, F � FA�̂ = F � FA(A0F 0FA)�1A0F 0F = (I � FA(A0F 0FA)�1A0F 0)F =:MFAF follows. If �rm e�ects are suppressed, but e�ective, the industry e�ect is biased except FAand MFAF are orthogonal. Furthermore, individual e�ects are neglected, we obtain a rawestimated industry e�ect from y = X� + FA�+ �;which is a weighted average of individual and �rm e�ects�� = (A0F 0MXFA)�1A0F 0MXD� + (A0F 0MXFA)�1A0F 0MXF :Analogously to the industry e�ects, it is possible to analyze occupation e�ects which areoften interpreted as an interaction between the individual and �rm e�ect (GROSHEN1996). HILDRETH and PUDNEY (1999) discuss issues of non-random missing values andGOUX/MAURIN consider instrumental variables estimators which are necessary if jointlydependent variables or errors in variables exist.While Hausman tests usually reject the random e�ects model (REM) the �xed e�ects model(FEM) has the problem that the within transformation of a model wipes out time invari-ant regressors as well as the individual e�ect, so that it is not possible to estimate thee�ects of those regressors on the dependent variable. One way to solve this problems is toreplace random individual e�ects by estimated FE. We call this a �selectivity �xed-randome�ects model� and use the acronym SELFREM. The basic idea follows the sample selecti-on approach. HECKMAN (1979) has substituted the conditional expected error term foran estimate, which is employed as an arti�cial regressor. Let us deal with this issue in atwo-level model yijt = x0ijt� + �i + �j + �ij + �ijt: (19)In the �rst step the general individual e�ects �i, the general �rm e�ects �j and the �rmspeci�c individual e�ects �ij is estimated by the within estimator of a FEM.�̂1i = (�yi � �y)� (�xi � �x)0�� = �̂(1)0i � �̂(1)0�̂1j = (�yj � �y)� (�xj � �x)0�� = �̂(1)0j � �̂(1)0�̂1ij = (�yij � �yi � �yj + �y) � (�xij � �xi � �xj + �x)0�� = �̂(1)0ij � �̂(1)0i � �̂(1)0j + �̂(1)0 ; (20)10



where �� is the coe�cient vector without the constant term. The conventional RE estimatoris not adequate if individual and �rm e�ects, respectively, and regressors are correlated. Inthe second step the individual und �rm e�ects are substituted by the estimates of (20).We incorporate these e�ects as linear combinations (a1�̂1i, b1�̂1j and c1�̂1ij) and expectâ1 = 1; b̂1 = 1; ĉ1 = 1. OLS estimation ofyijt = x0ijt� + a1�̂1i + b1�̂1j + c1�̂1ij + �ijt (21)leads to new estimates of the individual and �rm e�ects: �̂2i, �̂2j and �̂2ij. If a1, b1 and c1are not equal to one, the unobserved but estimated e�ects in (21) are substituted by newlinear combinations and further OLS estimates are employed. The iterations (1,...,s) of thisprocedure are continued until as, bs and cs converge to one. The estimator is consistent ifâs ! 1, b̂s ! 1 and ĉs ! 1 where N ! 1. If âs, b̂s and ĉs do not converge to 1, this isevidence of misspeci�cation. An alternative to (21) is a nonparametric speci�cationyijt = x0ijt� +m(�̂1i) +m(�̂1j) +m(�̂1ij) + �ijt: (22)A simpli�ed version of this approach is analyzed in section 3. It should be mentioned thatthe pure individual e�ects can only be separated from the �rm speci�c individual e�ects ifthe individuals quit the �rm and accept a job within the considered period. The general�rm e�ects can only be determined if we have more than one employee in the �rms of oursample.If a test for poolability (Baltagi 2005) does not reject the null hypothesis, the unobservedindividual and �rms e�ects can be neglected. In this case another way might be usefulto determine the relationship between individual and �rms e�ects: a model with varyingcoe�cients. In the �rst stage, individual observations are only considered and the modelyijt = x0ijt�j + �ijt:is estimated, where yijt is the endogeous variable with i = 1,...,N individuals, j = 1,...,M�rms and t = 1,...,T periods. This variable is determined by a K�1-vector of individualcharacteristics xijt. The individual disturbance term is e �ijt � N(0; �2). We assume thatthe K�1 parameter vector �j varies between the �rms.In the second stage the individual coe�cients �j are estimated by a 1�L vector wj' includinga constant term and L-1 �rms characteristics�j = Wjj + uj;whereWj = IK
wj' is a K�K�L�T matrix, w0j = (wj11; :::; wjL1; :::::; wj1T; :::; wjLT) and  0j =(j111; :::; jL11; ::::::; j1T1; :::; jLT1; ::::::; j11K; :::; jL1K; ::::::; j1TK; :::; jLTK. Alternatively,w0j can be substituted by �w0j = ( �wj1; :::; �wjL) and analogously the j has to be adjusted. Thismeans we assume that the �rms e�ects on �j are time invariant.The K�L�1 parameter vector j describes systematical �rms in�uences on the individualy e�ects. We assume that the K�1 disturbance term vector on the �rms level is uj �N(0; T ). Additional assumptions are: Cov[�ijt; ukjt] = 0, Cov[xkijt; �ijt] = 0, Cov[wljt; ukjt] =0, Cov[wljt; �ijt] = 0 and Cov[xkijt; ukjt] = 0 for all k, k' und l, k = 1...K, l = 1...L. The trueparameter vector �j is substituted by a �rm speci�c OLS estimator (�̂j).�̂j = Wjj + uj + ej;11



where the disturbance term is ej � N(0; Vj ). A GLS estimation followsg = [ MXj=1(W 0j��1j Wj)]�1(W 0j��1j �̂j);where �j = V ar(�̂j) = V ar(uj + ej) = T + Vj . The covariance matrix may iterativelyestimated by the ML method. The variance of �ijt is modelled by�2ij = exp(c0ij�);where the vector cij incorporates heteroskedasticity inducing variables.2.2 Nonlinear modelsMany methods for nonlinear panel data models with �xed e�ects rely on the method ofconditional ML, where a su�cient statistic of �i is conditioned on to remove the unobservedindividual e�ect. But in general nonlinear models it is not always easy and sometimes itis impossible to �nd a minimum su�cient statistic for �i that is independent of �. Underrandom e�ects one can attempt to employ conventional ML methods. However, the com-bination of typical nonlinear models with panel structures often yields too complex modelsto use this procedure. Two alternatives exist. On the one hand, simulated ML estimation ismanageable. Or, on the other hand, the GMM approach is a good alternative.The most popular examples in microeconometric nonlinear models are logit, probit, countdata, censored and selection models. A general nonlinear model may be characterized byyit = m(xit; �) + uit: (23)The conditional mean function isE(yitjxit) = m(xit; �):A simpli�cation follows by linear link functions (McCULLOUGH/NELDER 1983):m(xit; �) =g(x0it�). The major problem of nonlinear panel data models is the removal of the individuale�ect. First di�erences or within estimates do not solve the elimination problem, � and theindividual e�ect are not independent. The main limitation of much of the literature on non-linear panel data methods is that the explanatory variables are assumed strictly exogenous.The discussion is focussed on models, in which the parameter that is usually interpreted asan intercept is allowed to be individual speci�c. Unfortunately, the features of the modelthat do not depend on �i tend to be di�erent for the di�erent functional forms for m(�) in(23) and do not always exist, as for example in the case of a �xed e�ects probit model. Theresulting estimation procedures are therefore di�erent for di�erent models. One then endsup estimating, say, a logit model in a way that is fundamentally di�erent from the way onewould estimate, say, a censored model. This is somewhat unsatisfactory.2.2.1 Logit modelsIf the dependent variable is a dummy variable, most popular approaches are logit andprobit models. Conditional maximum likelihood estimators can be applied to logit models12



with �xed e�ects (HSIAO 2004). The basic model isy�it = x0it� + �i + �it = x0it� + uityit = ( 1 , if y�it � 00 , otherwise (24)and the probability is P (yit = 1) = exp (x0it� + �i)1 + exp (x0it� + �i)) ;where i = 1; :::; N ; t = 1; :::; T . A simple ML estimator is inconsistent as FEM's allow acorrelation between x and �. But in the literature on the estimation of nonlinear �xed e�ectspanel data models have been developed alternative estimation strategies. The general idea isthat, although the model does not have features that are linear in the �i's, it is nonethelesssometimes possible to �nd features of the model that do not depend on �i. One way is touse the conditional maximum likelihood estimation (CML)Lc = NYi=1P (Yi1 = yi1; : : : ; YiT = yiT jXt yit)P (yij TXt=1 yit) = exp (( TXi=1 xityit)0�)=Xd� ~Bi exp (( TXt=1 xitdit)0�);where ~Bi = (di1; : : : ; diT )jdit are 0 or 1 and Pt dit = Pt yit. Under this condition the condi-tional ML estimator of � does not depend on �i.~Bi describe alternative data sets in relation to yit, which ful�l the condition Pt yit. When Tobservations exist, the number of elements with 1 can assume the following sumTXt=1 yit = 0; 1; : : : ; T:P yit = 0 and P yit = T do not contribute to the likelihood function, as in this case only onecombination exists. Therefore, the corresponding probability is equal to one and only thesum from 1 to T-1 is relevant. Alternatives exist if 1 � P yit < T . In other words, relevantfor the estimation are only those individuals who change the status of the regressand onceor more. We demonstrate this for the simple case T = 2. The conditional probability thenfollows P (!i = 1jyi1 + yi2 = 1) = P (!i = 1)P (!i = 1) + P (!i = 0)= exp[(xi2 � xi1)0�]1 + exp[(xi2� xi1)0�] = F [(xi2� xi1)0�];where !i = 1, if (yi1; yi2) = (0; 1), and !i = 0, if (yi1; yi2) = (1; 0). This result demonstratesthat for an individual for whom y changes, the probability that it changes from 1 to 0 or vice13



versa is a logit with explanatory variables (xi2�xi1). Since this probability does not dependon �i, one can estimate � without making assumptions on �i by considering only thoseindividuals for whom yi1 + yi2 = 1 and then estimating the logit model. The conditionallikelihood functionlnLc = NXi=1f!i � lnF [(xi2� xi1)0�] + (1� !i) � ln[1� F [(xi2� xi1)0�]]gcan be maximized by conventional methods of a simple logit model. The problem becomesmore complicated if lagged dependent variables representing state dependence also appearin speci�cation (24). In that case we need T � 4 waves for the identi�cation of a logit model.A generalization of the standard logit panel data model is presented by REVELT andTRAIN (1998). They analyze a multinomial panel model and allow that the parametersassociated with each observed variable vary randomly across individuals. Conditional on �i,the probability that person i chooses alternative l in period t isP (yit = l) = exp (x0ilt�i)PLl=1 exp (x0ilt�i) =: Lilt(�i): (25)The unconditional probability over all values of �i depends on the parameters of the distri-bution of �i. For ML estimates we need the probability of each sampled person's sequenceof observed choices. Conditional on �i, the probability of person's i observed sequence ofchoices is the product of standard logits (Si(�i) = �tPit(��)). The unconditional probabilityfor the sequence of choices isPi(��) = Z Si(�i)f(�ij��)d�i; (26)where �� are the parameters of the density f(��). The objective is to estimate ��, the popula-tion parameters that describe the distribution of the individual parameters. Exact maximumlikelihood estimation is not possible since the integral in (26) cannot be calculated analyti-cally. Instead, it is possible to approximate the probability by simulation and maximize thesimulated log likelihood. For a given value of �, a value of �i is drawn from its distribution.Then Si(�i) is calculated. This process is repeated. The average of the replicated results istaken as the estimated choice probability: SPi(�) = 1=RPRr=1 Si(�i;rj�) where R is the num-ber of replications. This is an unbiased estimator of Pi(�). The estimated parameters of thesimulated log likelihood function SLL(�) = Pi ln(SPi(�)) are consistent and asymptoticallynormal under regularity conditions. The simulated score for each person isSSi(�) =: @lnSPi(�)@�= [ 1SPi(�) ] 1R RXr=1Si(�i;rj�)[Xl Xt (dilt � Lilt;rj�)@� 0i;rj�xilt@� ];where dilt = 1, if individual i choose alternative l in period t and zero otherwise. Thesemixed logit approaches do not require the independence of irrelevant alternatives and generalpatterns of correlation over alternatives and time are allowed.14



2.2.2 Probit modelsAs not so much is known about how to deal with �xed e�ects, it is often appealing to makeassumptions on the distribution of individual e�ects. We cannot �nd simple functions forthe parameters of interest that are independent of the nuisance parameter �i for probitmodels. Starting point is the model (24), but the individual e�ect have to be uncorrelatedwith xit, and �i is a random variable where a normal distribution is assumed. Analogouslyto the linear model the variance of the error term isV (uit) = V (�i + �it) = �2� + �2�and square of correlation coe�cient between the two error terms follows�2 = Corr2(uit;uit0) = �2�=(�2� + �2� ):When the individual e�ects are treated as random variables we may use the FE estimator.However, this procedure implies a loss of e�ciency. It can be even worse. In some cases theFE estimator is inconsistent. To obtain the ML estimator we must evaluate T-dimensionalintegrals P (Yi1 = yi1; :::; YiT = yiT ) = Z 1�x0i1� ::: Z 1�x0iT � f(ui1; :::; uiT)duiT ; :::; dui1:Butler and Mo�tt (1982) who follow the Gaussian quadrature procedure simplify the com-putationP (Yi1 = yi1; :::; YiT = yiT ) = Z 1�1 f(�i) TYt=1[F (1j�i)� F (�x0it�j�i)] � d�i:Based on this probability the log likelihood lnL = P lnLi is calculated. The score vector canbe used to employ the BHHH estimator where the covariance matrix is determined by theOPG of the score vector. The combination of random e�ects and probit approaches suggestsin itself since both assume a normal distribution.A more e�cient alternative suggested by Chamberlain (1984) yields the minimum distanceestimator which avoids numerical integration. This approach starts with a log likelihoodfunction lnL = NXi=1 lnLiLi = Li(y�it) = Li(�it;�i) = Li(y�itj�i) � L(�i)= Z +1�1 TYt=1F (x0it� + �i)yit � (1� F (x0it� + �i))1�yit � dG(�i);where G(�i) is a univariate distribution function. Following Chamberlain, who assumes�i = TXt=1 a0txit + �i = a0xi + �i;we can writeLi = Z 1�1 TYt=1F (x0it� + a0xi + �i)yit � (1� F (x0it� + a0xi + �i)1�yit � dG�(�i);15



where a = (a01; � � � ; a0T )0 = (a11; � � � ; aK1; � � � ; a1T ; � � � ; aKT )0 � TK � 1, xi � TK � 1, F (�) -standard normal distribution and G�(�) - normal distribution where � � N(0; �2�): Conse-quence is a multivariate probit model, whereyit = 1; if x0it� + a0xi + �i + �it > 0:The components of the error term are independent normally distributed0BB@ �i1...�iT 1CCA+ 0BB@ �i...�i 1CCA = �i + �i� � N h0; (IT + �2���0)i :The conditional distribution of yit due to xi is modelled byP (yit = 1jxi) = F [(x0it� + a0xi)=(1 + �2�)1=2] = F (x0i�):This is a marginal distribution in respect of �. Separated for each period t = 1; � � �Tunivariate probit speci�cation can be determined as ML estimates which jointly converge to� = diag h(1 + �2�)�1=2i (IT 
 � 0 + � � a0);T � TK T � 1 1� TKas N !1. The minimum distance estimator follows if we derive(�̂ � f(�))0
̂�1(�̂ � f(�))with respect to �, � and �2�, where �̂ = vec(�̂) � KT 2 are stacked, unrestricted, univariateestimates, which are based on the ML method of T separate probit models and � = vec(�) =f(�) = f((� 0...�0...�2�)0). 
̂ is a consistent estimator of the asymptotic covariance matrix of �̂,i.e. 
 = J�1�J�1 whereJ = 2664 J1 . . . JT 3775 ; Jt = E " f2itFit(1 � Fit)xix0i#KT2 � T2K KT � TKJ-information matrix, � = E[ i 
 xix0i];  i � (T � T ) matrix, where a typical element is~uit�~uit0, ~uit = yit�FitFit(1�Fit)fit are generalized residuals and Fit = F (x0i�); fit = f(x0i�). As an esti-mator of �i we write �̂i. Expected values are substituted with means and � by �̂ in fit or Fit.In the pure random e�ects model, one can also estimate the model by a pseudo-maximum li-kelihood method that ignores the panel structure altogether. The basic idea can be describedas follows: the time correlation structure is only assumed as �nuisance� with subordinatedinterest. Due to possible misspeci�cation of this correlation structure, the application of theML method is not completely valid. Therefore, in the literature this approach is called a16



quasi- or pseudo-ML estimation (QML). The procedure is the following. We de�neV (yit) = F (x0it�)[1� F (x0it�)]Vi = diag [F (x0i1�)(1� F (x0i1�)) : : : F (x0iT�)(1� F (x0iT�))]
i = ViR(�)Vi covariance matrix, which yields the smallest KLICunder misspeci�cation.R(�) is time correlation structure which depends from the unknown para-meter vector � - �nuisance�:The objective is to minimizeS = NXi=1(yi � Fi(xi��))0
�1i (yi � Fi(x0i��))where yi = (yi1; � � � ; yiT )0 ; Fi(�) = (F (x0i1�); : : : ; F (x0iT�))0:If 
 is known, the LS estimator ful�ls the equationNXi=1 @Fi(�)@� 
�1i (yi � Fi(�)) = 0:If 
 is unknown, a �working correlation matrix-~
� is employed,which is usually misspeci�ed,e. g. R(�) = I or it is assumed that the correlations outside the main diagonals are equal.The equations are then called �generalized estimating equations - GEE� and the solutioncorresponds to a QML estimation. This result is not identical with the minimization of S,because @
@� is not considered. If the speci�cation of F (x0it�) is correct, the QML estimatoris consistent and asymptotically normally distributed, provided that the estimation of thecovariance matrix �̂ is robust.If we consider a multinomial probit panel data model, the CML method fails. The Butler-Mo�tt approach is restricted because of the underlying multidimensional integral. As men-tioned in the introduction of nonlinear models two alternatives exist: simulated estimationmethods and GMM approaches.GMM estimators are based on the orthogonality conditions implied by the single equationconditional mean functions E(yit � F (x0it�jXi)) = 0;where F(�) denotes the CDF of the univariate normal distribution. The orthogonality con-ditions are E[A(Xi)0BBBB@ (yi1 � F (x0i1�))(yi2 � F (x0i2�))...(yiT � F (x0iT�)) 1CCCCA] = 0; (27)17



where A(Xi) is a P � T matrix of instrumental variables constructed from the exogenousdata for individual i. The empirical counterpart to the left hand side of (27) substitutes theexpected value with the sample mean so thatgN (�) = 1N NXi=1[A(Xi)0BBBB@ (yi1 � F (x0i1�))(yi2 � F (x0i2�))...(yiT � F (x0iT�)) 1CCCCA]and the solution of the various estimators are�̂GMM = argmin(gN(�))0W (gN (�)): (28)The GMM estimators di�er by the choice of the instrument matrix A and the weightingmatrix W.By combining classical estimation methods and simulators, several approaches were deve-loped. For example, simulated maximum likelihood methods (SMLM) including the GHKestimator can be used (GEWEKE, KEANE, RUNKLE 1997). Keane (1994) derived a com-putationally practical simulator for the panel probit model. Simulation methods replace theintractable integrals by unbiased Monte Carlo probability simulators. Further possibilitiesare the method of simulated moments, simulated scores and Markov chain Monte Carloincluding the Gibbs and Metropolis-Hastings algorithm. Geweke, Keane and Runkle �ndthat Gibbs sampling, simulated moments and maximum likelihood method using the GHKestimator all perform reasonably well in point estimation of parameters in a three alternative10-period probit model. Monte Carlo studies of nonlinear panel data models (BERTSCHEK,LECHNER 1998, BREITUNG, LECHNER 1999) show that among di�erent GMM estima-tors, the ranking is not so obvious while MLE performs best followed by the GMM estimatorbased on the optimal instruments derived from the conditional mean restrictions. GREE-NE (2004) also �nds that the GMM estimator performs fairly well compared to the MLestimation.2.2.3 Count data modelsThe most popular approach of panel data models, where the dependent variable is a countvariable, is the poisson formulation.P (y = j) = exp(��)�jj! j = 0; 1; 2; :::In contrast to linear models the individual e�ect is modelled as a multiplicative factor(CAMERON/TRIVEDI 1998, pp.275). The basic model can be written byyit = �i � �it + uit;where E[yitjxit; �i] = �it = �i � exp(x0it�) = exp(~�i + x0it�);18



~�i = ln�i and i = 1; � � � ; N ; t = 1; � � � ; T . Strict exogeneity of regressors x is assumed. Under�xed e�ects we can use the CML method analogous to the logit model. The conditionallikelihood functionlnLc = NXi=1[ln( TXt=1 yit)!� TXt=1 ln(yit!) + TXt=1 yitln[ exp(x0it�)PT�=1 exp(x0i��)]]is maximized, where c in lnLc means �conditional�. The condition is given by P yit = T �yit.HAUSMAN, HALL and GRILICHES (1984) follow this procedure. However, they also esti-mate a negative binomial model with �xed e�ects. BLUNDELL, GRIFFITH and WIND-MEIJER (2002) show that under strict exogeneity of the regressors the CML estimator ofthe poisson model corresponds to a moments estimator of an mean scale modelyit = exp(x0it�) �yi��i + u�it;where �yi = T�1Pt yit, ��i = T�1Pt �it and u�it = uit� (�it=��i)�ui. The ratio of the two meansmeasures the individual e�ect. The method of moments is given byNXi=1 TXt=1 xitu�it = NXi=1 TXt=1 xit(yit � exp(x0it�) �yi��i ) = 0:Under weak exogeneity this condition is not consistent as xit and u�it are correlated via�uit. An alternative presents quasi di�erences of the condition of moments. These weighteddi�erences eliminate the individual e�ectwit = yit�i;t�1�it � yi;t�1 = uit�i;t�1�it � ui;t�1:Using instrumental variables which ful�l the conditionE[uitj�i; zi1; � � � ; zi;t�1] = 0so that E[witjzi1; � � � ; zi;t�1] = E�jz[E(witjzi1; � � � ; zi;t�1)] = 0;the GMM estimator can be employed, which minimizes( 1N NXi=1w0iZi)W�1N ( 1N NXi=1 Z 0iwi):The optimal weighting matrix isWN = 1N NXi=1 Z 0iwi(�̂0)wi(�̂0)0Zi;where wi(�̂0) is based on a consistent initial estimator �̂0. If the instruments are exact-ly identi�ed and zit = xit, the sample moment condition corresponds to the structure ofmoment conditions at strict exogeneityNXi=1 TXt=2 zi;t�1wit = NXi=1 TXt=2 zi;t�1(yi;t�1 � exp(x0i;t�1�) yit�it ) = 0:19



Only if the variance of the individual e�ects is relatively large, is this estimator satisfactory,as Monte Carlo studies demonstrate. Estimators with pre-sample information instead of pro-spective values in the weights improve the estimates. Then the bias is only small. Analyticalexpressions of the unconditional density do not exist for Gaussian RE poisson models. Analternative is once again simulation estimators. Therefore, Chip/Greenberg/Winkelmann(1998) employ the MCMC method.2.2.4 Sample selection modelsHECKMAN's (1979) seminal work and further studies have demonstrated that OLS esti-mates restricted to subgroups are usually biased. This basic result derived for cross sectiondata models was generalized for panel data models by HAUSMAN/WISE (1979), VER-BEEK (1991), VERBEEK and NIJMAN (1992) using random e�ects models. VERBEEK(1991), NIJMAN/VERBEEK (1992) and ZABEL (1992) consider analogous �xed e�ects ap-proaches. A systematic discussion of �xed e�ects selectivitymodels is presented byWOOLD-RIDGE (1995). Starting point is the formulation of the output functionyit = x0it� + �i + uit (29)and the selectivity functiond�it = z0it + �i + �it; dit = I[d�it � 0]; (30)where I[�] is an indicator function which is equals one if the argument in [�] is ful�lled andotherwise zero. Both unobserved individual e�ects �i and �i may be correlated with theobserved regressors xit and zit. A special case follows if zit = xit. The dependent variable yitis only observable if dit = 1. The following restrictions are imposedA1 : �i is linearly dependent on zi�i = zi11 + � � �+ ziTT + ciA2 : �it = �it + ci is independent of xi and zi; �it � N(0; �2t ).A3 : �i is linearly dependent on xi and �it(�ijxi; �it) =  t0 + x0i1 t1 + � � �+ x0iT tT + �t�itA4 : uit is in mean independent on xi and zi and the conditional expected value dependslinear on �it E(uitjxi; zi; �it) = E(uitj�it) = �t�it:Under the assumptions A1-A4, � is identi�edE(yitjxi; zi; �it) =  t0 + x0i1 t1 + � � �+ x0iT tT + x0it� + �t�( z0it�z0it );where �t = �t + �t. The estimation proceeds in the following steps:20



(i) In each period t the selection function is estimated by a probit approach and fromthis result the selection variable �̂(�) is determined.(ii) The pooled OLS estimator is applied to the function extended by the selection term�t�( z0it�z0i ) yit = ŵ0it� + eit;where ŵ0it = (1; x0i1; :::; x0iT ; xit; 0; :::; 0; �̂it; 0; :::; 0). The estimator is�̂ = ( ̂0; �̂ 0; �̂0)0 = ( NXi=1 TXt=1 ditŵitŵ0it)�1( NXi=1 TXt=1 ditŵityit):(iii) The asymptotic covariance matrix of �̂ is de�ned byV (�̂) = 1N Â�1B̂Â�1;where Â = N�1( TXt=1 ditŵ0itŵit); B̂ = N�1(p̂ip̂0i); p̂i = q̂i � D̂r̂i;q̂i = TXt=1 ditŵ0itêit; D̂ = N�1 TXt=1 ditŵ0it�̂0r�wit(�̂)0;êit = yit � ŵ0it�̂; r̂i = ri(�̂):The gradient matrix r�wit(�̂))0 of wit(�)0 is evaluated at �̂.ROCHINA-BARRACHINA (1997) develops an approach with �rst di�erences to eliminatethe individual term and assumes a trivariate normal distribution. CARRASCO (2001) andVELLA/ VERBEEK (1999) have presented some further modi�ed approaches.2.2.5 Censored modelsA pooled estimator of a censored modely�it = x0it� + uityit = ( 1 if y�it � 00 otherwiseis not di�erent from the cross section estimator and under random e�ects, where uit = �i+�it,�i � N(0; �2�),�it � N(0; �2� ), we have only to incorporate the additional variable �i. Thismeans the log likelihood function is written bylnL = NXi=1 ln Z +1�1 TYt=1F (x0it��� + �i�� )1�yit� [ 1��f(yit�� � x0it��� � �i�� )]yitf(�i�� )d(�i�� ))21



and is partially derived with respect to �, where � = (� 0; ��; ��)0. The �rst order conditionsare highly nonlinear. An iterative procedure is necessary to solve the maximization problem.Gradients have to be determined. Analogously to the RE probit model, the Gauss Hermitequadrature procedure introduced by Butler and Mo�tt can be employed. Chamberlain'sidea of a correlated RE probit model, where the individual e�ect �i is a0xi + �i, can betransferred to the tobit model detailed presented in Jacubson (1988). FE tobit models aresuggested by Heckman and McCurdy (1980).3 Non- and semiparametric modelsThe discussion starts in section 3.1 with pooled models and nonparametric terms. Butusually, individual e�ects are incorporated in panel data models. This problem is managedin the next two sections. Furthermore, attrition of observations is a common phenomenonover a panel. Attrition in one period may be followed by reappearance in future periods.Section 3.4. discusses this issue.3.1 Pooled modelsIn a general formulation the causal dependence of the dependent variable yit on independentvariables and the error term is typically described byyit = g[m(xit) + uit]; (31)where g(�) calls a mapping which induces the variable yit. Possibly, yit depends on an un-observed endogenous variable y�it = m(xit + uit). If yit is directly created by xit and uit, therelation can be simpli�ed by yit = m(xit)+uit and the linear model results if m(xit) = x0it�.While parametric models assume a known structural relation under unknown parametersand an error term a simple nonparametric panel data model formulates a mean regressionyit = E(yitjxit) + uit = m(xit) + uit: (32)The incentive to use nonparametric instead of parametric methods is the higher degreeof �exibility. The basic problem is the enormous amount of calculations, especially if thenumber of regressors increase. Furthermore, it is di�cult to interpret the estimation. This iscalled �the curse of dimension�. Two possibilities exist to solve this problem. Either additiveor partial linear models are assumed. The former are discussed in HASTIE/TIBSHIRANI(1997). We focus on the presentation about partial linear models.If a pooled estimation of panel data are employed the same procedures as with cross sec-tion data can be used. It is necessary to test whether the pooled procedure is convenient.Parametric procedures are described by BALTAGI (2001). A nonparametric test presentBALTAGI, HIDALGO and LI (1996). LI and HSIAO (1996) test whether individual e�ectsexist. When the test does not reject the null hypothesis of poolability, the individual e�ectscan be neglected. Starting point is a partial linear approach of panel datayit = z0it +m(xit) + uit: (33)22



The fundamental idea is to eliminate the nonparametric part. Then the linear term canbe estimated separately following ROBINSON (1988). In other words, the new regressandis the di�erence between y and the conditional expected value which is induced by thenonparametric regressors. Due to the identity E[m(x)jx] = m(x) the nonparametric termvanishes by �rst di�erences y �E(yjx) = (z � E(zjx))0 + u: (34)Before we can estimate  the conditional expected value has to be determined by a nonpa-rametric procedure (PAGAN/ULLAH 1999,199). The problem is that the denominator of akernel estimator is a random variableŷit = Ê(yitjxit) = 1NT � h NXj=1 TXt=1 K xit�xjthf̂it � yjt;where f̂it = 1NT �hPNj=1PTt=1K(xit�xjth ) is the kernel density estimator and h is the bandwidth.If we do not only consider a univariate nonparametric term, a multivariate kernel is necessary.A simpli�ed form can be assumed in this case, namely the product of the univariate kernels,i.e. K(xit) = �Dd=1K(xdit). The denominator can be neglected under a density weightedestimation (POWELL/STOCK/STOKER 1989, LI/STENGOS 1996), where the densityfunction follows from a kernel estimation (f̂). The di�erences model (34) has to be weightedf̂it(yit � ŷit) = f̂it(zit � ẑit)0 + f̂ituit:The least squares estimator of  followŝ = ( NXi=1 TXt=1(zit � ẑit)(zit � ẑit)0f̂2it)�1( NXi=1 TXt=1(zit � ẑit)(yit � ŷit)f̂2it): (35)This OLS estimator is consistent. But a GLS estimator presented by LI and ULLAH (1998)achieves the semiparametric e�ciency border and is therefore superior. In the second stepwe obtain the multivariate nonparametric term m(x) under a Taylor series approximationyit � z0it̂ = m(xit) + �(x)0(xit � x) +R(xit; x) + z0it( � ̂) + uit= m(xit) + �(x)0(xit � x) + ~ux;itusing a local LS estimator. The parameter vector ~�(x)0 = (m(x); �(x)0) results from~̂�(x) = argmin 1NT � h NXi=1 TXt=1Kit(yit � z0it̂ �m(x)� (xit � x)0�(x))2;where Kit = K(xit�xh ) and h is the bandwidth. The local linear least squares estimator is~̂�(x) = [ NXi=1 TXt=1 �K(xit � xh ) 1 xitxit � x (xit � x)(xit � x)0� !]�1� NXi=1 TXt=1 �K(xit � xh ) 1xit � x ! (yit � zit̂);where �K(�) is the product of kernel functions of second order.23



3.2 Random e�ects modelsIf the following simple nonparametric models with individual e�ects �i existyit = mt(xit) + (�i + �it) = E(yitjxit) + uit; (36)where i = 1; :::; N and t = 1; :::; T , all conditional moment procedures can be used to estima-te the nonparametric term mt(xit), if a random e�ects model is convenient. A known distri-bution of the individual e�ects is assumed and �i are identically independently distributed.Furthermore, the individual e�ects are independent of the regressors. Under unspeci�c timedependence of E(yitjxit) it is possible to estimate the parameters separately for each wave.If time invariance is assumed, i.e. mt(xit) = m(xit), the pooled procedure can be employedto determine the nonparametric term. A local linear approach is possibleyit � m(x) + (xit � x)0�(x) + �i + �it =: ~x0it ~� + �i + �it;where ~x0 = (1; (xit � x)0) and ~�0 = (m(x); �(x)0). In order to determine the nonparame-tric terms m(x) and �(x) we can choose ULLAH and ROY's (1998) GLS approach. Thiscorresponds to the conventional within transformation,where � is eliminated. Under semi-parametric partial linear panel data modelsyit = m(xit) + z0it + �i + �it (37)we can follow LI and STENGOS (1996) analogously to pooled models.The estimator of the time invariant nonparametric term of a balanced panel can be assignedto an unbalanced panel (KÖNIG 1997). An extension to models with time variable nonpa-rametric models is also possible (KÖNIG 2002). In this case a wave speci�c procedure issuggested.An alternative to LI and STENGOS is developed by KÖNIG (2002, 176�). The advantageof this method is that the peculiarity of the panel structure can be better considered.It is also possible to model a time variable nonparametric term. Simple estimators aresupplied. But in this case it is necessary to consider some restrictions. Conventional �rstdi�erences and within estimators, well-known from pure linear models can be applied. Thisapproach is independent from the sensitivity of bandwidth. We can expect better behaviorin small samples. Disadvantages may be possible under asymptotic consideration. But forapplications in�nite large samples are less relevant.The partial linear model may be interpreted as a simple linear model with �xed e�ects ifnonparametric regressors (xit = xi) are time invariantyit = z0it + ci + �it;where ci = m(xi) + �i. The parameter vector  is determined by �rst di�erences or withinestimators if the linear regressors are strictly exogenous. Biased estimators result at a directapplication to time variable regressors. The bias can signi�cantly be reduced, if we follow asuggestion by KÖNIG (2002, 182). The more the values of two periods di�er, the strongeris the bias. Therefore, only small weights are assigned to those values. Such a weightingfunction yields the kernel function. The corresponding estimator iŝ = ( NXi=1 TXt=1 TX�=1K(xit�xi� )(zit � zi� )(zit � zi�)0)�124



NXi=1 TXt=1 TX�=1K(xit�xi� )(zit � zi�)(yit � yi�); (38)which is consistent and asymptotically normally distributed. HOROWITZ and MARKA-TOU (1996) suggest a kernel estimator to determine the CDF of a random e�ects modelwithout nonparametric term. The empirical distributions of �it and uit = �i + �it are sepa-rately determined. The isolation of �it usually takes place by creation of �rst di�erences.�̂it = (yit � yi1)� (zit � zi1)0̂:Under weak restrictions the estimator of the density function of ûit and �̂it is consistent.3.3 Fixed e�ects modelsIn contrast to random e�ects models there exist an additional problem in nonparametricpanel data models with �xed e�ects. Due to the allowed correlation between �i and xit theconditional expected value of yit di�ers from the nonparametric term. Instead we obtainE(yitjxit) = m(xit) + E(�ijxit):Therefore, it is not possible to determine the nonparametric part by the conditional momentapproach. The conventional solution by �rst di�erences or within estimators breaks down.The individual e�ect is eliminated, but not identi�ed by this procedure. ULLAH and ROY(1998) suggest a Taylor series of the nonparametric expression as a starting pointyit = m(x) + (xit � x)0@m(xit)@xit jxit=x + 12(xit � x)0@2m(~x)@x@x0 (xit � x) + �i + �it=:m(x) + (xit � x)0�(x) +R2(xit; x) + �i + �it=:m(x) + (xit � x)0�(x) + �i + ~�x;it; (39)where ~x is assumed within the range x and xit. It is intended to estimate �(x) of this locallinear model. A local within estimator with simple kernel function weights gives biased andinconsistent estimates due to residual terms (E( �R2(xi;xjxit = x) 6= 0). The same problemfollows under analogous �rst di�erences estimators. But a double weighting of �rst di�e-rences eliminates the bias (KÖNIG 2002,61�). We de�ne the product kernel from period tand t-1 K(xit � xh ; xi;t�1 � xh ) = K(xit � xh ) �K(xi;t�1 � xh ) =: Kit �Ki;t�1;where h is again the bandwidth. Instead of weighting with K(xit�xh ) as in a conventionaldi�erences estimator, the weight is the product of the local kernels�̂(x)D = f NXi=1 TXt=2KitKi;t�1�xit�x0itg�1 NXi=1 TXt=2KitKi;t�1�xit�yit; (40)where �xit = xit � xi;t�1 and �yit = yit � yi;t�1. This estimator is not only consistent, butalso asymptotically normally distributed with a null vector as the expected value vector and25



an asymptotic sandwich covariance matrix. A similar weighting is possible in the withinmodel. For this case KÖNIG(2002, 68) derives the following consistent estimator�̂(x)W = f NXi=1 TXt=1Kit~xit~x0itg�1 NXi=1 TXt=2Kit~xit~yit; (41)where ~xit = xit � TXt=1 KitPTt=1Kit + I[PTt=1Kit = 0]xit:Analogously ~yit is de�ned. I[�] describes an indicator function where the value is 1, if thecondition in [�] is ful�lled. Otherwise, the value is 0. Some similarities can be observed withBLUNDELL, GRIFFITH and WINDMEIJER's (2002) suggestion in count data modelswith non-strict exogenous variables. It seems plausible to note ~xit as quasi within variable.The asymptotic variances of the within estimator, which stem from a sandwich covariancematrix, are not larger than the corresponding variances of the di�erences estimator if onlytwo periods exist. If T � 3, the di�erence of the asymptotic covariances (VDIFF �VWITHIN)is positive de�nite (KÖNIG 2002, 72).Semiparametric partial linear models with �xed individual e�ects can be described byyit = ~m(x) + x0it�(x) + z0it + �i + ~�it;where ~�it = �it+R(xit; x), ~m(x) = m(x)�x0�(x). The individual term �i may be correlatedwith xit and zit. The nonparametric term m(xit) is developed by a Taylor series. In this casethe problem of the parameter estimation () persists also in the conditional expected valueof yit E(yitjxit) = ~m(x) + x0it�(x) + E(zitjxit)0 + E(�ijxit):Di�erences, i.e. yit � E(yitjxit), eliminate the nonparametric term, but not the individualterm. Therefore, it is necessary to remove �i in the �rst step. LI and STENGOS (1996)employ a di�erences estimator of , where the estimator is weighted by the Nadaraya-Watson kernel estimator̂D = f NXi=1 TXt=2�~̂zit�~̂z0it ~̂f(xit; xi;t�1)2g�1 NXi=1 TXt=2�~̂zit�~̂yit ~̂f(xit; xi;t�1)2; (42)where ~̂f(xit; xi;t�1) is the kernel density estimator and�~̂zit = zit � zi;t�1 � [Ê(zitjxit; xi;t�1)� Ê(zi;t�1jxit; xi;t�1)].Analogously, �~̂yit is de�ned. By �rst di�erences �i disappears but not the nonparametricterm. In order to remove the di�erence ~m(xit)� ~m(xi;t�1) we additionally have to subtract thedi�erence of the expected values. If�~̂zit = zit�zi;t�1�[Ê(zitjxit; xi;t�1)�Ê(zi;t�1jxit; xi;t�1)]and the error term is correlated, �~zit has to be instrumented. KÖNIG (2002, 215) suggestsan alternative estimator without kernel weightŝD1 = f NXi=1 TXt=2�~̂zit�~̂z0itÎitg�1 NXi=1 TXt=2�~̂zit�~̂yitÎit; (43)26



where Îit = I[ ~̂m(xit; xi;t�1) > bN ] is a trimmed function and bN is a threshold valuewhere bN ! 0 follows under N ! 1. The idea of a trimmed function can be found inLI/LU/ULLAH (1996) and LI/ULLAH (1998). Again a within estimator can be formulated̂W = f NXi=1 TXt=1 TX�=1(zit � zi� � Êzit�zi� )(zit � zi� � Êzit�zi� )0Îitg�1 (44)� NXi=1 TXt=1 TX�=1(zit � zi� � Êzit�zi� )(yit � yi� � Êyit�yi� )Îitwhere Êyit�yi� = Ê(yit � yi� j xit; xi�). A further estimator goes back to BERG, LI andULLAH (2000). But this estimator is inconsistent, if xi� and zit are not independent, givenxit.MANSKI(1975, 1985, 1987) has developed nonparametric maximum score estimators forpanel data models with �xed e�ects and dichotomous endogenous variables. Further modelsand an estimator are presented by LEE (1999a) and HONORE/LEWBEL (2002). A surveyon tobit panel data models with nonparametric components which include the standard ca-se of censored endogenous variables, selection models and censored multivariate models canbe found in KYRIAZIDOU (1995,1997)and HONORE/KYRIAZIDOU (2000). They alsodevelop some new variants, which do not require the parametrization of the distribution ofthe unobservables. However, it is necessary that the explanatory variables are strictly exo-genous. Therefore, lagged dependent variables as regressors are excluded. KYRIAZIDOU(1997) obtains values near zero by di�erences between pairs of observations, because pairswith a large di�erence obtain small weights. HONORE (1992) suggests trimmed least abso-lute deviation and trimmed least squares estimators for truncated and censored regressionmodels with �xed e�ects. He exploits the symmetry in the distribution of the latent variablesand �nds that when the true values of the parameters are known, trimming can transmit thesame symmetry in distribution to observed variables. One can de�ne pairs of residuals thatdepend on the individual e�ect in exactly the same way, so that di�erencing the residualseliminates the �xed e�ects.3.4 Models with sample attritionDAS (2004) presents a two-step nonparametric random e�ects panel data model with sampleattrition where the linear part is omitted. The model isyit = m(xit) + uit uit = �i + �itdit = I(vt(xi1; :::; xit; wit)� �it > 0) =: I(vt(zit � �it) > 0)�it = �i + ~�it; (45)where zit = (xi1; :::; xit; wit), x and w are vectors of covariates. The latter may containelements of x. The attrition indicator is dit where dit=1, if there is no attrition. The outcomevariable can only be observed if d=1. It is assumed that dit; xit and wit are completely27



observable. The individual e�ects in the outcome and in the attrition function (�i; �i), arei.i.d. The error terms �it and ~�it are time varying and may be autocorrelated. Furthermore,it is assumed that E(uitjxi1; :::; xit) = 0. Under some weak restrictions the nonparametricterm is identi�ed, up to a constant, as an additive component of each ht(xt; pt) where ht(�)is de�ned byE(yitjzit; dit = 1) = m(xit) + �t(pit)= m(xit) + gi1�i1(pi1) + :::+ giT�iT (piT ) =: ht(xit; pit)and pit =: pt(zit) = E(ditjzit) = P (dit = 1jzit)E(uitjzit; dit = 1) =: �t(pit):This is a generalization of HECKMAN's (1979) sample selection term.The �rst step consists of obtaining estimates of probabilities pit by a nonparametric proce-dure. Simple LS estimates of d0i = (di1; :::; diT) are given by�̂ = ( 1N NXi=1 rL(zi)rL(zi)0)�1( 1N NXi=1 rL(zi)di) (46)and p̂i = rL(zi)0�̂: (47)Let rLt(zit) = (r1Lt(zit); :::; rLtLt(zit))0represent a vector of approximating functions for pt(zit).The second step is a nonparametric estimation of yit on v̂ = (x0it; p̂)0. First̂ = 1N NXi=1 b̂KT (v̂i)b̂KT (v̂i)0)�1( 1N NXi=1 b̂KT (v̂i)yi (48)is determined and ĥ(v̂it) = b̂K(v̂it)0̂ (49)follows, where b̂KT (v̂i) = (b̂K(v̂i1); :::; b̂K(v̂iT )), bK(v̂i1) = dit� (v̂it)bK(v̂it), � (v̂) = QJj=1 �(� lj �vj � � uj ), 0 < � lj < � uj < 1, � lj and � uj are prespeci�ed constants and J = dim(v). Thedependence of b̂K(v̂it) on dit implies that possibly di�erent subsets on the N observationscontribute to the regression for each t.Second, the estimation of the nonparametric term yieldsm̂(xit) = KXk=1 ̂kbkK(xit): (50)A sandwich estimator is suggested to determine the covariance matrix.28



4 Concluding remarksMany new methods to estimate panel data models were developed in the past. The focusin this paper was directed on multilevel and nonlinear models. As the functional form ofnonlinearity is usually unknown nonparametric estimates are corollary. Nowadays severalmethods are implemented in conventional packages such as STATA or S-PLUS, but othersstill require programming. In contrast to linear �xed e�ects panel data models, it is moredi�cult to manage the individual term in combination with a nonparametric term. Conven-tional di�erences and within estimators do not help to eliminate the latter. There do notexist uniform methods of nonlinear models. We have only speci�c estimation methods forseveral forms of nonlinearity and the results depend on the assumptions. While estimationof random e�ects panel data models is based on a fully speci�ed model in which one candetermine all the quantities of interest, �xed e�ects panel data models typically result inthe estimation of some �nite dimensional parameter from which one cannot calculate allfunctions of the distribution. Nevertheless, progress can also be observed in the estimationof �xed e�ects panel data models. Estimates of random e�ects models are usually moree�cient. But very often the violation of the distributional assumptions yields inconsistentestimates. Fixed e�ects models make fewer assumptions and they react less sensitively toviolations of the assumptions. Random e�ects models are usually preferable for prediction.In future we have to analyze more completely the dynamic character of the panel datamodels. Almost nothing is known about nonlinear models with lagged dependent variables.Furthermore, non- and semiparametric methods should also be applied to multilevelmodels.In many situations it seems advantageous to start with nonparametric estimates. However,the next step would be to derive more fully speci�ed parametric models based on the resultsof the �rst step.
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