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1 Introduction

Empirical likelihood (EL), proposed by Owen (1988, 1990), makes possible likelihood-based

statistical inference without a specified distribution for the data. For independent data, the

method generates a nonparametric likelihood that shares many qualities associated with para-

metric likelihood, such as limiting chi-square distributions for log-likelihood ratios [cf. Hall

and La Scala (1990), Qin and Lawless (1994)]. Owen (2001) describes further properties and

applications of EL, where much research has focused on EL with independent observations.

The aim of this paper is to extend EL inference to dependent data, which could exhibit either

weak or potentially strong forms of dependence. We show that EL inference on the process

mean is possible for a large class of time series, which we next detail.

Let Z denote the set of integers. We assume that the data (Y1, . . . , Yn) represent a real-

ization from a strictly stationary process {Yt}, t ∈ Z, with mean µ and an integrable spectral

density function f(λ), |λ| ≤ π, that satisfies

f(λ) ∼ Cd|λ|−2d, as λ → 0, (1)

for some d ∈ (−1/2, 1/2) and positive constant Cd > 0 (where ∼ denotes that the ratio of

two terms equals one in the limit). There then exists a process {εj} of uncorrelated random

variables with mean E(εj) = 0 and variance 0 < E(ε2
j ) < ∞ such that {Yt} has a moving

average representation of the form [Chapter 16.7, Ibragimov and Linnik (1971)]:

Yt = µ +
∑

j∈Z
bjεt−j , t ∈ Z, (2)

where the constants {bj} fulfill 0 <
∑

j∈Z b2
j < ∞. When d = 0, we refer to the process {Yt}

as weakly or short-range dependent (SRD). The process {Yt} will be called strongly or long-

range dependent (LRD) if d > 0. For d < 0, the process shall be termed “anti-persistent.”

This classification of {Yt} as SRD or LRD depending on the value of d is common, in which

long-range dependence (LRD) entails a pole of f at the origin [Hosking (1981), Beran (1994)].

Formulations of weak dependence based on mixing assumptions often imply the d = 0 case of

short-range dependence (SRD).

Kitamura (1997) has proposed a blockwise EL method for weakly dependent time series

satisfying a mixing condition to ensure SRD. This method applies the Owen (1990) formu-

lation of EL to observational blocks rather than individual observations. As described in

Kitamura (1997), blockwise EL involves data blocking techniques used successfully by other
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nonparametric likelihood methods for handling weak dependence, such as the block bootstrap

and subsampling procedures [Carlstein (1986), Künsch (1989), Politis and Romano (1993)].

However, blocking methods developed for SRD can often fail under LRD and require care-

ful modification. For example, the moving block bootstrap of Künsch (1989) and Liu and

Singh (1992) is known to break down under forms of LRD [Lahiri (1993)]. The block-based

subsampling methods of Politis and Romano (1993) and Hall and Jing (1996), also developed

for weak dependence, must be significantly reformulated for variance estimation with LRD

[Hall, Jing and Lahiri (1998), Nordman and Lahiri (2005)]. Since the blockwise EL of Kita-

mura (1997) also involves data blocking intended for SRD, one might expect strong dependence

to create complications with this version of EL as well. Indeed, our results indicate that this

blockwise EL formulation can break down under either LRD or anti-persistence, partially be-

cause the usual standardization
√

n(Ȳn − µ) of a size n sample mean Ȳn might fail to produce

a non-degenerate limit.

This paper finds that an adapted version of Kitamura’s (1997) EL is applicable for confi-

dence intervals with time processes exhibiting very different kinds of dependence structures.

We give a modified blockwise EL method for interval estimation of the process mean that is

valid for SRD or LRD linear time series satisfying (1). This EL approach also has an advantage

over confidence intervals based directly on the sample mean Ȳn in that estimation of Var(Ȳn)

is not required. In the weak dependence case (e.g., d = 0), we establish results on blockwise

EL for the mean in a manner alternative to Kitamura (1997), which does not involve mixing

conditions to quantify the decay rate of the process {Yt} covariances.

The rest of the paper is organized as follows. Section 2 details some background necessary

for the main results, including the blockwise EL construction and the assumptions. The

limiting distribution of a blockwise EL ratio under LRD is given in Section 3 and a method of

setting EL confidence intervals for the process mean is proposed. Section 4 provides simulation

studies of these EL confidence intervals and numerical comparisons to other confidence interval

procedures. Section 5 contains proofs of the main results.

2 Preliminaries

To describe the main results, we first review the blockwise EL of Kitamura (1997) in Section 2.1

and outline our assumptions in Section 2.2. In Section 2.3, we also relate some distribution
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properties of the sample mean Ȳn to the behavior of blockwise EL ratios under LRD.

2.1 Construction of blockwise empirical likelihood for the mean

We give an EL function for the process mean E(Yt) = µ following the blockwise formulation

given in Kitamura (1997) with a maximally overlapping version of blocking. Let 1 ≤ ` ≤ n

be the block length and define blocks B`
i = (Yi, . . . , Yi+`−1), 1 ≤ i ≤ N ≡ n − ` + 1. Let

M`i =
∑i+`−1

j=i Yj/` denote the sample mean of the ` variables in B`
i , 1 ≤ i ≤ N .

To assess the plausibility of a value for the mean parameter, we assign probabilities {pi}N
i=1

to each block sample mean {M`i}N
i=1 to develop a multinomial likelihood function,

∏N
i=1 pi.

The profile blockwise EL function for µ is given by

Ln(µ) = sup

{
N∏

i=1

pi : pi > 0,
N∑

i=1

pi = 1,
N∑

i=1

piM`i = µ

}
(3)

where we maximize the product in (3) over distributions or probabilities {pi}N
i=1 on {M`i}N

i=1

with expectation µ. The function Ln(µ) is positive for µ ∈ ( min
1≤i≤N

M`,i, max
1≤i≤N

M`,i) and outside

of this interval we may define Ln(µ) = −∞. When positive, Ln(µ) represents a maximum

realized at unique weights pi = N−1{1 + λµ(M`i − µ)}−1 where λµ ∈ R is determined by

0 =
N∑

i=1

M`i − µ

1 + λµ(M`i − µ)
≡ gµ(λµ). (4)

Owen (1988, 1990) discusses these and further computational aspects of EL.

Without the “mean µ” linear constraint in (3), the product
∏N

i=1 pi is maximized when

each pi = N−1, corresponding to the empirical distribution of {M`i}N
i=1. The profile empirical

likelihood ratio for the mean µ is then given by

Rn(µ) =
Ln(µ)
NN

=
N∏

i=1

{1 + λµ(M`i − µ)}−1 (5)

and a confidence interval for the mean is determined by those values of µ with relatively high

EL, namely, intervals of the form

{µ : Rn(µ) ≥ A}, (6)

where A > 0 is chosen to obtain a desired confidence level.

A key feature of EL with independent data is that it allows a nonparametric casting of

Wilks’s theorem for constructing confidence regions [Wilks (1938)], meaning that the logarithm

of the EL ratio has an asymptotic chi-square distribution when evaluated at the true parameter
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value [cf. Owen (1988, 1990)]. Kitamura (1997) first showed a similar result applies to the

blockwise EL with weakly dependent mixing processes. In Section 3.1, we give the asymptotic

distribution of the EL ratio in (5) for SRD and LRD linear time processes fulfilling (1), as

required for calibrating the confidence intervals in (6).

2.2 Time process assumptions

We require the following assumptions for proving the our EL results. For two sequences {sn},
{tn} of nonzero numbers, we write sn ∼ tn to denote limn→∞ sn/tn = 1.

Assumptions:

(A.1). The strictly stationary process {Yt}, t ∈ Z, has a spectral density as in (1). For

0 < |d| < 1/2, the process autocovariances r(k) = Cov(Yt, Yt+k), k ∈ Z satisfy

r(k) ∼ CdRd · k−(1−2d), as k →∞, (7)

with the constant Cd from (1) and some real Rd 6= 0; if d = 0, then f is bounded on every

compact subinterval of (0, π].

(A.2). The random variables {εj} in (2) are independent and identically distributed (iid).

(A.3). As n → ∞, the block length conditions hold: `−1 + `2/n = o(1) and if E(Yt) = µ0

denotes the true process mean, then the standardized block means satisfy

(
`

n

)1/2−d

max
1≤i≤N

|M`i − µ0|√
VarM`1

p−→ 0, (8)

where
p−→ denotes convergence in probability.

The process assumptions in (A.1)-(A.2) encompass many types of time series used for

describing both SRD and LRD, including two important models for LRD: the fractional Gaus-

sian processes of Mandelbrot and Van Ness (1968) and the fractional autoregressive integrated

moving average (FARIMA) models of Adenstedt (1974), Granger and Joyeux (1980) and Hosk-

ing (1981).

When d > 0, we assume the covariances of the LRD process decay very slowly so that

the sum of autocovariances
∑∞

k=1 r(k) diverges, whereas the process covariances sum to zero
∑

k∈Z r(k) = 0 when d < 0. Under Assumption (A.1), the behavior of f in (1) and the

autocovariance decay in (7) are closely related when d 6= 0. If the covariances r(k) are positive
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and strictly decreasing [Bingham et al. (1987), p. 240] or quasimonotonically convergent to zero

[Robinson (1995a), p. 1634], then (1) and (7) are equivalent for prescribing LRD (d > 0). In

the context of log-periodogram regression for d 6= 0 for example, it is not uncommon to assume

(1) and (7) both hold with Rd = 2Γ(1 − 2d) sin(dπ), where Γ(·) denotes the gamma function

[cf. Robinson (1995b), Theorem 1]. If Rd has this form, the autocovariance representation (7)

implies the limit of f in (1) for the case d < 0 [Robinson (1995a), p. 1634]; when d > 0, if f is

of bounded variation on compact subintervals of (0, π], then the pole of f in (1) implies that

(7) holds with Rd as above [(2.24.V) of Zygmund (1968)].

By our condition for SRD under (A.1) (i.e., d = 0), we assume that a finite, positive limit

limn→∞ n−1
∑n

k=1(n− k)r(k) exists but we do not explicitly require the absolute summability

of the covariances
∑∞

k=1 |r(k)| < ∞, which is a slightly stronger assumption that is often used

to categorize SRD.

Assumption (A.3) is a general and mild formulation of block length conditions, which are

often stated in terms of the process moments. It holds, for example, if E|Yt|q < ∞ for some

q > 2/(1 − 2d) with a corresponding block length ` = O(n1/2−1/q(1−2d)); when d = 0, this

formulation matches a blocking assumption of Kitamura (1997) for blockwise EL under SRD.

For any block ` with `−1 + `2/n = o(1), condition (8) also follows if E|Yt|q < ∞ for an even

integer q ≥ 4/(1− 2d) (see Section 5, proof of Theorem 2).

2.3 Asymptotic distribution of the sample mean and related issues

To help motivate a theory for EL under LRD, we review some differences in the behavior of the

sample mean Ȳn =
∑n

i=1 Yi/n of SRD and LRD data (Y1, . . . , Yn). Theorem 1 describes how

the correct scaling an for the standardized sample mean (Ȳn−µ)/an to have a limit distribution

depends crucially on the dependence parameter d in (1). In the following, denote convergence

in distribution by d−→.

Theorem 1 Let {Yt}, t ∈ Z be a process which satisfies Assumption (A.1), d ∈ (−1/2, 1/2).

(a) As n →∞, n1−2dVar(Ȳn) → Vd > 0, where Vd = CdRd/{d(1+2d)} if d 6= 0 and V0 = 2πC0

for d = 0.

(b) Let a2
n = n−1+2dVd. If Assumption (A.2) holds in addition, then (Ȳn − µ)/an

d−→ Z as

n →∞, where Z denotes a standard normal random variable.
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Remark: For d > 0, the result in Theorem 1(a) is well-known and follows from the covariance

decay in (7) [Taqqu (1977), Lemma A2]; Theorem 1(b) follows from part (a) due to Davy-

dov (1970) and Theorem 18.6.5 of Ibragimov and Linnik (1971).

Under SRD, the variance Var(Ȳn) of the sample mean decays at the usual O(1/n) rate

associated with iid data. However, under LRD or anti-persistence, the decay rate of Var(Ȳn)

may be slower or faster than O(1/n), which implies that the usual
√

n scaling of the sample

mean
√

n(Ȳn − µ) may fail to produce a limit distribution. This aspect of LRD complicates

inference on the process mean E(Yt) = µ based on either the sample mean Ȳn or data blocking

techniques developed for SRD, such as the block bootstrap, subsampling and even the blockwise

EL in Kitamura (1997) [cf. Lahiri (1993), Hall, Jing and Lahiri (1998)].

To recognize potential problems with blockwise EL under LRD, it is helpful to detail some

mechanics behind the method with SRD. For inference on the process mean E(Yt) = µ, Ki-

tamura (1997) explains that the non-blocking version of EL fails under SRD by neglecting

the data dependence structure (i.e., using individual observations) which causes the variance

Var(Ȳn) of a sample mean to be improperly estimated. To be more precise, under suitable con-

ditions [Owen (1989) with iid data; Kitamura (1997) under mixing; Theorem 2 in Section 3.1],

the logarithm of the blockwise EL ratio in (5) may be expanded as

−2 log Rn(µ) =
(Ȳn − µ)2

Var(Ȳ`)/N
(
1 + op(1)

)
. (9)

The Var(Ȳ`) term appears because, in the inner mechanics of the blockwise EL, the collection

of smaller length ` < n data blocks is used to estimate the variance Var(Ȳ`) of a size ` sample

mean. While a block length ` = 1 is appropriate for (9) to have a chi-square limit with an iid

process Yt (i.e., N = n, Var(Ȳ`) = Var(Y1)), this is not generally true under data dependence.

However, the blockwise EL of Kitamura (1997) permits correct variance estimation under weak

dependence (d = 0) by exploiting the following property of SRD processes:

Var(Ȳn)
Var(Ȳ`)

∼ `

n
(10)

for time series lengths `, n → ∞, `/n → 0. Hence, under SRD the denominator of (9) can be

re-scaled for inference on the full size n sample mean by (10): Var(Ȳn) ∼ (`/n)Var(Ȳ`). As

a consequence, blockwise EL statistics in Kitamura (1997) require adjustments involving n/`.

Note that, under SRD, subsampling techniques provide similar block-based variance estimates
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of Var(Ȳn) using (10) [Politis and Romano (1993)]. However, we see from Theorem 1 that (10)

may fail outside of the SRD case which implies the blockwise EL of Kitamura (1997) must be

modified for LRD.

3 Blockwise empirical likelihood under long-range dependence

3.1 Limit distribution of empirical likelihood ratio

We now give the asymptotic distribution of the blockwise EL ratio in (5) for a general class

of SRD or LRD time processes fulfilling (1). As in the EL framework of Kitamura (1997),

we require a block correction factor to ensure our EL ratio has a non-degenerate limit. Write

Bn = N−1(n/`)1−2d for the block adjustment term.

Theorem 2 Suppose {Yt}, t ∈ Z satisfies Assumptions (A.1)-(A.3). If E(Yt) = µ0 denotes the

true process mean, then as n →∞,

−2Bn log Rn(µ0)
d−→ χ2

1 (11)

where χ2
1 denotes a chi-square random variable with 1 degree of freedom.

In the case of SRD with d = 0 in (1), the block adjustment factor Bn reduces to the

one (n/`)N−1 used by Kitamura (1997) [p. 2089] for weakly dependent processes. However,

we find that a blocking adjustment Bn that is appropriate for SRD or LRD must generally

incorporate the dependence exponent d from (1).

The EL ratio in Theorem 2 involves maximally overlapping blocks, but the result also holds

with another common blocking scheme involving non-overlapping blocks given by B`
i,NOL

=

B`
1+`(i−1) for 1 ≤ i ≤ NNOL ≡ bn/`c, where bn/`c represents the smallest integer not exceeding

n/`. Theorem 2 then follows upon substituting NNOL for N and using block sample means

from B`
i,NOL

, 1 ≤ i ≤ NNOL, in (5).

3.2 Empirical likelihood confidence intervals for the mean

When the dependence structure is unknown, we require a consistent estimator of d in the block

adjustment Bn without rigid model assumptions and several such estimators d̂n are available

based on the periodogram (see Section 3.3). Provided with an estimator d̂n of d, we use (11)
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to set an EL confidence interval for the process mean µ. Namely, an approximate two-sided

100(1− α)% confidence interval for µ, of the form (6), is given by

In(1− α) =
{

µ ∈ R : −2B̂n log Rn(µ) ≤ χ2
1;1−α

}
, B̂n = N−1(n/`)1−2d̂n , (12)

where χ2
1;1−α represents the 1 − α percentile of a χ2

1 random variable, 0 < α < 1. One-sided

approximate 100(1−α)% lower/upper confidence bounds for µ correspond to the lower/upper

endpoints of the interval In(1−2−1α). Under mild consistency conditions on d̂n, the above EL

interval has asymptotically correct coverage for any dependence type d under (1), as detailed

in Theorem 3.

Theorem 3 Suppose {Yt}, t ∈ Z satisfies Assumption (A.1)-(A.3) and the estimator d̂n of

d ∈ (−1/2, 1/2) fulfills |d̂n − d| log n
p−→ 0. If E(Yt) = µ0 denotes the true process mean, then

as n →∞,

P
(
µ0 ∈ In(1− α)

)
−→ 1− α.

EL confidence intervals for the mean µ have an advantage over intervals set immediately

with Ȳn under Theorem 1 because direct variance estimation of Var(Ȳn) is not needed. That

is, an approximate 100(1− α)% confidence interval based on a normal approximation

Ȳn ±
z1−α/2

n1/2−d

√
CdRd

d(1 + 2d)
, Rd =





2Γ(1− 2d) sin(dπ) d 6= 0

2π d = 0,
(13)

would require at least estimation of the constant Cd in (1) in addition to an estimate of

the exponent d. (Above z1−α/2 denotes (1 − α/2) percentile of a standard normal and we

assume a form for the covariance decay in (7).) However, semi-parametric estimates for Cd,

which do not require strong assumptions on f , are known to be less accurate (i.e., slower

convergence rates) than corresponding estimators for d, as in the case of log-periodogram

regression [Robinson (1995b)].

The “sampling window” (SW) method of Hall, Jing and Lahiri (1998) is another nonpara-

metric method for confidence interval estimation that uses a data-blocks [see Nordman and

Lahiri (2005) for the SW applied to linear processes]. Both the EL and SW methods require

a block length choice ` as well as a second tuning parameter related to variance estimation.

Specifically, the EL approach requires an estimate of d (avoiding direct estimation of Var(Ȳn))

while the SW procedure requires a parameter [θ ∈ (0, 1) in Hall, Jing and Lahiri (1998)] for a

device to directly estimate Var(Ȳn) based on data-blocks. A potential advantage to estimating
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d in the EL approach, rather than Var(Ȳn) directly, is greater precision in the resulting confi-

dence intervals for linear time processes satisfying (1); numerical studies in Section 4 support

that EL intervals are usually much shorter than SW intervals for such processes. However, the

EL method is not immediately applicable whenever the sample mean of the underlying time

process has a non-normal limit (as the EL method involves chi-square calibrations), while the

SW may be valid. Hall, Jing and Lahiri (1998) consider the SW for a class of transformed

processes producing non-normal limits for Ȳn.

3.3 Estimation of d

For the EL interval in (12), we describe two possible frequency domain estimators d̂n for the

dependence parameter d. Define the periodogram In(λ) = (2πn)−1|∑n
t=1 Yte

λt
√−1|2, λ ∈ [0, π]

and let m be a bandwidth parameter such that m →∞,m/n → 0 as n →∞.

The popular Geweke-Porter-Hudak (GPH) estimator of d is found by a regression of the

log-periodogram against the first m Fourier frequencies:

d̂GPH
m,n =

∑m
j=1(gj − ḡ) log(In(λj))∑m

j=1(gj − ḡ)2
,

where ḡ =
∑m

j=1 gj/m with gj = −2 log |1 − eλj
√−1|, λj = 2πj/n, j = 1, . . . , m [Geweke and

Porter-Hudak (1983)]. Consistency of the estimator, with a rate of convergence (d̂GPH
m,n − d) =

Op(m−1/2), can be obtained without knowledge of the distribution of the data generating

process [Robinson (1995b), Hurvich et al. (1998)]. However, because the representation (1)

of the spectral density holds only near the origin, a trade-off between the bias and variance

of d̂GPH
m,n must be made in choosing the optimal bandwidth m. Whereas Geweke and Porter-

Hudak(1983) proposed m = n1/2, which is still used in many applications, Hurvich et al. (1998)

showed that a bandwidth m = O(n4/5) is mean squared error (MSE)-optimal.

A second possibility for d̂, proposed by Künsch (1987), is the so-called Gaussian semipara-

metric estimator (GSE) or local Whittle estimator

d̂GSE
m,n = argmin

d∈[−1/2+ε,1/2−ε]
log


 1

m

m∑

j=1

λ2d
j In(λj)


− 2d

m

m∑

j=1

log(λj),

involving a small fixed ε > 0. Robinsion (1995a) established particularly mild conditions for

the consistency of d̂GSE
m,n at a rate m−1/2 in probability. Compared to the GPH estimator that

only requires a linear regression, the GSE is more complicated to compute but, under certain
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conditions, its asymptotic variance Var(d̂GSE
m,n ) ∼ 1/(4m) is smaller relative to Var(d̂GPH

m,n ) ∼
π2/(24m), as n →∞. The MSE-optimal bandwidth for d̂GSE

m,n is also known to be m = O(n4/5)

[Andrews and Sun (2004)].

See Moulines and Soulier (2003) for further theoretical properties of d̂GPH
m,n , d̂GSE

m,n and for

other possible estimators of d.

4 Numerical studies

4.1 Coverage accuracy of one-sided EL bounds

We first conducted a simulation study of the finite-sample coverage accuracy of one-sided

blockwise EL confidence bounds. The design and results of the study are next described.

4.1.1 Simulation parameters

Let {Ỹt}, t ∈ Z, represent a FARIMA(0, d, 0) series

Ỹt =
∞∑

j=0

Γ(j + d)
Γ(j + 1)Γ(d)

εt−j , (14)

involving iid (mean zero) innovations {εt}, t ∈ Z and the gamma function Γ(·). To examine

the performance of the EL method for several time series fulfilling (1), we considered FARIMA

processes Yt = ϕYt−1 + Ỹt + ϑỸt−1, t ∈ Z, formed with one of the following ARMA filters,

innovation distributions and d values:

• ϕ = ϑ = 0 (Filter 1); ϕ = −0.3, ϑ = 0.1 (Filter 2); ϕ = 0.7, ϑ = −0.3 (Filter 3);

• {εt} in (14) has a standard normal or t−distribution with 3 degrees of freedom;

• d = −0.1, 0, 0.1, 0.25, 0.4.

The processes {Yt} above fulfill (1) with various decay rates d based on innovations that may

be Gaussian or non-Gaussian with heavy tails. Each process also has mean zero E(Yt) = 0.

We obtained size n time stretches (Y1, . . . , Yn) from each FARIMA series above by using a

sample Ỹn = (Ỹ1, . . . , Ỹn) from the process (14) as the innovations in the appropriate ARMA

model. Gaussian samples Ỹn were simulated by the circulant embedding method of Wood and

Chan (1994) with FARIMA(0, d, 0) covariances [see Beran (1994)], whereas non-Gaussian Ỹn

were generated by truncating the moving average expression in (14) after the first M = 1000
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terms and then using n + M independent t−variables to build an approximate truncated

series [see Bardet et al (2003), p. 590 for details]. The sample sizes considered were n =

100, 500, 1000.

For each process and sample size, we calculated lower and upper approximate 95% one-

sided confidence bounds with the blockwise EL method from (12) using overlapping blocks of

length ` = C1n
0.4, C1 ∈ {1/2, 1, 2} as well as the two estimators d̂GPH

m,n and d̂GSE
m,n of d from

Section 3.3 with bandwidths m = C2n
0.8, C2 ∈ {1/8, 1/4, 1/2, 1}. (All applications of the GSE

were automated with a minimization over |d| < 0.499.) The order of the block length was

selected as a compromise between size O(nτ ) blocks, τ ≤ 1/3, (optimal for subsampling and

block bootstrap methods under SRD [Hall and Jing (1996)]) and size O(n1/2) blocks chosen

for subsampling methods under LRD [Hall, Jing and Lahiri (1998)]. (Repeating the simulation

study with ` = C1n
0.5 did not change the results significantly.) Coverage probabilities for the

EL confidence bounds for the process mean µ = 0 were approximated by an average over 1000

simulation runs for each process and sample size n.

4.1.2 Summary of results: one-sided EL bounds

It suffices to summarize numerical findings only for the upper confidence bounds, as the lower

bounds closely matched the upper bounds in performance at each level combination in the

study. Figures 1-3 display the coverage accuracy of upper 95% EL confidence bounds for the

mean of processes based on t and Gaussian innovations; the graphics are differentiated by the

estimator of d (GPH/GSE) used with the same two bandwidths m = n0.8/4 or n0.8/2.

Based on the results, we make some observations on the effects of the following factors:

• d estimator: There are generally few differences in the EL coverage accuracies across

GSE and GPH estimators.

• innovation type: The EL intervals perform similarly for both t-distributed and Gaussian

innovations, except for the case d = 0.4 where Gaussian innovations appear to have lower

coverage probabilities. (See also Table 2 for this behavior.)

• bandwidth m: Performance differences in bandwidths m = n0.8/4 or n0.8/2 appear only

with Filter 3, which introduces a high positive autoregressive component. For this filter,

the EL confidence bounds become conservative when m = n0.8/2 and perform better with

a shorter bandwidth m = n0.8/4. Because a process with a high positive autoregressive
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coefficient can mimic long memory, a shorter bandwidth may help to refine estimation

of the memory exponent d in this situation as the influence of the short memory com-

ponent (most apparent for large frequencies) is down weighted by this strategy. For a

discussion of the bias problem of the log-periodogram estimator in presence of additional

short memory, see Davidson and Sibbertsen (2005). The EL coverage accuracies with

bandwidths m = C2n
0.8, C2 ∈ {1/2, 1}, were comparable throughout the study, as were

m = C2n
0.8, C2 ∈ {1/8, 1/4}.

• block length `: The coverage probabilities for the blockwise EL bounds tend to decrease

slightly as the block sizes increase. This behavior is most apparent with the smallest

sample size n = 100 and also under the strongest forms of LRD d = 0.4. The smaller

block sizes ` = C1n
0.4, C1 ∈ {1/2, 1}, seem to yield the most accurate EL intervals.

• sample size n: With the smallest sample size n = 100, the coverage accuracy of the EL

bounds quickly deteriorates as the memory parameter d increases. This type of behavior

is well-known in location estimation with strong LRD processes due to the persistence of

the series [cf. Beran (1994)], so that a size n = 100 sample may be too small for inference

in these cases. However, the coverage probabilities of EL intervals became closer to the

nominal level as the sample sizes increase and the accuracy is often quite good even for

a sample size of n = 500.

The simulation evidence here indicates that a block size ` = C1n
0.4, C1 ∈ {1/2, 1}, along

with GPH estimator of d with bandwidth m = n0.8/4, may be recommended for the coverage

accuracy of the blockwise EL confidence bounds for the process mean. The performance of

the EL method generally depends on the strength of the underlying dependence structure, but

improves with increasing sample sizes.

It is presently unclear if an optimal block size ` exists for the blockwise EL intervals (12).

Under weak dependence, optimal block lengths are available for implementing some block-

based methods, such as the block bootstrap [cf. Lahiri (2003), Chapter 7]. However, more

research on block lengths is required both with blockwise EL and with strong dependence.

4.2 Comparisons with other procedures: two-sided confidence intervals

We next compared the performance of the EL method to two other confidence interval proce-

dures for the process mean µ: the normal approximation interval from (13) and the sampling

12



window (SW) method of Hall, Jing and Lahiri (1998).

For the EL method, we chose the GPH estimator of d with a bandwidth of m = n0.8/4 and

a block length ` = n0.4/2 or n0.4. For the SW approach, we considered block lengths ` = n0.5/2

or n0.5 with a smoothing parameter θ = 0.8, as suggested by numerical studies in Hall, Jing

and Lahiri (1998) and Nordman and Lahiri (2005). For the normal approximation intervals in

(13), we used the GSE method for d and Cd which guarantees estimates in the parameter space

(-1/2,1/2) of the long-memory parameter; the GPH estimator performed poorly in comparison

with the normal approximation intervals, especially for processes involving d = 0.4 in our

simulations. The bandwidth for the GSE was set to m = n0.8/4, which seemed to produce the

best overall intervals with the normal approximation.

Using iid standard normal and centered chi-square χ2
1 − 1 (with one degree of freedom)

innovations {εt} in (14), we simulated the FARIMA processes described in Section 4.1.1. For

each of the three interval procedures above, we computed coverage probabilities for two-sided

90% confidence intervals as well as the average length of the intervals, based on 1000 simulation

runs for each process and sample size n = 500, 1000. In addition, where Gaussian innovations

were used, we considered two non-linear transformations:

Filter 4: Y 3
t,1 Filter 5: sin(Yt,3)

using the Gaussian innovation-based FARIMA processes generated under filter 1 (denoted Yt,1)

and filter 3 (denoted Yt,3). The sample mean Ȳn also has a limiting normal distribution for

these transformed Gaussian processes which have a Hermite rank of 1 [Taqqu (1975)]. The

results with Gaussian innovations are presented in Tables 1-2 and chi-square innovations in

Table 3.

To summarize our findings on the performance differences of the three methods:

• No one single confidence interval procedure emerges as clearly superior. The perfor-

mances of the methods often depend on the process filter used as well as strength d of

the process dependence.

• Generally, EL intervals tend to error on the side of anti-conservatism while SW intervals

tend to be conservative. In many instances in Tables 1 and 3, the coverage inaccuracies

of both EL and SW methods are of a similar degree, with the coverage probabilities for

EL intervals falling below the nominal 90% level by an amount similar to which coverage

probabilities of SW intervals fall above 90%. In the extreme cases in Table 1, the coverage
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accuracy of EL intervals drop far below the nominal level for Processes 1 or 4 exhibiting

the strongest forms of LRD (d = 0.25, 0.4), while the SW method performs much better;

at the same time, the SW intervals are extremely conservative intervals for Processes 3

and 5, while the EL intervals perform better.

• Related to the point above, the expected length of two-sided EL intervals is usually much

shorter than SW intervals (often half as long on average). This supports the differing

behaviors in the coverage probabilities of both methods. However, in instances where

both SW and EL methods exhibited similar coverage (see Table 3 for example), the EL

intervals are still much shorter.

• From Tables 2 and 3, the normal approximation intervals generally tend to be much more

anti-conservative than the EL method. In addition, as the long memory component d

increases, the expected lengths of the normal approximation intervals explode, perhaps

due to instabilities in directly substituting estimates of d into (13).

The EL method generally offers large improvements upon confidence intervals set by the normal

approximation. The EL approach also appears to be competitive with the SW method for the

linear processes considered here. A benefit of the EL approach, compared to the SW, seems

to be much shorter confidence intervals. The trade-off is that EL intervals generally exhibit

coverage inaccuracies in terms of undercoverage, as opposed to the more conservative SW

method.

5 Proofs

For the proofs, we denote the positive integers as N and use C to denote a generic positive

constant that does not depend on n.

5.1 Proof of Theorem 1(a)

When d > 0, the result is standard and follows from the covariance decay in (7) [Lemma A2 of

Taqqu (1977)]. When d = 0, we use the nonnegative Fejer kernel Kn(λ) = (2πn)−1
∑n

j=−n(n−
|j|)ejλ

√−1, |λ| ≤ π, to write

nVar(Ȳn)− 2πC0 = 2π

∫ π

−π
Kn(λ)

[
f(λ)− C0

]
dλ,
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Table 1: Coverage probabilities of approximate two-sided 90% confidence intervals for µ = 0

based on EL and SW methods for various block lengths `; expected length of intervals denoted

beneath. EL method uses GPH estimator with m = n0.8/4 and ` = C1n
0.4; SW method uses

θ = 0.8 and ` = C1n
0.5. Filtered processes based on standard normal innovations, with filters

4, 5 based on transformations.

d = −0.1 d = 0 d = 0.1 d = 0.25 d = 0.4

C1 n filter EL SW EL SW EL SW EL SW EL SW

1 83.3 96.3 84.8 96.5 83.9 95.0 83.5 92.9 79.4 89.5
0.1 0.2 0.18 0.35 0.32 0.63 0.84 1.51 1.78 3.22

3 93.7 99.5 93.2 98.5 93.3 99.1 94.6 97.8 92.1 94.3
0.62 1.7 1.19 2.84 2.47 4.87 6.02 11.26 9.99 21.87

4 82.1 93.6 84.0 95.6 83.3 92.5 77.6 86.9 67.3 78.3
1/2 500

0.49 1.18 0.7 1.59 1.12 2.21 2.71 4.99 5.79 14.58

5 88.4 99.8 90.5 99.2 86.6 99.3 85.7 99.1 90.9 100.0
0.22 0.75 0.28 0.94 0.28 0.99 0.27 0.97 0.35 1.5

1 84.3 95.9 85.9 97.0 86.4 96.4 83.8 95.5 83.3 90.2
0.06 0.13 0.11 0.26 0.23 0.52 0.67 1.53 1.71 3.7

3 92.2 99.6 93.8 99.2 94.5 98.7 95.9 97.9 95.6 95.8
0.36 1.17 0.76 2.19 1.58 4.05 4.94 10.41 10.4 23.94

4 84.9 97.2 84.4 96.6 85.3 96.0 81.4 89.2 68.1 84.1
1/2 1000

0.33 0.94 0.45 1.27 0.75 1.97 2.13 4.56 5.75 16.32

5 90.4 99.7 92.6 99.1 89.4 99.3 85.0 98.7 91.3 99.6
0.14 0.46 0.18 0.59 0.2 0.69 0.19 0.66 0.24 0.96

1 83.5 96.1 85.2 95.4 85.1 93.8 83.7 94.8 77.9 88.9
0.09 0.19 0.17 0.35 0.31 0.64 0.78 1.63 1.54 3.43

3 92.5 99.5 94.2 99.0 93.7 97.1 93.1 96.8 88.7 92.7
0.63 1.48 1.17 2.6 2.23 4.52 5.24 10.56 8.43 19.61

4 83.2 96.4 82.5 94.4 80.0 93.2 79.1 87.6 63.3 82.5
1 500

0.49 1.2 0.65 1.55 1.01 2.26 2.33 4.83 4.66 14.21

5 91.6 98.1 90.4 98.9 87.7 98.0 88.2 97.5 91.6 99.4
0.23 0.57 0.28 0.73 0.28 0.77 0.27 0.76 0.35 1.1

1 87.0 94.8 87.4 93.2 84.8 92.1 85.1 91.1 82.3 85.6
0.06 0.11 0.11 0.21 0.22 0.43 0.65 1.23 1.57 2.91

3 93.4 97.8 95.4 96.9 95.8 97.3 96.0 95.5 91.6 90.5
0.37 0.78 0.74 1.43 1.56 2.73 4.51 6.95 9 15.84

4 85.9 93.1 86.7 93.3 83.9 93.2 80.9 85.8 69.6 77.9
1 1000

0.32 0.62 0.45 0.86 0.71 1.48 1.92 3.23 4.89 10.07

5 92.0 96.9 92.7 98.0 88.1 97.5 87.5 96.6 91.9 97.1
0.14 0.32 0.18 0.4 0.2 0.44 0.19 0.43 0.24 0.57
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Table 2: Coverage probabilities of approximate two-sided 90% confidence intervals for µ = 0

based on normal approximation method (using GSE with m = n0.8/4); expected length of

intervals denoted beneath. Filtered processes based on standard normal innovations.

n = 500 n = 1000

d −0.1 0 0.1 0.25 0.4 −0.1 0 0.1 0.25 0.4

1 76.7 75.9 77.8 77.1 74.3 77.9 77.4 74.9 76.9 79.2
0.07 0.12 0.23 1.14 13.32 0.04 0.08 0.16 0.47 8.03

3 87.6 92.8 91.3 93.3 95.6 89.1 90.7 90.9 94.0 96.6
0.47 0.93 3.29 52.19 191.88 0.29 0.56 1.21 13.99 181.87

4 76 75.3 71.6 70.0 69.6 76.4 75.9 76.5 71.8 67.9

filter

0.35 0.47 0.68 2.76 20.68 0.23 0.32 0.51 1.21 8.33

5 83.9 84.1 81.1 78.5 85.1 87.2 85.5 82.9 79.7 86.5
0.17 0.21 0.22 0.20 0.28 0.11 0.14 0.15 0.14 0.18

Table 3: Coverage probabilities of approximate two-sided 90% confidence intervals for µ = 0

based on EL, SW and normal approximation methods; expected length of intervals denoted

beneath. EL method uses GPH estimator with m = n0.8/4 and ` = n0.4; SW method uses

θ = 0.8 and ` = n0.5; normal approximation intervals use the GSE with m = n0.8/4. Filtered

processes based on centered chi-square χ2
1 − 1 innovations.

d = 0 d = 0.25 d = 0.4

n filter NORM EL SUB NORM EL SUB NORM EL SUB

1 77.0 83.6 95.0 77.2 84.8 95.4 82.7 85.6 94.8
0.17 0.23 0.59 1.2 1.11 2.64 19.41 2.24 5.43

2 75.8 84.9 94.9 75.2 81.8 94.5 84.2 85.9 92.6
0.14 0.2 0.47 1.26 0.92 2.21 15.83 1.88 4.55

500

3 91.1 94.1 97.9 93.1 95.0 97.6 98.1 94.1 95.4
1.63 1.7 4.17 73.37 7.66 16.21 281.17 12.27 30.69

1 77.4 87.3 94.9 81.1 86.7 94.9 88.1 91.6 94.5
0.12 0.16 0.35 0.68 0.94 2.02 12.47 2.27 4.72

2 78.7 86.4 93.8 79.7 86.9 94.5 88.0 92.1 93.6
0.1 0.14 0.27 0.56 0.78 1.61 10.25 1.92 3.9

1000

3 90.7 95.5 97.6 95.3 96.3 96.9 98.7 98.1 95.2
0.83 1.07 2.29 18.72 6.18 11.11 254.14 13.1 24.65
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since
∫ π
−π Kn(λ)dλ = 1. For a fixed 0 < δ ≤ π, it holds that |f(λ) − C0| is bounded on

δ ≤ |λ| ≤ π and
∫
δ≤|λ|≤π Kn(λ)dλ → 0 as n → ∞ [Brockwell and Davis (1987), Section 2.11]

so that

lim sup
n→∞

|nVar(Ȳn)− 2πC0| ≤ 2π sup
0<|λ|≤δ

|f(λ)− C0|. (15)

Letting δ → 0, the righthand side above converges to zero by (1), establishing the case d = 0.

When d < 0, we use (7) and
∑

k∈Z r(k) = 0 to deduce that

A1n ≡
n∑

k=−n

r(k) = −2
∞∑

k=n+1

r(k) ∼ CdRd

d
n2d, A2n ≡ 2n−1

n∑

k=1

kr(k) ∼ 2CdRd

1 + 2d
n2d,

as n → ∞ by Lemma A2 of Taqqu (1977). Since nVar(Ȳn) = A1n − A2n, Theorem 1(a) now

follows for d < 0. 2

5.2 Proof of Theorems 2 and 3

To prove Theorem 2, we require some preliminary results. For LRD/SRD linear processes with

bounded innovations, Proposition 1 implies that block means at distant lags are asymptotically

uncorrelated, based on a condition suggested by Hall, Jing and Lahiri (1998), Theorem 2.4.

Proposition 1 Suppose `−1 + `/n = o(1) and {Yt}, t ∈ Z, satisfies the conditions of Theo-

rem 1(b) with bounded innovations, i.e., P (|εt| ≤ C) = 1 for some C > 0. Then, for any

integers a, b ∈ N ∪ {0} and 0 < ε < 1,

max
nε≤i≤n

∣∣∣E
[
a−a

` (M`1 − µ)a · a−b
` (M`i − µ)b

]
− E(Za) · E(Zb)

∣∣∣ = o(1), as n →∞,

where M`i =
∑i+`−1

j=i Yj/`, i ≥ 1, E(Yt) = µ, and Z is a standard normal variable.

Proof of Proposition 1. The case d > 0 is treated in Lemma 2 of Nordman and Lahiri (2005)

which requires Var(Ȳn)/Var(Ȳ`) = (`/n)1−2d = o(1) and n2Var(Ȳn) → ∞. Using the same

arguments, the cases d = 0 and d < 0 follow with a modification to show (for the a = b = 1

situation) that ∆n,ε ≡ maxnε≤i≤n |Cov(M`1,M`i)|/a2
` = o(1) holds for a fixed 0 < ε < 1. When

|d| > 0, we may use (7) and Theorem 1(a) to show

∆n,ε ≤ C`1−2d max
nε≤i≤n

max
|j|≤`

|r(i + j)| = O
(
(`/n)1−2d

)
= o(1).
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When d = 0 and a2
` = 2πC0`

−1 by Theorem 1(a), we have with the Fejer kernel K` that

Cov(M`1,M`i)
a2

`

=
1
C0

∫ π

−π
K`(λ) · e(i−1)λ

√−1
[
f(λ)− C0

]
dλ, i > `,

holds since
∫ π
−π K`(λ) · e(i−1)λ

√−1dλ = 0 for i > `; then, ∆n,ε = o(1) follows as ` → ∞ from

the same argument as in (15) using |e(i−1)λ
√−1| = 1, |λ| ≤ π, i ∈ N. 2

Proposition 2 Suppose `−1 + `/n = o(1) and {Yt}, t ∈ Z, satisfies Theorem 1(b) conditions

with E(Yt) = µ. Let M̄nµ = N−1
∑N

i=1(M`i − µ) and â2
`µ = N−1

∑N
i=1(M`i − µ)2. As n →∞,

(a) M̄nµ/an
d−→ Z, a standard normal variable;

(b) â2
`µ/a2

`

p−→ 1;

(c) P
(

min
1≤i≤N

M`i < µ < max
1≤i≤N

M`i

) → 1.

Proof of Proposition 2. Noting that the first and last ` observations in (Y1, . . . , Yn) con-

tribute less to M̄nµ, we may write NM̄nµ = n(Ȳn − µ) −Hn where `Hn =
∑`

j=1(` − j)(Yj +

Yn−j+1−2µ) =
∑`−1

i=1

∑i
j=1(Yj +Yn−j+1−2µ). Using Holder’s inequality and n2a2

n = n1+2dVd,

n ∈ N, we find

E(H2
n) ≤ 4

`

`−1∑

i=1

Var




i∑

j=1

Yj


 = O

(
1
`

`−1∑

i=1

i2a2
i

)
= O

(
`1+2d

)
= o(n2a2

n)

so that (nan)−1Hn
p−→ 0 follows. Then applying Slutsky’s theorem with Theorem 1(b) and

n/N → 1, we have the distributional result for M̄nµ/an in Proposition 2(a).

To prove Proposition 2(b), let E(ε2
t ) = σ2 and denote the indicator function as I{·}. For

each c ∈ N and t ∈ Z, define variables εt,c = εtI{|εt| ≤ c} − E(εtI{|εt| ≤ c}) and Yt,c =

µ +
∑

j∈Z bj(σεt−j,c/σc), where w.l.o.g. σ2
c = E(ε2

t,c) > 0. For each n, c, i ∈ N, write analogs

M`i,c =
∑i+`−1

j=i Yj,c/` and â2
`µ,c = N−1

∑N
i=1(M`i,c − µ)2 with respect to Y1,c, . . . , Yn,c. The

processes {Yt} and {Yt,c} have identical means µ and covariances because each series involves

the same linear filter with iid innovations of mean 0 and variance σ2. Since E|â2
`µ − â2

`µ,c| ≤
E|{(M`1 − µ) + (M`1,c − µ)}(M`1 −M`1,c)| holds, we may apply Holder’s inequality to show

that for each c ∈ N,

E|â2
`µ − â2

`µ,c| ≤ 4Var(Ȳ`){1− σ−1
c σ−1E(εtεt,c)}1/2, (16)

using Var(Ȳ`) = Var(M`1) = Var(M`1,c) and Var(M`1−M`1,c) = Var(Ȳ`) ·Var(σ−1εt−σ−1
c εt,c)

by the iid property of the innovations. For each c ∈ N, we find that E(â2
`µ,c) = Var(Ȳ`) ∼ a2

` and,
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through applying Proposition 1, that Var(â2
`µ,c) = o(a4

`) follows as in the proof of Theorem 2.5

of Hall, Jing and Lahiri (1998). From this and (16), we deduce that

lim sup
n→∞

E

∣∣∣∣∣
â2

`µ

a2
`

− 1

∣∣∣∣∣ ≤ lim sup
n→∞

1
a2

`

{
E|â2

`µ − â2
`µ,c|+

[
Var(â2

`µ,c)
]1/2 + |E(â2

`µ,c)− a2
` |

}

≤ 4{1− σ−1
c σ−1E(εtεt,c)}1/2

for each c ∈ N. Because limc→∞ σ−1
c E(εtεt,c) = σ, â2

`µ/a2
`

p−→ 1 now follows in Proposition 2(b).

For x ∈ R, let Φ(x) = P (Z ≤ x) denote the distribution function of a standard normal Z

and define Φ̂n(x) = N−1
∑N

i=1{(M`i − µ)/a` ≤ x}. Fix δ > 0. To show Proposition 2(c), it

suffices to prove that if δ′ = δ or −δ, then Φ̂n(δ′) p−→ Φ(δ′) as n → ∞, since 0 < Φ(±δ) < 1.

Using Proposition 1, it can be shown that limn→∞ E|Φ̂n(δ′)−Φ(δ′)| = 0, for δ′ = ±δ, following

the proof of Theorem 1 of Nordman and Lahiri (2005). 2

Proof of Theorem 2. Applying Lemma 2(c) with µ = µ0, we find P (Rn(µ0) > 0) → 1 as

n → ∞ so that, with probability approaching 1 as n → ∞, Rn(µ0) can be written as in (5)

with probabilities pi = N−1{1 + λµ0(M`i − µ0)}−1, 1 ≤ i ≤ N , where gµ0(λµ0) = 0 in (4).

Let Znµ0 = max1≤i≤N |M`i − µ0|. Since Var(M`1) ∼ a2
` = `−1+2dVd, we find that

a−2
` an · Znµ0 = op(1), (17)

using (8) by assumption. We remark that, when `2/n = o(1) and E|Yt|q < ∞ for an even

integer q ≥ 4/(1− 2d), the random variable in (8) is bounded by

(
`

n

)1/2−d

n1/q

(
1
n

N∑

i=1

(M`1 − µ0)q

{Var(M`1)}q/2

)1/q

= o(n−1/4+d/2+1/p)Op(1) = op(1),

where Op(1) follows for the sum by using E(M`1−µ0)q ≤ C{Var(M`1)}q/2 (by Assumption (A.2)

and lemma 4, Davydov (1970)) with Markov’s inequality.

Let M̄nµ0 = N−1
∑N

i=1(M`i − µ0) and â2
`µ0

= N−1
∑N

i=1(M`i − µ0)2. Similar to step (2.12)

of Owen (1990), it follows from gµ0(λµ0) = 0 in (4) that

|λµ0 | = Op(an/a2
`), (18)

using (17) with |M̄nµ0 |/â2
`µ0

= Op(an/a2
` ) from Proposition 2.

Define θi = λµ0(M`i − µ0) for 1 ≤ i ≤ N . The equation 0 = gµ0(λµ0) can be solved for

λµ0 = (M̄nµ0 + Inµ0)/â2
`µ0

, where Inµ0 = N−1
∑N

i=1 θ2
i (M`i − µ0)/(1 + θi) satisfies

|Inµ0 | ≤ |λµ0 |2Znµ0 â
2
`µ0

max
1≤i≤N

|1 + θi|−1 = op(an),
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by (17)-(18), Proposition 2(b), and max1≤i≤N |θi| ≤ |λµ0 |Znµ0 = op(1). When |λµ0 |Znµ0 < 1,

a Taylor expansion gives log(1 + θi) = θi − θ2
i /2 + νi for each 1 ≤ i ≤ N where

|νi| ≤ |λµ0 |3Znµ0(M`i − µ0)2(1− |λµ0 |Znµ0)
−3. (19)

Using this expansion of log(1 + θi), 1 ≤ i ≤ N , in (5) along with the expression for λµ0 and

Bn = N−1a−2
n a2

` , we now write

−2Bn log Rn(µ0) = Q1n −Q2n + Q3n,

where Q1n = (a−1
n M̄nµ0)

2/(a−2
` â2

`µ0
) d−→ χ2

1 by Proposition 2; Q2n = (a−1
n Inµ0)

2/(a−2
` â2

`µ0
) =

op(1) applying |Inµ0 | = op(an); and for Q3n = −2Bn
∑N

i=1 νi, we may bound

|Q3n| ≤ Bn

N∑

i=1

|νi| ≤ 2a2
`a
−2
n |λµ0 |3Znµ0 â

2
`µ0

(1− |λµ0 |Znµ0)
−3 = op(1)

by (19). Theorem 2 follows now by applying Slutsky’s theorem. 2

Proof of Theorem 3. From Theorem 2 and ` = O(n) by assumption, it suffices to show

B̂n/Bn = (n/`)2(d−d̂n) p−→ 1, which follows from |d− d̂n| log(n)
p−→ 0. 2
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Figure 1: t-innovations: Coverage percentages for approximate 95% one-sided upper EL con-

fidence bounds using GPH estimator with bandwidth m = C2n
0.8, C2 ∈ {1/4, 1/2}.
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Figure 2: t-innovations: Coverage percentages for approximate 95% one-sided upper EL con-

fidence bounds using GSE with bandwidth m = C2n
0.8, C2 ∈ {1/4, 1/2}.
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Figure 3: Gaussian-innovations: Coverage percentages for approximate 95% one-sided upper

EL confidence bounds using GPH estimator with bandwidth m = C2n
0.8, C2 ∈ {1/4, 1/2}.
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