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Abstract

We derive the well-known continuity principle for adjoint variables
for preannounced or anticipated changes in parameters for continuous-
time, infinite-horizon, perfect foresight optimization models. For easy
and intuitive numerical computation of the resulting multi point bound-
ary value problem we suggested to simulate the resulting differential
algebraic system representing the first order conditions. By ensuring
that the state variables and the adjoint variables are continuous, poten-
tial jumps in the control variables are calculated automatically. This
can be easily conducted with the relaxation algorithm as proposed by
Trimborn et al. (2007). We solve a Ramsey model extended by an
elementary Government sector numerically. Simulations of a prean-
nounced increase in the consumption tax show a qualitative different
pattern depending on the intertemporal elasticity of substitution.
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1 Introduction

Dynamic macroeconomic theory very often assumes the agents in the model

to experience perfect foresight. For example, a representative consumer

maximizes discounted utility subject to his or her budget constraint over

an infinite horizon. Then, it is assumed that at the point of time when

the maximization takes place, the maximizing agent is aware of the whole

set of information. For example, the agent knows the future time path of

variables that are exogenous to him. Then, following Bellman’s principle,

the decisions are time-consistent, that is, at a later point of time the same

solution is optimal if the set of information did not change.

Changes in the underlying parameters, e.g. tax rates or preference pa-

rameters are frequently analyzed by assuming a sudden, immediate shock.

More precisely, at a specific point of time, say t0, new parameter values are

applied and the optimizing agent experiences this information at exactly

the same point of time. Then, he or she can optimize over the remaining

time horizon. Since the point of time of the shock and the point of time of

the information propagation coincide, i.e. the shock is not preannounced or

anticipated, control variables can jump at t0. State variables cannot jump

at t0 by construction.1

This simplifying assumption is very useful to analyze e.g. policy measures

in a stylized way, however, in some cases it may be oversimplifying. The

reason is that usually the time of the parameter changes and the information

propagation to the agent do not coincide. For example, policy measures are

usually announced some time before they take place. Therefore, the stylized

analysis of unexpected shocks cannot take account for anticipatory actions

conducted by the agents. In addition, the shock might comprise a schedule

of policy measures, which do not enter into force simultaneously.

It is straightforward to state necessary conditions in the context of opti-

1For the analysis of anticipated shocks with jumps in the state variables see Vind (1967)
and Auernheimer and Lozada (1990).
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mal control, which have to hold at points of anticipated shocks. This is the

familiar requirement of continuity for adjoint variables, also known as the

first Weierstrass-Erdmann corner condition. However, they do not imply

that control variables are continuous. Since control variables are only re-

quired to be piecewise continuous, they can potentially jump twice, first at

the point of the announcement, and second at the point where the parameter

change actually takes place. Requirement of continuity for adjoint variables

determines the height of the jump under weak regularity assumptions which

we will state below.

In a second step, we describe how numerical computation can be con-

ducted efficiently. We propose the relaxation algorithm as described by

Trimborn et al. (2007) (in the following TKS) to simulate continuous-time,

infinite horizon optimization models with preannounced shocks. The algo-

rithm allows to solve expected shocks without any a priori information about

the behavior of the model at the time of the parameter change. Only the

dynamic system has to be provided together with the underlying parameters

and their change along time. Moreover, the size of the jump in the control

variables is calculated automatically. This is illustrated by employing the

Ramsey-Cass-Koopmans model as a concise example.

The analysis of preannounced policy measures in the context of per-

fect foresight optimizing agents has a long tradition. The continuity of

adjoint variables (or market prices like asset prices) has already been ex-

ploited in many cases (e.g. Judd, 1985, Howitt and Sinn, 1989, Turnovsky,

1996, Ch. 11). However, to our knowledge no formal derivation and analysis

of this condition has been made in the economic literature. Moreover, no

attempt has been made so far to construct algorithms which can solve these

kind of problems in a generic way.2

In Section 2, we investigate the treatment of expected shocks in the con-

text of optimal control theoretically. In Section 3, we describe the numerical

2Buiter (1984) describes how to solve the linearized problem.
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implementation of expected shocks. In Section 4, we present the Ramsey-

Cass-Koopmans model as a concise example. In Section 5 we conclude.

2 Theoretical investigation of expected shocks

Consider an agent who solves an infinite-horizon, perfect-foresight, continuous-

time, optimal control problem3

max
u

∫

∞

t0

f(t, x, u)dt (1)

s.t. ẋ = g(t, x, u), x(0) = x0

whereas x denotes a nx dimensional state variable and u a nu dimensional

control variable. The functions f and g are, for the time being, assumed to

be continuously differentiable functions in all three arguments. We assume

that x is a continuous function of time, i.e. x cannot jump. On the other

hand, u is only assumed to be a piecewise continuous function of time, i.e. u

can exhibit interior jumps.

Consider a continuous change in a parameter or a variable exogenous to

the agent. In problem (12) these parameters and variables are caught by

the time arguments of f and g. That means a change in a parameter or

exogenous variable along time causes a change of f and g along time. Due

to perfect foresight the agent is aware of this time dependence.4 Then, an

anticipated shock in terms of a jump in a parameter after t0 yields discon-

tinuities in f and g.

For the analysis of expected shocks we follow Bryson and Ho (1975,

pp. 101). First of all, the set of differential equations switches at, for the

time being, an unspecified point of time t̃ > t0.

ẋ = g(1)(t, x, u) t < t̃

3The following theoretical analysis as well as the numerical implementation is not tied
to an infinite time horizon. However, in many cases infinite time horizon models are
applied in marcoeconomics.

4However, the agent is not aware that potentially his decisions influence variables
exogenous to him.
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ẋ = g(2)(t, x, u) t ≥ t̃

Analogously, f changes its functional form at t̃ from f (1) to f (2). We fix

the point of time where the jump in the parameter occurs with an interior

boundary condition:

ψ[t̃] = t̃− tjump = 0

Now, the transformed optimization problem is

max
u,t̃

[

∫ t̃

t0

f (1)(t, x, u)dt +

∫

∞

t̃

f (2)(t, x, u)dt

]

(2)

s.t. ẋ = g(1)(t, x, u) t < t̃ (3)

ẋ = g(2)(t, x, u) t ≥ t̃

x(0) = x0 (4)

t̃− tjump = 0 (5)

with tjump denoting the (numerical) time value where the jump occurs. Note,

that now t̃ has become part of the optimization problem. Necessary con-

ditions for optimal solution are, employing Pontryagins Maximum principle

(see Pontryagin et al., 1962) with the usual Hamiltonian H = f + λT g,

Hu = 0 (6)

Hλ = ẋ (7)

Hx = −λ̇ (8)

together with the initial conditions (4) and transversality conditions5

lim
t→∞

λ(t)x(t) = 0 . (9)

Since g and f are defined piecewise before and after t̃, these conditions

have to be applied piecewise. They have to be augmented by additional

5There is disagreement if this equation is indeed a necessary condition (see e.g. Chiang,
1992). We do not want to adress this point.
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necessary conditions, which carry the information about the behavior at

t̃. These conditions are derived from the interior boundary condition (see

Bryson and Ho, 1975, pp. 101)6

λ(t̃−) = λ(t̃+) (10)

H(t̃−) = H(t̃+) − ν (11)

whereas ν is a constant Lagrangian multiplier associated with the interior

boundary condition. Note, that these equations require λ to be continuous,

whereas H jumps at the particular point of time when the jump in the

parameter takes place.

Equation (11) is the only equation where the multiplier ν appears. It

equals the jump in the Hamiltonian at time t̃. Therefore, the set of equations

and variables can be solved without equation (11), after which (11) trivially

determines ν.

The problem at hand comprises 2 · nx differential equations and nu al-

gebraic equations, together with nx initial conditions and nx transversality

conditions as well as 2·nx interior boundary conditions. The latter comprise

nx conditions requiring x to be continuous and nx conditions requiring λ to

be continuous. Note first, that locally the dynamic behavior of the system

can implicitly be described by 2 · nx differential equations in coordinates

(λ, x) if Hu exhibits no singularity with respect to u.7 For the system (2) to

possess a unique solution it has to exhibit a nx dimensional stable manifold

around the stationary equilibrium or the stationary equilibria.8 Applying

Bellman’s principle, we know that at time t̃ the solution has to be on this

stable manifold. This results in a well defined two point boundary value

6Bryson and Ho (1975) explicitly address discontinuities in g but not in f . However,
their proof also allows for discontinuities in f . Therefore, the extension is straightforward.

7This follows from the implicit function theorem. We assume the differential algebraic
system to be of differential index one. Higher order differential algebraic systems exhibit
a far more complex behavior (e.g. Ascher and Petzold, 1998, Ch. IV, 9). If ∂Hu

∂u
exhibits

full rank, the system is of index one.
8Some economic models exhibit a center manifold of stationary equilibria (e.g. Lucas,

1988). For transitional dynamics around this manifold see e.g. Hirsch et al. (1977).
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problem for the time interval [t0, t̃] and for the time interval [t̃,∞). For

both intervals, the 2 · nx differential equations together with nu algebraic

equations have to hold. The nx initial boundary conditions for the first

two point boundary value problem are (4) and the nx final boundary condi-

tions are represented by the requirement to be on the nx dimensional stable

manifold at t̃. For the second two point boundary value problem nx initial

boundary conditions are the requirement to start on the stable manifold,

whereas nx final boundary conditions are represented by the transversality

conditions (9). Since initial and final boundary conditions of both problems

are linked, this is labeled as a three point boundary value problem in the

mathematic literature.

Statements about necessary or sufficient conditions for existence and

uniqueness of solutions of two-point-boundary value problems are in no case

as advanced as the theory of initial value problems (see Ascher and Petzold,

1998, Ch. III, 6). If the linearized system exhibits a unique solution it is at

least possible to conclude that the original system exhibits a unique solution

locally. However, it is beyond the scope of this paper to prove uniqueness

of the linearized system. Necessary conditions for the existence of a unique

solution comprise the dimension of the boundary conditions to add up to the

dimension of the dynamic system. This is fulfilled here for both intervals,

[t0, t̃] and [t̃,∞).

If a finite sequence of expected shocks is given, the same arguments

as above can be applied. The resulting problem can be decomposed in a

sequence of two point boundary value problems, each of which exhibits nx

initial and nx final boundary conditions. Then the problem turns into a

multi point boundary value problem.
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3 Numerical implementation

There exists a rich economic literature how to solve infinite horizon maxi-

mization problems numerically (see TKS, Judd, 1998, or Brunner and Stru-

lik, 2002 for a survey). Many approaches employ the first order conditions

derived by Pontryagin’s maximum principle for finding the solution, together

with the initial conditions and transversality conditions (e.g. Judd, 1992,

Brunner and Strulik, 2002, Mulligan and Sala-i-Martin, 1991, or TKS).9

Then, the approach comprises the solution of a two point boundary value

problem (e.g. Judd, 1992, and TKS), or the problem is transformed into a

(stable) initial value problem (e.g. Brunner and Strulik, 2002 and Mulligan

and Sala-i-Martin, 1991). However, the simulation of anticipated shocks

transforms the two point boundary value problem into a multi point bound-

ary value problem. Therefore, it is not straightforward to employ the ex-

isting solution algorithms. In the former case, the algorithms at hand can-

not incorporate arbitrary internal boundary conditions without undergoing

fundamental modifications. In the latter case, it is no longer possible to

transform the problem into a single stable initial value problem.

In the mathematic literature it is suggested to reformulate the multi

point boundary value problem into a two point boundary value problem

to make it accessible for standard algorithms (see Ascher et al., 1985, and

Ascher and Russell, 1981). However, we suggest to solve the multi point

boundary value problem directly, which is straightforward if the relaxation

algorithm as proposed by TKS is used. The advantage is that this proceeding

is easy and intuitive, and it is not necessary to transform the system. The

disadvantage is merely that the efficiency in terms of calculation requirement

of the algorithm reduces slightly.

The special property of the multi point boundary value problem at hand

is that the internal boundary conditions are fulfilled, if the variables λ and

9Exceptions are e.g. Mercenier and Michel (1994 and 2001), and Candler (1999).
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x are forced to be continuous along the solution whereas no restrictions re-

garding u are made. The relaxation algorithm perfectly exploits this fact,

since the algorithm exactly demands this property from differential and al-

gebraic variables.10 More precisely, the principle of relaxation is to replace

the differential equations by approximate finite difference equations on a

mesh of points in time. The residuum of the algebraic equations is mini-

mized at every mesh point separately. Therefore, the relaxation algorithm

treats differential and algebraic variables conceptually different. Whereas no

connection along time is made for algebraic variables, differential variables

are connected along time through difference equations. Therefore, algebraic

variables can exhibit jumps, whereas differential variables have to be con-

tinuous but potentially can exhibit corners.11 In case the solution indeed

exhibits corners along the time path of the differential variables, the em-

ployed discretization rule decreases from second to first order. This means

that by increasing the number of mesh points by factor x the global error

reduces by x, while in case the solution does not exhibit corners the global

error reduces by x2.

In the economic literature, very often the set of algebraic equations is

differentiated with respect to time and the adjoint variables λ are eliminated

(see e.g. the analysis of the Lucas (1988) model by Caballe and Santos

(1993) or Benhabib and Perli (1994)). In many cases, this eases economic

interpretation, as well as numerical computation.12 However, this is not

advisable here, because differential equations for the control variables can

only be applied piecewise. Since jumps can occur at internal points it would

then be necessary to specify the height of each jump. This is, however,

not possible without information about the adjoint variables. Therefore we

10We refer to differential variables as variables for which differential equations are
present (i.e. λ and x) whereas the time derivative of algebraic variables does not appear
in the set of equations (i.e. u).

11For a more precise description of the relaxation algorithm see TKS.
12Many algorithms cannot solve differential algebraic systems, and by eliminating the

adjoint variables the dimensionality of the problem is kept small.
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suggest to simulate system (6), (7), and (8) together with the boundary

conditions and ensure that x and λ are continuous.

So far, we assumed that the differential algebraic system is scaled, i.e. the

variables approach constant (finite) values in the long run. This may not be

the case, for example if the model at hand is an endogenous growth model.

For numerical computation the variables have to be scaled or detrended such

that they approach constants in the long run. One possibility of scaling the

system is to transform it into a system consisting of ratios of variables. If

each ratio is constructed of variables that exhibit the same balanced growth

rate, the resulting system of artificial variables is scaled. If ratios are created

it has to be ensured that the time path of the differential variables remains

continuous. That is, only combinations of different x and λ can be chosen for

creating artificial differential variables. By contrast, arbitrary ratios can be

created as algebraic variables. We recommend the scale adjustment as pro-

posed by Lucas (1988), since continuous variables conserve their properties

after scaling the system in this way.

To summarize, the relaxation algorithm can solve infinite horizon prob-

lems exhibiting anticipated shocks conveniently, since it solves the multi

point boundary value problem directly. This is done by implementing the

continuous variables as differential variables and the possible jumping vari-

ables as algebraic ones. The only input the user has to provide are the time

dependent parameter values.13

4 A simple example

4.1 Description of the Model

To illustrate the numerical solution of infinite-time optimization models with

preannounced shocks, we employ the Ramsey-Cass-Koopmans model (Ram-

sey, 1928; Cass, 1965; Koopmans, 1965) as an example. For reasons of clar-

13Using the supplemented software this can be done by stating an if -clause.
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ity, we keep the model as simple as possible. We omit technological progress

and assume the population to grow with constant rate n. We follow Barro

and Sala-i-Martin (2004, Chapter 3) and introduce proportional taxes on

wage income, τw, private asset income, τr, and consumption, τc. Thus the

representative household’s maximization problem is

max
c

∫

∞

0

c1−σ − 1

1 − σ
e(n−ρ)tdt (12)

s.t. k̇ = (1 − τw)w + (1 − τr)rk − (1 + τc)c− nk

whereas c denotes consumption per capita, k the capital stock per capita,

w the wage rate, r the interest rate, σ the inverse of intertemporal elasticity

of substitution, and ρ the discount factor, respectively.

The government is assumed to run a balanced budget. Therefore, gov-

ernment revenues equal total outlays. However, we assume that government

spending appears nowhere else in the economy.14 Firms produce according

to a Cobb-Douglas production function.

Y = KαL1−α

whereas Y denotes the output, K the capital stock, L the amount of la-

bor employed in production, and α the elasticity of capital in final-output

production, respectively.

Since perfect competition in factor markets is assumed, firms pay the

factors according to their marginal product.

r = αkα−1
− δ

w = (1 − α)kα

Turning back to the representative household optimization problem we now

consider an anticipated change in the tax rates at time t̃ > t0. This means

14Alternatively, it could be assumed that government spending increases consumer util-
ity, whereas households exhibit a additively separable utility function, or government
revenues are spend on transfers to households. Since both alternative assumptions do not
contribute anything to the topic discussed in this paper we chose the simplest assumption.
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that at t̃ the consumer’s budget constraint changes its functional form and

potentially exhibits a jump on the right hand side.

k̇ =

{

(1 − τw,1)w + (1 − τr,1)rk − (1 + τc,1)c− nk t < t̃

(1 − τw,2)w + (1 − τr,2)rk − (1 + τc,2)c− nk t ≥ t̃

For simplicity, we do not distinguish between τi,1 and τi,2 below, but denote

the tax rates with a time index to indicate that different values have to be

applied before and after t̃. Then, the Hamiltonian is15

H =
c1−σ − 1

1 − σ
+ λ((1 − τw,t)w + (1 − τr,t)rk − (1 + τc,t)c− nk) (13)

Necessary conditions for an optimal solution are

c−σ = λ(1 + τc,t) (14)

λ̇ = (ρ− n)λ− λ((1 − τr,t)r − n) (15)

k̇ = (1 − τw,t)w + (1 − τr,t)rk − (1 + τc,t)c− nk (16)

together with

λ(t̃−) = λ(t̃+) (17)

H(t̃−) = H(t̃+) − ν . (18)

From the firm’s sector we additionally have two algebraic equations for

the factor prices, which we can substitute into the capital accumulation

equation. Note, that for the derivation of the familiar Euler-Equation

ċ
c

=
(1−τr,t)r−ρ

σ
the time derivative of c must be taken. However, c is not

necessarily differentiable at time t̃. Therefore, the Euler equation can only

be applied piecewise.

For numerical computation of expected shocks we exploit the information

that k and λ have to be continuous. Therefore, we implement them in the

15In contrast to the general derivation above we use the current-value Hamiltonian
here, since then the shadow price λ is already a stationary variable. This does not affect
conclusions about continuity, since H and λ only differ by the factor e(ρ−n)t with respect
to the present-value Hamiltonian and its multiplier.
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form of differential equations whereas we introduce c as an algebraic variable.

To summarize, the differential algebraic system is

k̇ = (1 − τw,t)(1 − α)kα + (1 − τr,t)(αk
α
− δk) − (1 + τc,t)c− nk

λ̇ = λ(ρ− (1 − τr,t)r)

c−σ = λ(1 + τc,t) .

4.2 Simulation of expected shocks

We solve the model numerically employing the relaxation algorithm as de-

scribed by TKS. Equation (19) displays that consumption will exhibit an

interior jump if and only if the consumption tax τc evolves discontinuously,

because λ must be continuous at the point of time of a preannounced shock.

As an example, we will focus on an preannounced increase of τc from 10%

to 20% at time t̃ = 20. We assume the economy to be in steady state prior

to the shock with a tax rate τc = 10%. At time zero the household expe-

riences that at time t̃ the consumption tax will increase. Therefore, it will

re-optimize its consumption plan such that consumption potentially jumps

immediately as well as at time t̃. We conduct three simulations with the

inverse of intertemporal elasticity of substitution, σ, equal to 1
2 , 1, and 2,

respectively.16 For the simulation no a priori information about the time

path of the variables or the shape of the flow is given. We choose, as an

initial guess, all variables to be constant at their steady state values. This

always leads to quick convergence.

Note, that the steady state value of k is not affected by a change in τc

while the steady state value of c is reduced by
1+τc,t̃−

1+τc,t̃+
. If the tax on con-

sumption increases, households consume less in the long run while spending

the same amount for consumption.17 Therefore, it is straightforward to ana-

16The remaining parameters and tax rates are set to α = .3, δ = .03, ρ = .02, n = .01,
τw = .4, and τk = .3, respectively.

17Households spend c(1 + τc) for consuming the amount c.
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lyze an unexpected, immediate shock at t0. In this case, consumption would

jump to its lower, new steady state value at t0 without any dynamics in

capital. This analysis holds for any feasible set of parameters.

For the case of an anticipated shock we can reason that consumption

jumps down at the preannounced time of the tax increase, t̃. It is not optimal

for the household to smooth consumption such that this jump vanishes,

which again can be seen from equation (19).
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Figure 1: Anticipated increase in τc with σ = 2

If σ is high, i.e. σ = 2, consumers have a strong preference for smoothing

consumption over time. Figure 1, (i), (ii), and (iii) display the time path of λ,

c, and k, respectively, referring to this simulation. Variables are normalized

to unity at the new steady state, whereas green crosses designate old steady
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state values. Households try to soften the drop in consumption at t̃. They do

so by abandoning consumption in the period between t0 and t̃. Figure 1, (ii)

shows that consumption drops down immediately at t0 and is decreasing in

the subsequent period until t̃. Then, it jumps down again and is approaching

the new steady state from above. Households increase savings until t̃, and

dissave after t̃, which can be seen in Figure 1, (iii). Figure 1, (iv) shows

the (c, k)-phase diagram. The economy starts initially at the green cross

and moves along the blue line to the new steady state indicated by the red

cross. Dotted lines designate jumps, whereas solid lines designate continuous

dynamics along time. Note that λ is continuously differentiable whereas k

is continuous but experiences a corner at t̃ (Figure 1, (i) and (iii)).
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Figure 2: Anticipated increase in τc with σ = .5
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Conversely, if σ is low, i.e. σ = 0.5, households do not put much empha-

sis on consumption smoothing. They are willing to accept sharp kinks in

consumption if this on the other hand yields initially higher consumption.

Figure 2, (i), (ii), and (iii) display the time path of λ, c, and k, respectively,

referring to the second simulation. Again, variables are normalized to unity

at the new steady state, whereas green crosses designate old steady state

values. In Figure 2, (ii) it can be seen that consumption jumps up at t0

and increases in the subsequent period until t̃. Then, it jumps down and

is approaching the new steady state from below. Households, therefore, ex-

ploit the fact that for the same amount spent for consumption they receive

a higher consumption before t̃ than after. They do so by dissaving before

t̃ (Figure 2, (iii)) and regain their former level of assets by saving after t̃.

Figure 2, (iv) shows the (c, k)-phase diagram. The economy starts initially

at the green cross and moves along the blue line to the new steady state in-

dicated by the red cross. Again, dotted lines designate jumps, whereas solid

lines designate continuous dynamics along time. As in the first simulation,

λ is continuously differentiable whereas k is continuous but experiences a

corner at t̃ (Figure 2, (i) and (iii)).

For σ = 1, which implies a logarithmic utility function, a third pat-

tern emerges. Then, consumption does not jump at t0 and remains in its

old steady state value. At t̃ consumption jumps down by
1+τc,t̃−

1+τc,t̃+
and the

economy is immediately in its new steady state.18 The model’s behavior

is as if households would experience an unexpected shock, since the above

mentioned counteracting effects cancel each other.

This concise example demonstrates that first of all control variables can

exhibit interior jumps. In this model, the optimal path of consumption for

households jumps at the time of the preannounces shock. To determine the

height of the jump the adjoint variables are necessary and cannot be elimi-

18We do not show simulation results for this parameter setting since all variables are
constant, despite from negligible numerical errors.
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nated from the system of differential equations. Second, it is demonstrated

that accounting for the preannounced component of shocks can bring addi-

tional theoretical insights, which cannot be derived from a stylized shock.

In this model, an analysis of the stylized shock did not show any dynamics.

Note also, that the point of the stable manifold, which the economy hits

at time t̃, cannot be derived from the phase diagram, but from numerical

computation.

5 Conclusion

We derived the well-known continuity principle for adjoint variables for pre-

announced or anticipated changes in parameters for a broad class of infinite-

horizon, perfect foresight, optimization models. For easy and intuitive nu-

merical computation of the resulting multi point boundary value problem

we suggested to simulate the resulting differential algebraic system repre-

senting the first order conditions. By ensuring that the state variable x and

the adjoint variable λ are continuous, potential jumps in the control variable

u are calculated automatically. This can be easily conducted with the relax-

ation algorithm as proposed by TKS. This algorithm treats differential and

algebraic variables conceptually different such that the requirements for sim-

ulating the multi point boundary value problem at hand are automatically

met.

The proposed algorithm was employed to solve a Ramsey model ex-

tended by an elementary Government sector. Simulations of a preannounced

increase in the consumption tax showed a qualitative different pattern de-

pending on the intertemporal elasticity of substitution.

Potential applications of this method emerge throughout in economic

fields where the reaction on preannounced policy measures is of special in-

terest in the context of perfect foresight optimizing agents.
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