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Abstract This paper presents a profit-oriented shift scheduling approach
for inbound contact centers. The focus is on systems in which multiple agent
classes with different qualifications serve multiple customer classes with dif-
ferent needs. We assume that customers are impatient, abandon if they have
to wait, and that they may retry. A discrete-time modeling approach is used
to capture the dynamics of the system due to time-dependent arrival rates.
Staffing levels and shift schedules are simultaneously optimized over a set
of different approximate realizations of the underlying stochastic processes
to consider the randomness of the system. The numerical results indicate
that the presented approach works best for medium-sized and large contact
centers with skills-based routing of customers for which stochastic queueing
models are rarely applicable.
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1 Introduction

Contact centers are the multi-channel successors of phone-based call centers.
Customers can use phone, fax, e-mail etc. to reach the agents working in
an inbound contact center in order to receive some kind of service. Contact
centers have become the prevalent instrument of customer service in many
industries. This paper treats the problem to determine shift schedules for
the different agent classes working in an inbound contact center over the
course of a day.

The first step of the traditional approach to solve this problem is to
divide the day into separate intervals, often with a length of 30 minutes.
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In the so-called stationary independent period-by-period (SIPP) approach
or variants thereof (Green et al., 2001, 2007), these intervals are treated in
isolation under the assumption that the system is never overloaded. Station-
ary queueing models are then used to determine staffing needs for each time
interval given the projected workload and a required service level. After the
staffing needs for each agent class and time interval have been determined,
one seeks the number of agents working on the different shifts to meet these
requirements at minimum cost. The last step, often called rostering, is to
assign personnel to the determined shifts.

Apart from all problems related to forecasting call arrivals (Aksin et al.,
2007, Sect. 2.1), this approach is accompanied by several problems: Firstly,
it ignores that staffing levels and hence also service levels during different
intervals are interrelated because agents work according to shifts which span
multiple intervals. This cannot be considered if requirements planning and
shift scheduling are separated into two subsequent planning steps. Secondly,
if customers are impatient, hang up and retry or unanswered e-mails are car-
ried over into subsequent intervals, the periods are also not independent as
assumed in the SIPP approach (Jiménez and Koole, 2004; Stolletz, 2007).
Thirdly, in order to use the SIPP approach, a stochastic queueing model (or
a time-consuming simulation) is required. Even the most tractable Marko-
vian models suffer from an explosion of the state space if multiple customer
and agent classes as well as retrials are considered. Only rather small call
centers with skills-based routing (SBR) can be analyzed, often under the
restrictive assumptions of Markovian queueing models (e.g. Stolletz, 2003;
Stolletz and Helber, 2004). Fourthly, even within a 30-minute period, the
call arrival rate can change significantly such that the system may hardly
reach a stationary or steady state based on the average call arrival rates for
the period.

In this paper, we assume that for the agents a set of possible shifts
is given and that for each class of agents the number of agents assigned
to each shift is sought. We allow for arrival rates to change continuously
over the day, whereas the number of agents on service can only be changed
at distinct moments in time, due to the predefined shift types. Difference
equations with time periods on the order of magnitude of a minute are
used to model system dynamics. In order to determine shift schedules, we
solve a linear mixed-integer optimization model using a standard solver.
We found that unlike in many other approaches for contact center shift
scheduling, computation times decrease as the system size increases, making
large systems particularly easy to solve. To incorporate randomness into
the model, we perform the optimization of the shift schedule over a set
of different scenarios simultaneously. This leads to a kind of simulation
optimization approach. It yields plans which are to some extent robust with
respect to the randomness of the problem. The numerical results indicate
that the method performs best for medium-sized and large call centers with
SBR. Our approach has four important features:
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Firstly, we model systems in which the unfinished workload of one in-
terval of the day is carried over to the subsequent intervals. Thus we treat
both the case of waiting customers that hang up to retry later and the case
of incoming e-mails that are served when the call volume decreases. In such
a setting, the different periods of the day cannot be treated in isolation. For
this reason, we determine staffing requirements and shift schedules simul-
taneously. Secondly, we focus on systems where multiple customer classes
are served by multiple agent classes such that a given customer class can
possibly be served by multiple agent classes and vice versa. The routing
of customers to agents is based on priorities. Both the customer and the
agent classes differ with respect to their particular operational and econom-
ical parameters. Thirdly, our stochastic integer programming approach is
completely numerical. Like a discrete-event simulation, it requires neither
a theoretical analysis of a probabilistic queueing model nor any particular
assumptions about distributions of random variables. In this paper, how-
ever, we only study the case of inhomogeneous Poisson arrivals and service
times that are independent and either deterministic or exponentially dis-
tributed. Finally, the objective is to find shift schedules that maximize the
profit from the operation, possibly subject to approximate service level con-
straints, taking into account cost and revenue of the served contacts.

We are not aware of a paper that combines all of these four features.
General reviews of the vast technical literature on call or contact centers
are given by Gans et al. (2003); Aksin et al. (2007) and, with a particular
emphasis on queueing models, by Koole and Mandelbaum (2002). The lit-
erature on staffing and shift scheduling for contact centers is quite limited
once the practically important aspects of either abandonment and retrials
or multiple customer and agent classes are considered. Stationary queueing
models or discrete-event simulations are usually used to evaluate any given
staffing level or shift schedule. In order to optimize staffing levels or shift
schedules, usually either integer programming, local search or some meta-
heuristic is applied. Apart from the above-mentioned problems of stationar-
ity, such queueing models often rely on the rather questionable assumption
of exponentially distributed processing times.

If one wants to model the waiting of multiple customer classes, the state
space of a queueing model grows exponentially. A possible remedy is to use
stationary blocking models (Franx et al., 2006) of multi-skill call centers.
However, this excludes modeling the carry-over of backlog such as unan-
swered e-mails or call retrials. A different strategy is to combine discrete-
event simulation with a cutting plane approach for integer programming
(Atlason et al., 2004, 2008). Here the idea is to find cost-minimizing staffing
levels that meet a given service level within an integer program, for exam-
ple with respect to the fraction of calls that are answered within a time
limit. In an iterative approach a discrete-event simulation is used to de-
termine whether a tentative schedule meets this service level requirement.
Otherwise, simulation is used to calculate a subgradient of the service level
function at that point. This subgradient leads to a cutting plane that is
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added to the integer program to exclude the current tentative solution from
the solution space. The problem is then solved again until all service level
requirements are met. A practical problem of this approach is that simula-
tion times increase as call volume and system size increase, and hence only
a very small example with few periods is presented in Atlason et al. (2004).
In Cezik and L’Ecuyer (2007), this approach is extended to the multi-skill
setting. However, due to the computational effort to simulate larger and
more complex systems, Cezik and L’Ecuyer (2007) study only the single pe-
riod staffing problem, as opposed to the small multi-period shift scheduling
problem considered in Atlason et al. (2004).

Avramidis et al. (2007) develop a two-stage search method to solve the
single-period staffing problem for the multi-skill case. In the first stage, a
so-called “loss-delay” approximation based on a specific overflow routing
is developed to determine analytic estimates of service levels per customer
class. This approximation is used within a neighborhood search to direct the
search to cost-efficient solutions that respect the service level constraints at
least roughly. The second stage uses a more accurate but also more time-
consuming simulation to correct a remaining infeasibility from the first stage
and/or to reduce the cost of the solution. Avramidis et al. (2007) compare
their approach to the one presented in Cezik and L’Ecuyer (2007) and con-
clude that “... none of the two methods always dominates the other...”. The
effort to simulate the call center several times is substantial and increases
with the size of the call center so that computation times can take (several)
hours for a single period.

Shift scheduling of a homogeneous call center with an overall service
level constraint is studied by Koole and Van der Sluis (2003) via local
search. Ingolfsson et al. (2003) also treat the homogenous case and combine
integer programming with the randomization (or uniformization) method
to analyze the transient behavior of the system. This approach is limited
to customer arrivals according to an inhomogeneous Poisson process and
to exponentially distributed processing times. Harrison and Zeevi (2005)
and Bassamboo et al. (2006) treat the problem to determine both a single
staffing level and a dynamic allocation of servers to activities for a time
period during which average arrival rates are uncertain and dynamic.

Bhulai et al. (2008) present a two-step approach to solve the staffing
(Step 1) and shift scheduling (Step 2) problem for multi-skill call centers of
a realistic size. In Step 1, stationary blocking models (Franx et al., 2006) of
multi-skill call centers are used to determine staffing levels for each interval.
Given these required staffing levels, shift schedules are created via integer
programming in Step 2 to meet these staffing requirements. For multi-skill
agent groups, this includes the decision which skill set is actually used in
a given period. The approach by Bhulai et al. (2008) is probably the first
practically applicable shift scheduling approach for large and heterogenous
contact centers that deals with randomness in a systematic way. However,
it suffers from the above-mentioned problem to separate the staffing level
decision from the shift scheduling decision and is therefore unable to deal
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with an intertemporal workload carry-over because of retrying customers. In
addition, it assumes an exogenously given service level. However, if calls gen-
erate revenues, it is economically beneficial to compute the time-dependent
profit-maximizing service level endogenously, even though this may not be
the current practice of call center management. Furthermore, their method
relies on assumptions about the distribution of processing times in the block-
ing model which our method does not require. On the other hand, our model
does not allow to specify the fraction of calls that are answered with a time
limit. This makes a direct quantitative comparison of the approaches dif-
ficult. However, we can impose approximate limits on the average waiting
times and the fraction of served calls.

Avramidis et al. (2007) extend the method proposed in Cezik and L’Ecuyer
(2007) to the multi-period shift scheduling problem and compare their re-
sults to those obtained by the two-stage approach presented by Bhulai et al.
(2008). Given that simulation is used iteratively with linear programming,
it is not surprising that computation times are substantial and increase with
the size of the call center. As opposed to Bhulai et al. (2008), Avramidis
et al. (2007) treat the staffing and the shift scheduling problem simultane-
ously (like we do in this paper) and report (as can be expected) solutions
that are better then those by Bhulai et al. (2008) in their more traditional
two-step approach. They do not model call retrials as we do in this pa-
per. Another both interesting and practically important difference is that
the numerical effort and accuracy of our method decreases as the size of
contact center increases.

In Henken (2007), the profit-oriented shift-scheduling problem for a con-
tact center with two customer and three agent classes is solved heuristically,
based on deterministic dynamic fluid models. This overestimates the profit
from the operation of a stochastic system and yields schedules that are not
very robust with respect to the randomness in the system. In addition, the
heuristic optimization procedure in Henken (2007) is purely profit-oriented
and does not reflect service level requirements.

The completely different approach of a commercial software package
based on “artificial intelligence” search techniques is characterized in a non-
technical way by Fukunaga et al. (2002). The details of the approach are not
revealed and the performance of this approach relative to other approaches
is not reported.

The remainder of this paper is organized as follows: In Section 2 the
contact center model is explained in detail and we outline the difference
equations that describe the dynamics of the number of customers in the sys-
tem. The basic shift schedule optimization model is presented in Section 3.
There we also discuss several options to incorporate different realizations
of the original stochastic processes in the deterministic model. Numerical
results are discussed in Section 4. The paper concludes with comments on
the managerial implications of the results and suggestions for further work
in Section 5.
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2 Modeling heterogeneous contact centers

2.1 System description

We study contact centers with multiple customer or contact classes c ∈ C
and multiple agent classes a ∈ A. Let Ca ⊆ C denote the set of customer
classes c that can be served by agent class a and let Ac ⊆ A denote the set
of agent classes a that can serve customer class c. In Figure 1, an example
of such a contact center with two customer classes and three agent classes is
depicted. In this system, each customer class is served by a specialized class
of agents. A third class of flexible generalists can serve both customer classes.
We assume that the waiting space for each customer class is unlimited. This
assumption is reasonable for phone calls as the number of phone lines usually
exceeds the number of active agents and waiting customers usually hang up
after some time. The waiting space for e-mails can also usually be considered
to be “practically” infinite. The number of agents of class a serving at time
t is denoted by Nat. It is the result of the shift schedule.

0.1 Contact Centers with Heterogeneous Customers and

Agents

0.1.1 Description of the Model
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Fig. 0.1. A contact center model with two types of customer classes, three kinds of

agent groups and retrials of impatient customers

The structure of the contact center considered in this section is depicted in
Figure ??. The contact center presented in Figure ?? on Page ?? and analysed
in ? is a special case of this model. We assume two types of customers who
arrive at the contact center according to Poisson processes with rates λ1(t) and
λ2(t) for type-1 and type-2 customers, respectively. These rates are assumed
to be time-dependent as in the previous section. This model combines the
problems associated with priority and with retrial queues which have so far
been considered solely in separation.

Fig. 1 M-designed contact center with retrials (Henken, 2007)

Customers of class c arrive with a time-dependent rate λct at time t.
They are served by agents of class a with rate µca. Waiting customers aban-
don with rate νc. After abandoning, they join the “orbit” of customers who
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will retry with probability pc. Customers in the orbit retry with rate γc.
Our methodology does not require any particular distribution of interar-
rival times, processing times, times to abandon and times to retry. This
yields a substantial degree of freedom to use the one probability distribu-
tion that best matches the empirical data, instead of the one for which a
stochastic (possibly Markovian) queueing model can be solved analytically.

In a contact center with multiple customer and agent classes, routing
rules are needed. Often routing is based on static priorities. Assume that a
customer arrives while agents of different agent classes that could serve this
customer idle. In this case the problem of agent class selection arises. Let
pr1ac be the agent class selection priority for agent class a and customer
class c. A smaller value of pr1ac indicates a higher priority to route arriving
customers of class c to idle agents of class a.

Now assume that an agent finishes a service while customers of different
classes that can be served by this agent are waiting. In this situation the
problem of customer class selection emerges. Let pr2ac be the customer class
selection priority. A smaller value of pr2ac indicates a higher priority for idle
agents of class a to serve waiting customers of class c. These assumptions
allow to model a broad variety of contact center topologies that can be
found in practice. While static priority rules are often found in practice due
to their simplicity, one can expect to find a better performance in systems
with dynamic priority rules that reflect the achieved transient performance
of the system. However, this adds a substantial amount of complexity to
the problem and is therefore beyond the scope of this paper.

In many real-world contact centers, we observe non-preemptive service
disciplines, i.e., a service is not interrupted when a customer with a higher
priority arrives. The reason is that customers strongly dislike to have their
individual service interrupted because a more important customer arrives.
In the simulation model used to evaluate our approach, we therefore model
non-preemptive service, while our numerical linear programming method
implicitly assumes preemptive service. The reason for the implicit assump-
tion of preemptive service is that in the linear program the originally discrete
customers are modeled as a fluid, see below. This difference becomes less
relevant as contact centers get larger. For the system in Figure 1 we assume
that customers give priority to their respective class of specialists and that
generalist agents give priority to class 1 customers.

2.2 Approximating a dynamic stochastic system in continuous time via
multiple scenarios of difference equations

The generic model of a contact center presented in Section 2.1 describes a
system in which discrete events happen randomly in continuous time. Sys-
tem parameters such as arrival rates λct as well as the number of available
agents Nat, which is to be determined, are time-dependent. Both the num-
ber of customers in the system and the number of customers in the orbit
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form stochastic processes in discrete space (as customers can be counted)
and continuous time. Instead of using a stochastic queueing model of the
system based on probability theory as in the SIPP approach, we use differ-
ence equations to describe the dynamic processes in the system. As these
dynamic processes are stochastic, we consider multiple different scenarios
s ∈ S simultaneously.

To motivate this approach, we now concentrate on the dynamics of these
stochastic processes and the relationship between system size and process
variability. Consider a contact center with a single class of impatient cus-
tomers that arrive according to an inhomogeneous Poisson process. The
time-dependent arrival rate is depicted in Figure 2. Assume that processing
times and waiting time tolerances are exponentially distributed with rates
1 and 2 per minute, respectively.

 0

 2

 4

 6

 8

 10

 12

 14

 6  8  10  12  14  16  18  20

A
ve

ra
ge

 a
rr

iv
al

s 
pe

r 
m

in
ut

e

Time

Fig. 2 Time-dependent arrival rate

In a base case we assume that 15 agents are scheduled constantly through-
out the day. The graph on the upper left-hand side of Figure 3 shows a sim-
ulated sample path realization of the number of customers in the system.
It exhibits a substantial degree of variability. Now we scale the system by
multiplying both the arrival rate and the number of servers by 10, 100, and
1000. The other three graphs in Figure 3 show the respective sample paths.

As the arrival rate and number of servers increase, the scaled process
Q(n)(t)/n of the number of customers divided by the scaling factor n appar-
ently becomes less variable and eventually approaches a (deterministic) fluid
limit. Mandelbaum et al. (1998) study fluid and diffusion approximations
based on this scaling. If the system gets in a sense “less variable” as its size
increases, the relative importance of the system dynamics over the random-
ness increases. Multiple numerical scenarios s, i.e., independent realizations
or samples path of this stochastic process, are required to approximately
capture the randomness in the system.
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It would be natural to use a set of coupled differential equations in a
fluid approximation. However, in order to be able to deal with the system
dynamics within a discrete-time linear program, we now directly develop
difference equations to describe how the state of the system evolves over
time. Denote by QCs

ct the number of waiting customers of class c at the
beginning of a discrete period t, for example a minute, in scenario s. Let ars

ct

denote the (exogenous) primary arrivals in period t, REs
ct the retrials, ABs

ct

the number of customers who abandon and Es
cat the number of customers

who exit the system after being served by an agent of class a. Then the
dynamics for customer class c in scenario s can be modeled via the following
difference equation for period t:

QCs
c,t+1 =QCs

ct + ars
ct + REs

ct −ABs
ct −

∑
a∈Ac

Es
cat (1)

The number of served customers Es
cat depends on the number Nat of

active agents of class a at time t, which is identical over all scenarios and
depends on the shift schedule. It also depends on the number mus

cat of
customers of class c served per period t by an agent of type a in scenario
s. If a single class of customers c is served by a single class a of agents, the
following simple function results:
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Es
cat = min

(
QCs

ct + ars
ct + REs

ct −ABs
ct, mus

catNat

)
∀c, t, a, s (2)
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Fig. 4 Average call arrival rates for a contact center

Figure 4 shows for two customer classes fictitious average arrival rate
functions and Figure 5 shows sample path realizations for these average
arrival rate functions from a simulation run. If a schedule is optimized over
several different scenarios s ∈ S of call arrivals simultaneously, one can
expect to find a solution with some degree of robustness with respect to the
uncertainty of call arrivals.
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Fig. 5 Sample paths of call arrivals for a contact center
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2.3 Shift schedules

We assume that a set of basic shift types k ∈ K is given. Table 1 presents an
example with 31 shift types. Shift types 1 to 12 are long shifts of 7.5 hours
with a half-hour break after 3.5 hours and shift-specific starting times. Shift
types 13 to 31 take four hours without a break.

Table 1 Schematic presentation of the basic shift types

Type Interval i
k 1 5 6 10 11 15 16 20 21 26

7:00 - 9:30 9:30-12:00 12:00-2:30 2:30 - 5:00 5:00 - 8:00

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
...

. . .
. . .

. . .
. . .

. . .

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12 1 1 1 1 1 1 1 1 1 1 1 1 1 1

13 1 1 1 1 1 1 1 1
14 1 1 1 1 1 1 1 1
...

. . .
. . .

. . .
. . .

. . .

30 1 1 1 1 1 1 1 1
31 1 1 1 1 1 1 1 1

For each basic shift type k an indicator parameter ski equals 1 if an agent
following this shift type k is on duty during interval i, and 0 otherwise. For
example, at t corresponding to 10:45 am, s1,i(t) = 0 as the break for shift
type k = 1 starts at 10:30 am and ends at 11:00 am.

3 The shift schedule optimization model

3.1 Basic optimization model

In this section we present the basic shift schedule optimization model taking
multiple scenarios into account. The notation is summarized in Table 2. We
use lower case letters for input data and upper case letters for decision
variables. In addition to the modeling assumptions and notation presented
in Section 2, we assume the following:

– The length of a period in the difference equations is ∆t, e.g., a minute.
It has to be distinguished from the length of the time intervals of the
shifts of, for example, 30 minutes.

– Customers arrive at the system at the beginning of a period. This holds
both for retrials and primary arrivals. The number of primary arrivals
of customers of class c in period t of scenario s is ars

ct and the number
of retrials is REs

ct.
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– Individual waiting customers have a waiting time tolerance of 1
νc

in
continuous time, i.e., on average an individual waiting customer hangs
up with rate νc. The expected number of abandonment events during a
time interval of length ∆t is hence νc∆t per waiting customer of class
c. However, for each occasion a customer has to wait, he can hang up
only once. In the context of the discrete time model, we assume that
only those customers already waiting at the beginning of period t can
hang up. Those who hang up do so immediately. The fraction of the
waiting customers that hang up is min(1, nuc) with nuc = νc∆t. The
minimum function is required in the discrete time model to avoid that
more customers abandon than are waiting at the beginning of the period.
The fraction pc of those customers who abandon join the orbit.

– Only those customers already in the orbit at the beginning of period t can
retry. Those who retry do so immediately. The fraction of the customers
in the orbit that retry is min(1, gac) where gac = γc∆t depends on the
rate (in continuous time) γc at which a single customer in the orbit calls
again. Again, the minimum function is required as at most all customers
in the orbit can retry.

– Those customers who already waited at the beginning of a period plus
those who arrived or retried minus those who abandoned are available
to be served in the period.

– Customers that are served leave the system at the end of a period. The
number Es

cat of customers of class c that is served by agents of class
a in period t of scenario s is the minimum of those that are available
to be served and that can potentially be served. The number that can
potentially be served depends on the capacity this agent class devotes
to customer classes with higher priority.

– Agents work according to shifts k ∈ K.
– The total number of agents of class a on duty at time t is Nat. It depends

on the integer number Xak of agents of class a working shift k.
– Only a maximum number nmax

a of agents of class a can be scheduled for
the day.

– Each processed customer of class c leads to a deterministic revenue rvc.
– A customer in the system causes a line cost lc per period.
– The wage of an agent of class a working according to schedule k is wak.
– Primary arrivals ars

ct and the potential number of processed customers
per agent mus

ct are scenario-specific realizations of random variables.
– The objective is to find a shift schedule Xak which maximizes the average

profit over the different scenarios.
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Table 2 Notation

Sets and indices

a ∈ A set of agent classes, each agent belongs to one class
Ac ⊂ A set of agent classes that can serve customer class c
c ∈ C set of customer classes, each customer belongs to one class
Ca ⊂ C set of customer classes that can be served by agent class a
i ∈ I time intervals (e.g., half-hours)
k ∈ K shift types
s ∈ S scenarios (sample paths)
t ∈ T time periods (e.g., minutes)

Input data

ars
ct primary arrivals of customer class c in period t of scenario s

∆t length of a period

fs
min

c minimum fraction of served contacts of class c
gac fraction of customers of class c in the orbit that retry during a period
γc retrial rate of customers of class c in the orbit in continuous time
lc line cost of class c per time unit
mus

cat number of customers of class c that can be served per agent of class
a serving this class in period t and scenario s

nmax
a maximum number of available agents of type a

νc abandonment rate of waiting customers of class c in continuous time
nuc abandonments nuc = νc∆t per period and waiting customer
pc fraction of abandoning customers that are willing to retry
ski indicator, equals 1 if an agent working shift type k is active in interval

i, 0 otherwise
rvc revenue per served contact of class c
wak wage of an agent of class a working a shift of type k
wmax

c maximum waiting time of contacts of class c

Decision variables

ABs
ct real-valued number of abandoning customers of class c in period t of

scenario s
Es

cat real-valued number of customers of class c served by agents of class a
in period t of scenario s

Nat integer number of agents of class a on duty in period t
QCs

ct real-valued number of customers of class c waiting in the system at
the beginning of period t in scenario s

QOs
ct real-valued number of customers of class c in the orbit at the begin-

ning of period t in scenario s
REs

ct real-valued number of retrials of customers of class c in period t of
scenario s

Xak integer number of agents of class a working shift type k
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This leads to the following optimization problem P:

Max
1
|S|
∑
s∈S

∑
c∈C

∑
t∈T

((∑
a∈Ac

(rvc −
lc

mus
cat

)Es
cat

)
− lcQCs

ct

)
−
∑
a∈A

∑
k∈K

wakXak (3)

subject to

QCs
c,t+1 =QCs

c,t + ars
ct + REs

ct −ABs
ct −

∑
a∈Ac

Es
cat, ∀c, t, s (4)

QOs
c,t+1 =QOs

c,t −REs
ct + pcABs

ct, ∀c, t, s (5)

ABs
ct =min(1, nuc) QCs

ct, ∀c, t, s (6)

REs
ct =min(1, gac) QOs

ct, ∀c, t, s (7)

Es
cat ≤ QCs

ct + ars
ct + REs

ct −ABs
ct −

∑
ã∈Ac¬{a}

pr1cã<pr1ca

Es
cãt, ∀c, t, a, s (8)

Es
cat ≤ mus

cat

(
Nat −

∑
c̃∈Ca¬{c}

pr2ac̃<pr2ac

Es
c̃at

mus
c̃at

))
∀c, t, a, s (9)

Nat =
∑
k∈K

sktXak, ∀a, t (10)∑
k∈K

Xak ≤ nmax
a , ∀a (11)

Xak ∈{0, 1, 2, 3, . . .}, ∀a, k (12)
Nat ∈{0, 1, 2, 3, . . .}, ∀a, t (13)

QCs
c,t, QOs

c,t, ABs
ct, REs

ct ≥0, ∀c, t, s (14)

Es
cat ≥ = 0, ∀c, t, a, s (15)

In the objective function (3) the average profit over the scenarios is
calculated by subtracting from the revenue of the processed customers the
line cost of customers in service or waiting and the wages for the agents.
The balance equations (4) for the number QCs

ct of customers waiting in the
contact center reflect retrials REs

ct, abandonment ABs
ct and the fact that
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multiple agent classes a serve customer class c. In the balance equations (5)
for the number QOs

ct of customers in the orbit, we take into account that
only a fraction pc of the abandoning customers of class c joins the virtual
queue in the orbit to retry later. The retrying process in Equations (7) is
formally “self-service” in the orbit. The number Es

cat of customers of class
c that are served by agents of class a in period t is doubly limited. The first
limit in Inequalities (8) is the number of customers of the respective class
that are available to be served by a particular agent class. The second limit
in Inequalities (9) is the maximum capacity for this combination of customer
class c and agent class a. It depends on the number Nat of agents of class
a available during period t. However, due to the customer class selection
priority of the agents, we need to subtract the capacity of this agent class
that is already devoted to customer classes with a higher priority. Given the
profit-maximization objective of our optimization problem, it is usually not
efficient to let an agent idle while customers for that agent are available.
For this reason, usually one of the inequalities (8) or (9) will almost always
be tight. However, there can be cases where contacts such as e-mails do
not generate revenues and are perfectly patient and and many agents that
can deal with these contacts are available that none of the inequalities is
tight for a given combination of customer class c, agent class a, period t and
scenario s. In Equations (10) the total number of active agents at time t is
computed. The upper limit of available agents of each class is represented
in Inequalities (11).

This basic model aims at maximizing the profit from the served calls.
The profit-maximizing service level with respect to waiting times etc. is
hence determined endogenously. If the per-call revenue of a customer class
does not exceed the cost per call, no specialized agents for this class will
be scheduled and, possibly, no customers will be served. In many real-world
applications there is no direct revenue associated with a served call, e.g., for
support calls. Therefore the model needs to be extended to enforce some
pre-specified level of service for these customer classes.

3.2 Enforcing service level constraints

If one wants to serve the customers even though there are no direct revenues
related to each call, an economically rational approach is to minimize cost
subject to some exogenously defined service constraint. In our modeling ap-
proach, the service quality can be expressed in terms of the average waiting
time or the fraction of customers that are served. Both quantities can be
limited (from above or below, respectively) for either each single period or
the complete planning horizon of a day. Based on discussions with call cen-
ter managers it is our impression that the fraction of calls that are served is
of utmost importance. We define an aggregate measure FSc of the fraction
of the primary contacts (not counting retrials) that are eventually served at
the end of the day:
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FS
s

c =

∑
t∈T

∑
a∈Ac

Es
cat∑

t∈T ars
ct

, ∀c, s (16)

A minimum aggregated fraction of served callers fs
min

c in each scenario
can be enforced via the following simple constraints:

FS
s

c ≥fs
min

c , ∀c, s (17)

The instantaneous waiting time for customers arriving during period t
can be roughly approximated as the number of waiting customers, divided
by the rate at which customers are either served or abandon at that mo-
ment in time. (It is an approximation as these rates can change within this
instantaneous waiting time.) If m denotes the length ∆t of a period t (in
seconds), a measure W s

ct of the instantaneous waiting time (in seconds) can
be computed as follows:

W s
ct =

QCs
ct(

ABs
ct +

∑
a∈Ac

Es
cat

)
m−1

, ∀c, t, s (18)

To compute an aggregate measure W
s

c of the waiting time, a weighting
factor should reflect the different numbers of customers facing specific in-
stantaneous waiting times during periods of low or high traffic, respectively.
We decided not to use the relative number of arriving calls as the weighting
factor, because it is in practice very difficult to distinguish primary arrivals
from retrials. However, it is very easy to measure calls that are served or
abandoned. For this reason in our model the instantaneous waiting time
is weighted by the relative number of leaving customers, and the following
measure of the aggregated waiting time W

s

c results:

W
s

c =
∑
t∈T

(
ABs

ct +
∑

a∈Ac
Es

cat

)∑
t∈T

(
ABs

ct +
∑

a∈Ac
Es

cat

)W s
ct

=
∑

t∈T QCs
ct∑

t∈T
(
ABs

ct +
∑

a∈Ac
Es

cat

)
m−1

, ∀c, s (19)

A maximum W
s

c ≤ wmax
c of the aggregated waiting time in each scenario

s and customer class c can be enforced as follows:

∑
t∈T

QCs
ct ≤ wmax

c

∑
t∈T

(
ABs

ct +
∑

a∈Ac

Es
cat

)
m−1, ∀c, s (20)

In this form the constraint has the linear form that can be solved using
mixed-integer linear programming.
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3.3 Optimizing over the single mean process or multiple scenarios

The model presented in Section 3.1 optimizes a shift schedule over a set S of
scenarios that differ with respect to two parameters, the number of primary
arrivals ars

ct and the processing rate mus
cat of an agent of class a serving

customers of class c. Three different approaches to deal with randomness of
these parameters are summarized in Table 3.

Table 3 Different approaches to deal with randomness

Approach 1 2 3

Number of scenarios |S| 1 20 (10) 20 (10)

Arrivals ars
ct λct∆t ∼POI(λct∆t) ∼POI(λct∆t)

Processed customers mus
cat µcat∆t µcat∆t ∼ POI(µcat∆tN∗∗

at )

N∗∗
at

per period and agent

Resulting staffing level N∗
at N∗∗

at N∗∗∗
at

In Approach 1, only the (single) mean process is modeled as both the
arrivals and the number of processed customers per agent are set to their
respective average values. This leads to the single scenario of a deterministic
fluid model. In Approaches 2 and 3, we try to optimize the shift schedule
over 20 different scenarios simultaneously. If this does not lead to a solu-
tion with an optimality gap of the MIP solver of at most 1% within 1000
seconds, we only consider the first 10 scenarios (out of the 20) and try
again. Approach 2 models arrivals as realizations of random variables that
are Poisson-distributed with parameter λct∆t, whereas processing is deter-
ministic as in Approach 1. In Approach 3, we additionally model Poisson-
distributed numbers of customers that can potentially be processed. Here we
have to adjust the realization mus

cat of the number of processed customers
per agent because multiple agents of class a may work in parallel on cus-
tomer class c. This leads to a superposition of Poisson departure processes.
However, the exact number of these agents is unknown, to be determined
within the optimization. We approximate it by the total number of avail-
able agents N∗∗

at from the solution of Approach 2, compute a realization
of a Poisson-distributed random variable with parameter µcat∆tN∗∗

at and
normalize this again through a division by N∗∗

at . (If Approach 2 did not
lead to a solution, we used N∗

at from Approach 1 instead.) This allows us
to have (within the framework of a MIP) numbers of potentially processed
customers that are approximately Poisson with a mean that is proportional
to the number of agents on duty. Falling back on results from Approach 2
(or 1) can be interpreted as a kind of iterative approach which we found
to be reasonable as total staffing levels from the different approaches didn’t
differ too much.
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We did not consider random abandonment or retrials for two reasons:
On the one hand, we observed that very often just considering random
arrivals already led to quite robust shift schedules so that the additional
benefit of treating random processing was quite limited. On the other hand,
the “flow” of abandoning and retrying customers is small relative to the
flow of primary arrivals and served customers if the contact center offers a
good service, so treating random abandonment and retrials should not be
expected to improve the performance of the method.

We used a period length of one minute for any period t in our model.
There is a tradeoff between numerical accuracy and computation times: If
one uses, for example, a second instead of a minute as the period length, the
originally discrete-event process is modeled more accurately. On the other
hand, the number of real-valued decision variables increases by a factor of
60, which effects the solution times. In a pretest we came to the conclusion
that given the computing power that is available to us today, a period length
of a minute is not unreasonable.

After some numerical experimenting, we always added a fixed value of
0.0001 to each sampled parameter ars

ct in Approaches 2 and 3 and of 0.00001
to each sampled parameter mus

cat in Approach 3. This helped to avoid
numerical difficulties with the solution of the LP relaxation of Problem
P in Approaches 2 and 3. An alternative way to overcome these feasibility
problems is to experiment with the “eprhs” feasibility tolerance parameter of
the CPlex software that specifies to which extent a problem’s basic variable
may violate its bounds.

4 Numerical results

To evaluate the performance of the shift scheduling approach, we performed
a systematic numerical study. We studied the M-designed system with two
customer classes and three agent classes shown in Figure 1. The shift types
were those introduced in Table 1. We assumed sinusoidal average arrival
rate functions like those depicted in Figure 4 that were generated by the
equation

λ(t) =



1
2m1 ·

(
1− cos

(
2π t−t0

t2−t0

))
for t0 ≤ t < t1

1
2m1 ·

(
1− cos

(
2π t−t0

t2−t0

))
+ 1

2m2 ·
(
1− cos

(
2π t−t1

t3−t1

))
for t1 ≤ t < t2

1
2m2 ·

(
1− cos

(
2π t−t1

t3−t1

))
for t2 ≤ t < t3

(21)

with the parameters in Table 4. All other parameters are also presented
in this table with the exception of the hourly wage, which was assumed
to be 15 for the specialists and 18 for the generalists. Given the identical
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productivity, generalists are therefore 20% more expensive than specialists.
We assumed that there is no limit on the number of agents for each class,
i.e, nmax

a = ∞. The length ∆t of a period t was set to 60 seconds.

Table 4 Problem parameters

Customer class 1 (Sales) 2 (Support)

Call arrivals
t0 7 am 7 am
t1 12:30 pm 10 am
t2 4 pm 1 pm
t3 8 pm 8 pm
m1 (S/M/L) (200/800/3200) (100/400/1600)
m2 (S/M/L) (150/600/2400) (120/480/1920)

Processing rates µca

Type-1 specialists 12h−1 -
Type-2 specialists - 12h−1

Generalists 12h−1 12h−1

Abandonment rates νc 240h−1 12h−1

Retrial rates γc 0.5h−1 4h−1

Retrial probability pc 0.5 0.5

Per call revenue rvc 10.0 1.3 (Cases 1-3) or 0.0 (Cases 4-6)
Hourly line cost lc 6.0 0.0

Of particular interest is the distinction between small, medium-sized and
large contact centers. For this reason, we scaled the arrival rate function
(21) of the small contact center (S) by a factor of 4 to generate the arrival
rate function for the medium-sized contact center (M), and by a factor of
42 = 16 for the large center (L). This resulted in systems with peak numbers
of active agents between 20 and 30 for the small system, 80 and 90 for the
medium-sized system, and 370-390 in the large system. With respect to the
two customer classes we chose the parameters such that the first customer
class is always highly profitable, but customers are very impatient. This
models a sales channel. The other class models customers that generate
very little profit directly or no profit at all, but are much more patient,
as in a support channel. For each size class (S, M, or L) we studied six
cases 1 - 6 with specific parameters reported in Table 5. In cases 1 to 3
we assumed that the per-call revenue of a support call slightly exceeds the
direct per-call cost of this call, if served by the least costly agent class (the
specialists). In cases 4 to 6 we always assumed that support calls do not
generate any direct revenue and therefore enforced a minimum FS

min

2 of the
aggregated fraction of served calls or a maximum W

max

2 on the aggregated
waiting time. For each system size and case all three approaches (see Table 3)
were applied. We used CPlex 10.0 on a 3 GHz Pentium 4 PC with 4 GB
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Table 5 Revenue for support customers and service level limits

Case (S, M, L) 1 2 3 4 5 6

rv2 1.3 1.3 1.3 0 0 0

FS
min
2 [%] 0.0 0.0 99.9 0.0 90.0 99.9

W
max
2 [sec.] ∞ 60.0 ∞ 60.0 ∞ ∞

RAM to solve the models. The branch&bound process was aborted if an
integer solution was known to be at most 1% away from the optimum of
the MIP model or the computation time limit of 1000 seconds per approach
and number of scenarios (20 or 10 in Approaches 2 and 3) was exceeded.
Based on a suggestion by one referee, we alternatively tried to speed up
the branch&bound process by solving an LP relaxation of our problem P,
rounding up fractional Xak variables and solving the problem again for the
remaining continuous variables. This should result in a first feasible solution
to be used in a “warm start” of the CPlex solver and speed up the solution
process by cutting off a part of the solution space. However, in particular
for the small call center the solution of the LP relaxation very often resulted
in very small fractional Xak values so that rounding up led to very weak
bounds. In general, this rounding approach did not work better than our
“standard” approach.

The shift schedules resulting from the optimization model were then
evaluated via a discrete event simulation model coded in C++ which is
based on a simulation model used in Feldman (2004); Feldman et al. (2008).
For each system, 1000 replications were made to compute 95%-confidence
intervals of the profit with a relative half-width always below 0.25%.

With respect to the algorithmic performance of the approach the nu-
merical results show the following: Modeling the contact center via a fluid
model (Approach 1) always led to a MIP model that could be solved. In
Tables 6 to 8 we present for each combination of problem case and solution
approach the (average) profit as computed by the MIP solver as well as the
simulated profit for the computed shift schedule. The next line presents the
relative deviation of the MIP objective function value from the simulation
results. The simulated values of the fraction of served calls FS2 and the
aggregated waiting time W 2 of the second customer class (support channel)
are reported below. If we compare the results for Approach 1 in Tables 6 to
8, we see that for the small contact center, the fluid approach substantially
overestimates the profit that is associated with the proposed shift schedule,
while for the large contact center the deviation is only in the area of 4-5%.

Approach 2 (using multiple sample paths of call arrivals) apparently led
to a much better estimate of the profit, even for the small contact center. In
addition, the resulting shift schedule, when evaluated via simulation, turned
out to be better than those from Approach 1. It is also interesting to observe,
that in this approach the service level limits for customer class 2 were met
much better than via Approach 1. In the schedules computed via Approach
1, usually relatively few flexible generalist agents are scheduled, as these
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Table 6 Results for the small contact center

Case 1S 2S 3S 4S 5S 6S

Approach 1

Profit (MIP) 11941 11914 11837 10925 10925 10680
Profit (SIM) 9882 9979 10009 8938 8938 8892
Rel. Dev. [%] 20.84 19.39 18.26 22.23 22.23 20.10

FS2 [%] 83.40 90.32 93.04 87.00 87.00 92.50

W 2 [sec.] 84.45 52.27 38.49 68.11 68.11 41.84

Approach 2

Profit (MIP) 10719 10819 9151 9581 9674 -
Profit (SIM) 10280 10293 9838 9192 9230 -
Rel. Dev. [%] 4.27 5.11 -6.98 4.23 4.81 -

FS2 [%] 92.42 96.34 99.89 95.85 96.60 -

W 2 [sec.] 41.85 21.01 0.65 23.66 19.67 -

Approach 3

Profit (MIP) 9784 - - 8650 8561 -
Profit (SIM) 10268 - - 9178 9241 -
Rel. Dev. [%] -4.71 - - -5.75 -7.36 -

FS2 [%] 91.11 - - 96.63 96.60 -

W 2 [sec.] 48.62 - - 19.56 19.58 -

Dev Best

Appr1 [%] -3.88 -3.05 0.00 -2.76 -3.28 0.00
Appr2 [%] 0.00 0.00 -1.71 0.00 -0.12 -
Appr3 [%] -0.12 - - -0.15 0.00 -

AvScnOpt 9945 9824 - 8824 8705 -
AvUB 9995 9874 - 8869 8749 -
RelDev Appr3 [%] 2.11 - - 2.46 2.15 -

are assumed to be 20% more expensive than the specialists. The schedules
resulting from Approach 2, however, are usually more robust and hence
yield a higher average profit in the simulation than those from Approach 1
as they substitute specialists by generalists.

The additional effort to consider sample path realizations of processing
rates in Approach 3, however, had a rather limited additional benefit. For
the small contact center, three out of the six cases could not be solved
within the given time limit, whereas all cases for the medium-sized and
large center were solvable. The lower part of Tables 6 to 8 (Dev Best) shows
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Table 7 Results for the medium-sized contact center

Case 1M 2M 3M 4M 5M 6M

Approach 1

Profit (MIP) 48128 48128 47777 43763 43673 43101
Profit (SIM) 43636 43636 44067 39548 39395 39546
Rel. Dev. [%] 10.29 10.29 8.42 10.66 10.86 8.99

FS2 [%] 93.76 93.76 96.55 92.26 92.89 96.55

W 2 [sec.] 34.98 34.98 19.85 42.86 39.60 19.85

Approach 2

Profit (MIP) 46263 46082 42929 - 41875 38159
Profit (SIM) 42952 44154 44235 - 39551 39564
Rel. Dev. [%] 7.71 4.37 -2.95 - 5.88 -3.55

FS2 [%] 88.24 96.38 99.93 - 96.15 99.92

W 2 [sec.] 62.81 20.82 0.43 - 21.98 0.49

Approach 3

Profit (MIP) 44637 44548 38837 39040 40217 33293
Profit (SIM) 43471 44338 41317 41063 39850 35910
Rel. Dev. [%] 2.68 0.47 -6.00 -4.93 0.92 -7.29

FS2 [%] 92.25 97.14 100.00 95.14 97.57 100.00

W 2 [sec.] 42.92 16.46 0.01 27.68 14.12 0.00

Dev Best

Appr1 [%] 0.00 -1.58 -0.38 -3.69 -1.14 -0.04
Appr2 [%] -1.57 -0.41 0.00 - -0.75 0.00
Appr3 [%] -0.38 0.00 -6.60 0.00 0.00 -9.24

AvScnOpt 45099 44794 39047 40611 40640 34495
AvUB 45324 45018 39242 40814 40843 34667
RelDev Appr3 [%] 1.52 1.04 1.03 4.35 1.53 3.96

the deviation from the best schedule over all three approaches. In general,
Approach 2 performed best. However, for the large contact center even the
pure fluid Approach 1 was almost as good.

Given the randomness of interarrival and processing times, we can ex-
pect that a shift schedule which maximizes the average profit over a set of
different and stochastically independent scenarios is (ex post) suboptimal
for each single scenario if this scenario is treated in isolation. This is a typical
problem of stochastic programming with integer recourse. If we treat a sce-
nario in isolation and determine the scenario-specific optimal shift schedule,
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Table 8 Results for the large contact center

Case 1L 2L 3L 4L 5L 6L

Approach 1

Profit (MIP) 192774 192764 191276 176109 175857 172574
Profit (SIM) 184302 184113 184492 167052 166614 166009
Rel. Dev. [%] 4.60 4.70 3.68 5.42 5.55 3.95

FS2 [%] 96.81 96.82 98.64 95.69 95.96 98.64

W 2 [sec.] 18.51 18.41 8.00 24.69 23.23 8.00

Approach 2

Profit (MIP) 190105 189619 183207 173043 172597 164057
Profit (SIM) 183504 183840 184976 166268 166258 166284
Rel. Dev. [%] 3.60 3.14 -0.96 4.07 3.81 -1.34

FS2 [%] 92.34 96.12 99.92 95.92 96.10 99.93

W 2 [sec.] 42.56 22.30 0.46 23.46 22.38 0.44

Approach 3

Profit (MIP) 187938 186877 177342 170891 170170 158853
Profit (SIM) 183775 184152 181740 166224 166401 163314
Rel. Dev. [%] 2.27 1.48 -2.42 2.81 2.26 -2.73

FS2 [%] 89.90 96.61 99.99 96.46 96.87 99.99

W 2 [sec.] 54.96 19.62 0.05 20.51 18.15 0.06

Dev Best

Appr1 [%] 0.00 -0.02 -0.26 0.00 0.00 -0.17
Appr2 [%] -0.43 -0.17 0.00 -0.47 -0.21 0.00
Appr3 [%] -0.29 0.00 -1.75 -0.50 -0.13 -1.79

AvScnOpt 187906 187870 178393 171050 170760 159964
AvUB 188845 188809 179285 171905 171614 160764
RelDev Appr3 [%] 0.48 1.02 1.08 0.59 0.84 1.19

we also compute a scenario-specific upper bound on the objective function
value. In order to assess the average quality of our solutions resulting from
Approach 3 (where both interarrival and processing times are realizations
of random variables), we therefore determined for each case an average up-
per bound of the MIP by averaging over the objective function values of
the (isolated or ex-post) solutions to 100 independent scenarios. In the bot-
tom part of Tables 6 to 8 we report these average objective function values
(AvScnOpt). We terminated the optimization when the optimality gap was
at most 0.5%. Multiplying AvScnOpt by 1.005 therefore gives an average
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Table 9 Average computation times of the MIP solver (seconds)

Approach \ System size Small (S) Medium (M) Large (L)

1 50 21 17
2 1436 694 397
3 1457 1605 913

upper bound (AvgUB). The last line (RelDev Appr3) reports the relative
deviation of the MIP solution of Approach 3 from this average upper bound.
Note that these deviations are all relatively small and decrease as the size of
the system increases. We therefore conjecture that it is easier to determine
high quality schedules for a large system than for a small system.

If we compare the profit values of the simulated schedules for increasing
workloads and system sizes, we observe the superlinear increase of the profit
which demonstrates nicely the economies of scale in contact centers.

The average computation times of the MIP solver in Table 9 decrease
as the system size increases. The smallest computation times are observed
for the purely deterministic Approach 1. If both arrivals and processing
are modeled as realizations of random variables in Approach 3, the highest
computational effort results. (The computation times reported in Table 9
exceed the computation time limit of 1000 seconds in those cases where we
first tried 20 scenarios without finding a feasible schedule and then reduced
the number of scenarios to 10. In these cases we included the first 1000
seconds for the first attempt in the reported computation time.) If a contact
center is very large, many of the Xak variables in the LP-relaxation of
Problem P tend to have a relative large value, i.e., Xak >> 1. In this case,
the LP-relaxation provides a tight bound and the branch&bound process
of the MIP solver is fast. For a small call center the opposite is the case.
We think that this explains why our method finds shift schedules for larger
contact centers more quickly than for small centers.

In order to study the system behavior, we now consider in more detail
case 1S from Table 6. In this small call center the class 2 customers generate
a per-call revenue that exceeds the direct cost of a call, if it is answered
by a specialist and no exogenous service level limit is imposed. Figures 6
and 7 show the different structure of the solutions, if we explicitly model
random customer arrivals in Approach 2 instead of the mean arrival process
in Approach 1. While in the solution to Approach 1, almost exclusively
specialists are scheduled, the solution to Approach 2 uses many generalists
and no specialists for class 2 at all. This is a much more robust solution.

In Figure 8 we present a simulation result of Case 1S for the schedule
resulting from Approach 2. The figure shows that the waiting times of the
class 2 customers are much higher than those of class 1. This is due to the
lower profitability of class 2 calls and the higher impatience of class 1 cus-
tomers. The function of the average waiting times exhibits a characteristic
ramp profile which increases during the morning hours (as the number of
agents increases at distinct moments in time) and decreases in the after-
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Fig. 6 Staffing level for Case 1S (Approach 1)
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Fig. 7 Staffing level for Case 1S (Approach 2)

noon. The worst and most variable service is offered in the early morning
and late afternoon when small numbers of agents are faced with strongly
changing arrival rates. In the middle of the day, when both the number of
customers and of agents in the system reaches peak levels, the system offers
the lowest waiting times due to its economies of scale.

Our last numerical example addresses the carry-over on undone work
from one time interval to the next. We treat the large system, but assume
that neither customer class generates any revenue. Class 1 customers contact
the center by phone, have an average waiting time tolerance of 15 seconds
and call again after (on average) two hours. Customer class 2 sends e-mails
that remain in the center until they are served or the center is closed. We
demanded that 90% of the original class 1 calls and 99.9% of the e-mails
had to be served at the end of the day. Figure 9 presents a graph of the
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Fig. 8 Simulated average waiting times of the customers
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Fig. 9 Simulated average number of calls in the orbit and e-mails in the system

number of class 1 customers (calls) in the orbit and of e-mails in the system.
In this case, the different time intervals are clearly interrelated, as opposed
to the standard assumptions of the SIPP approach.

5 Managerial implications and suggestions for further research

We presented a model for the shift scheduling problem in dynamic contact
centers with skills-based routing, impatient customers and retrials. Unlike
the SIPP approach, it does not utilize a stationary queueing model. The
intertemporal interdependencies due to retrials or unanswered e-mails can
be represented in this approach and profit-maximizing schedules can be
approximated. The uncertainty of interarrival and processing times can be
incorporated into a simulation optimization approach via an optimization
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over a set of different scenarios. This leads to schedules for which the average
profit is robust to variability in call arrivals and processing. To the best of
our knowledge, this is the first profit-oriented shift scheduling approach for
contact centers with SBR and retrials.

As the contact center gets larger, the accuracy and efficiency of the ap-
proach increases. In general it appears to be sufficient to model random call
arrivals to obtain robust and efficient schedules. The additional benefit of
modeling random processing times appears to be negligible while the addi-
tional numerical effort is substantial. The managerial implications are that
at least for large contact centers efficient shift schedules can be found with-
out using stationary queueing models which affects the design of workforce
planning systems.

Further research should address the tour scheduling problem over suc-
cessive days. A problem here is that the precision of the forecasts of contact
arrivals typically degrades quickly as the planning horizon is expanded from
one-day-ahead to one-week-ahead because of autocorrelation in the time se-
ries. It might therefore be necessary to design a hierarchical system that
can deal with different degrees of forecasting accuracy and create robust
plans. In addition, it might be necessary to model individual agents with
their limited temporal availability. It should also be interesting to extend
the model to dynamic priority rules that reflect the achieved transient per-
formance of the system. To this end one could introduce an additional set
of real-valued decision variables that reflect the fraction of each agent group
that is assigned to each customer group. In this paper we concentrated on
inhomogeneous Poisson arrivals and deterministic or exponential processing
times. We think that the general method can also be used for other distribu-
tions of random variables. It is possible to use a simple sampling approach
as in Helber et al. (2008) to transform realizations of random (inter-arrival
or processing) times following arbitrary continuous distribution into real-
izations of discrete random numbers of events per period. We already used
this approach in the context of flow line analysis.
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