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Abstract

In this article we provide evidence for a rational bubble in S&P 500 stock

prices by applying a test for changing persistence under fractional integra-

tion proposed by Sibbertsen and Kruse (2007). We find strong evidence for

stationary long memory before the estimated change point in 1955 and a unit

root afterwards. These results bring two empirical findings in line: on one

hand they confirm the previous result of fractional integration and on the

other hand they support the hypothesis of a rational bubble.
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1 Introduction

In this article we provide evidence for a rational bubble in S&P 500 stock prices
by applying a test for changing persistence under fractional integration. Koustas
and Serletis (2005) find strong evidence for the existence of long memory in the
S&P 500 log dividend yield and their results support the hypothesis of no rational
bubble. However, the authors did not take account for a potential change in the
fractional degree of integration. We apply a suitable test proposed by Sibbertsen
and Kruse (2007) and find a significant break in the memory of the S&P 500 log
dividend yield that is located at November, 1955. This breakpoint was also found
by Sollis (2006) who applied tests for a change in persistence that are designed
for the I(0)/I(1)-framework. We find strong evidence for stationary long memory
before the break in 1955 and a unit root afterwards. These results confirm on one
hand the previous result of fractional integration in this time series and on the other
hand they are in line with other empirical studies that found evidence for a rational
bubble in it.
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2 Testing for changing memory

We assume that the data generating process follows anI(d) process as proposed by
Granger and Joyeux (1980):

(1−L)dyt = εt ,

whereεt are i.i.d. random variables with mean zero and varianceσ2 andL denotes
the lag operator (Lkyt ≡ yt−k). This process is said to be fractionally integrated of
orderd. The test proposed by Sibbertsen and Kruse (2007) considers the following
pair of hypotheses,

H0 : d = d0 for all t

H1 : d = d1 for t = 1, . . . , [τT]
d = d2 for t = [τT]+1, . . . ,T

where[x] denotes the biggest integer smaller thanx. The differencing parameter is
restricted to0≤ d0 < 3/2 underH0, while 0≤ d1 < 1/2 and1/2< d2 < 3/2. Note
that,d1 andd2 can be interchanged. This means that we test the null hypothesis of
constant memory against a change from stationary (0≤ d1 < 1/2) to non-stationary
(1/2< d2 < 3/2) long memory at[τT] and vice versa. The test statistic is given by

R=
infτ∈Λ K f (τ)
infτ∈Λ Kr(τ)

,

whereK f (τ) andKr(τ) are CUSUM of squared based statistics based on the for-
ward and reversed residuals of the data generating process as given below. The
relative breakpointτ ∈ Λ⊂ (0,1) is assumed to be unknown and a simple estima-
tor is given below. In detail, the forward and reverse CUSUM of squared based
statistics are defined by

K f (τ) = [τT]−2
[τT]

∑
t=1

v̂2
t,τ

and

Kr(τ) = (T− [τT])−2
T−[τT]

∑
t=1

ṽ2
t,τ.

Here,v̂t,τ are the residuals from the OLS regression ofyt on a constant based on
the observations up to[τT]. This is

v̂t,τ = yt − ȳ(τ)
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with ȳ(τ) = [τT]−1 ∑[τT]
t=1 yt . Similarly ṽt,τ is defined for the reversed serieszt ≡

yT−t+1. Thus, it is given by

ṽt,τ = zt − z̄(1− τ)

with z̄(1− τ) = (T − [τT])−1 ∑T−[τT]
t=1 zt . Since the limiting distribution ofR de-

pends on the memory parameter under the null hypothesisd0, Sibbertsen and Kruse
(2007) provide response curves that allow an easy computation of relevant critical
values. Note that, when testing against a change from stationary to non-stationary
memory the left tail of the distribution is relevant and vice versa. Furthermore, the
authors prove consistency of the simple breakpoint estimator that is given by

τ̂ = inf
τ∈Λ

K f (τ).

3 Empirical evidence

The used monthly data set can be downloaded from Robert Shiller’s web site1. The
sample spans from January, 1871 to December, 2007 implying 1644 observations.
The time series is depicted in Figure 1. The graph shows a clear change in the
behaviour in the last third of the sample.

In a first step of our analysis, we estimate the long memory parameter by apply-
ing the log periodogram regression method proposed by Geweke and Porter-Hudak
(1983). This estimator is based on an approximation of the spectral density near the
origin. A crucial issue is the choice of number of frequenciesm that are used to per-
form the log periodogram regression. Hurvich, Deo and Brodsky (1998) show that
m= o(T4/5) is MSE-optimal. On the other hand Geweke and Porter-Hudak sug-
gest to usem= o(T1/2) which means that higher frequencies are disregarded which
implies that the estimator is less efficient. On the other hand, if the true DGP con-
tains short-term dependencies which are usually represented by an ARMA(p,q)
process, the GPH estimator based onm= o(T1/2) is less biased. Henceforth, there
is a tradeoff between bias and efficiency.

Davidson and Sibbertsen (2007) recently proposed a Hausman-type test for the
bias in log-periodogram regressions that compares two GPH estimators using a dif-
ferent number of frequencies. Under the null hypothesis short-term dependencies
are negligible and therefore a higher number of frequencies,m= o(T4/5), can be
used without running the risk of a bias. Under the alternative the authors suggest to
use a lower number of frequencies,m= o(T1/2). An application of this test leads
to a rejection at the nominal five percent level of significance (p-value= 0.030).

1http://cowles.econ.yale.edu/faculty/shiller.htm/
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Figure 1: S&P 500 log dividend yield (January, 1871 to December, 2007).

The estimate ofd0 usingm= T1/2 is 0.82 which indicates a non-stationary long
memory time series. Alternatively to the log periodogram regression approach we
estimate an ARFI-MA(p,d,0) model in order to account explicitly for short-term
correlations represented by a finite AR component. MA components are omitted
for simplicity. The model can be written as

(1−α1L−α2L2− . . .−αpLp)(1−L)dyt = µ+ εt ,

whereαi denote the AR-parameters andµ is a constant. All parameters of this
model are estimated jointly via nonlinear least squares which is often referred to as
the conditional sum-of-squares (CSS) estimator that has been suggested by Beran
(1995) and further studied in Chung and Baillie (1993) and Doornik and Ooms
(1999). In contrast to exact maximum likelihood or modified profile likelihood es-
timation, the NLS estimator is also applicable for non-stationary ARFIMA models
(0.5 < d ≤ 1). The optimal autoregressive lag length is chosen via AIC with a
lower bound of zero and an upper bound ofp4 = [4(T/100)1/4] = 7, cf. Schwert
(1989).

Detailed NLS estimation results can be found in Table 1. Compared to the
GPH estimate we obtain a slightly lower value of 0.61. A simplet-test of the null
hypothesis of short memoryH0 : d0 = 0 has to be strongly rejected. The Ljung-Box
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Table 1: NLS estimation results for ARFIMA(p,d,0) models
T = 1−1644 T = 1−1019 T = 1020−1644

µ -3.079 (0.000) -2.949 (0.000)
d 0.612 (0.000) 0.327 (0.006) 0.949 (0.000)
α1 0.712 (0.000) 1.011 (0.000) 0.324 (0.003)
α2 -0.071 (0.162) -0.191 (0.099) -0.057 (0.227)
α3 0.012 (0.787) -0.021 (0.754) 0.050 (0.343)
α4 0.061 (0.314) 0.114 (0.068) -0.011 (0.806)
α5 0.080 (0.048) 0.122 (0.015)
α6 -0.086 (0.057)
Q(12) 4.717 (0.967) 7.769 (0.803) 2.938 (0.996)
Notes:P-values are reported in brackets beside the corresponding estimate or test statistic.

statisticQ with 12 lags is not significant which suggests that there is no remaining
autocorrelation up to lag 12 left in the residuals.

The interval of potential breakpoints is setΛ = [0.2,0.8] which is a common
choice in the literature. The test statisticR equals 0.35. Based on̂d0 = 0.82,
critical values that are computed via response curves equal 0.47, 0.38 and 0.24
for the nominal 10, 5 and 1 percent level of significance, respectively. We have
to reject the null hypothesis of constant memory in favor of the alternative that the
memory increases for small values ofR. Henceforth, we find evidence for changing
memory at the five percent level. When using the ARFIMA model based estimate
of d0 the critical values are 0.70, 0.61 and 0.48, respectively. Thus,H0 has to be
rejected even at the one percent level of significance. We therefore conclude, that
there might be a change ind from d1 to d2.

The estimated breakpoint is at observation 1019 which corresponds to Novem-
ber, 1955. A very similar breakpoint was found by Sollis (2006) who applied the
Leybourne et al. (2003) test for a unit root against a change fromI(0) to I(1).
The GPH estimate of the memory parameter before the break (based onT1 = 1019
observations) iŝd1 = 0.37 and significantly different from zero (p-value= 0.000).
This result suggests that the S&P 500 log dividend yield is fractionally integrated
before November, 1955. Considering the estimated ARFIMA model for the first
subsample, we find further evidence for long-range dependence since the estimate
d̂1 = 0.327 is highly significant (p-value= 0.006). After the break the GPH esti-
mate increases tôd2 = 1.09 which is close to unity but higher than one suggesting
a potential unit root. This estimate is based onT2 = 625observations. Again, the
ARFIMA model based estimate (d̂2 = 0.949) is lower but even closer to unity.
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In order to carry out a formal and suitable test of the unit root hypothesis against
long memory we apply the fractional Dickey-Fuller test proposed by Dolado et al.
(2002). Their procedure is based on the test regression

∆δ0yt = φ∆δ1yt−1 +
p

∑
i=1

λi∆yt−i + εt

whereδ0 = 1 in our application,δ1 is unknown and has to be estimated from the
data. Note, that the estimator forδ1 has to beT1/2-consistent, we therefore em-
ploy the parametric NLS estimator proposed by Beran (1995). Regarding the test
regression the relevant pair of hypotheses isH0 : φ = 0 versusH1 : φ < 0. Dolado
et al. (2002) prove that the limiting distribution of thet-statistic forH0 is standard
normal if 0.5≤ δ1 < 1 which is the relevant case in our application. For further
details, the reader is referred to Dolado et. al (2002). As before, the maximum
lag length is set equal top4 = [4(T2/100)1/4] = 6. The optimal length is chosen
with the Schwarz information criteria and equals zero.The estimated test regression
without lags of4yt is given by

∆yt = 0.245∆0.949yt−1 + ε̂t .

Since the test statistictφ = 6.593is not significant at conventional levels (p-value=
1), we are not able to reject the null hypothesis of a unit root in the second sub-
sample which hints at a rationale bubble because the no-bubbles restriction is not
fulfilled in this case.

4 Conclusions

This paper provides evidence that the time series properties of the S&P 500 log
dividend yield are changing over time. We found by applying recent tests that the
time series is stationary fractionally integrated before November, 1955 and exhibits
a unit root afterwards. The presence of a unit root in the second subsample suggests
a rationale bubble in the S&P 500 stock price.
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