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Abstract

This paper presents a new algorithm for the dynamic Multi-Level Ca-

pacitated Lot Sizing Problem with Setup Carry-Overs (MLCLSP-L). The

MLCLSP-L is a big-bucket model that allows the production of any num-

ber of products within a period, but it incorporates partial sequencing of the

production orders in the sense that the first and the last product produced

in a period are determined by the model. We solve a model which is appli-

cable to general bill-of-material structures and which includes minimum lead

times of one period and multi-period setup carry-overs. Our algorithm solves
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a series of mixed-integer linear programs in an iterative so-called Fix-and-

Optimize approach. In each instance of these mixed-integer linear programs a

large number of binary setup variables is fixed whereas only a small subset of

these variables is optimized, together with the complete set of the inventory

and lot size variables. A numerical study shows that the algorithm provides

high-quality results and that the computational effort is moderate.

1 Introduction

Capacitated dynamic lot sizing deals with the problem of determining time-phased

production quantities that meet both given external demands and given capacity

limits of the production system. The problem arises in production environments

where the changeover of a resource from one product type to another causes setup

time and/or setup costs. Numerous models to support dynamic lot sizing for single-

level as well as multi-level production systems have been presented over the last

decades.

Big-bucket model formulations such as the (single-level) Capacitated Lot Sizing

Problem (CLSP) and its multi-level extension, the Multi-Level Capacitated Lot Siz-

ing Problem (MLCLSP), determine production quantities and periods only, without

consideration of the actual production sequence of the orders within a time period.

This type of modeling has the advantage that it allows a flexible re-sequencing of

orders within a period, at the cost, however, that a detailed production plan must

be generated in a subsequent planning step. On the other hand, a number of model

variations completely integrate lot sizing and sequencing decisions, however, at a

significant computational cost. These so-called small-bucket models are known as

the Discrete Lot Sizing and Scheduling Problem (DLSP), the Continuous Setup

Lot Sizing Problem (CSLP) and the Proportional Lot Sizing and Scheduling Prob-

lem (PLSP), among others. For recent detailed reviews on these models see e. g.

Staggemeier and Clark (2001) and Sürie and Stadtler (2003).

In order to ensure that an MLCLSP solution can be transformed into a feasible
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production schedule, a planned lead time of at least one period must be introduced

for each component product. In a multi-level bill-of-material (BOM) structure the

cumulated flow time (in periods) from the beginning of the processing of the raw

material to the completion of the finished product is then equal to the number of

levels in the BOM structure. As for a period length of one week with a ten-level

BOM structure this would result in a minimum flow time of at least ten weeks,

the cumulated flow time can only be shortened by a reduction of the period length

to, say, one day. However, if the time buckets are too small, then only a small

number of products will be produced within a single period and in this case it will

often happen that production in period t is continued in period t+ 1 (and possibly

periods t+2, . . .) without an additional setup. The big-bucket MLCLSP formulation

counts this as a second setup, and therefore with short period lengths provides only

a rough estimate of the real number of setups.

The Multi-Level Capacitated Lot Sizing Problem with Linked Lot Sizes (MLCLSP-

L), which is an extension of the big-bucket MLCLSP, allows to carry over the setup

state of a resource to the next periods following the setup. This leads to more ef-

ficient setup patterns and shorter planning-induced flow times. In addition, due to

its more realistic book-keeping of setups, it allows to find a feasible solution in cases

when the standard MLCLSP formulation would fail. This is particularly likely in

situations with high utilization.

In the current paper, we consider the MLCLSP-L with multiple setup carry-

overs that allows to preserve the setup state of a resource over multiple periods. We

apply the Fix-and-Optimize heuristic presented in Helber and Sahling (2008) to this

variant of the MLCLSP-L. The Fix-and-Optimize heuristic, which is directly based

on the formulation of the problem as a linear mixed-integer program, is rather

flexible with respect to the incorporation of additional constraints. For example,

constraints such as minimum lot sizes or maximum inventory levels can easily be

included into the model without requiring a change to the solution approach. In

addition, it has shown to outperform other well-known heuristics for multi-level lot

sizing with respect to the solution quality.
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The remainder of this paper is organized as follows: In Section 2 the related

literature is discussed. In Section 3 we present a formal statement of the optimization

problem. The Fix-and-Optimize heuristic is described in Section 4. Numerical

results are discussed in Section 5. We conclude with some directions for further

research in Section 6.

2 Related literature

The option of setup carry-over was first formulated by Dillenberger et al. (1993,

1994), however, without consideration of the trade-off between setup and holding

cost which is typical for lot size optimization. Haase (1994) added multi-period setup

carry-overs to the CLSP and presented a backward scheduling procedure based on

randomized regrets for the resulting CLSP-L. In a later paper, Haase (1998) treated

the case of a single-period setup carry-over with a local search heuristic. Gopalakr-

ishnan et al. (1995), Gopalakrishnan (2000) and Gopalakrishnan et al. (2001) de-

veloped modeling variants that differ with respect to the modeling of setups. Sox

and Gao (1999) proposed a Lagrangean heuristic for a CLSP-L without setup times.

Valid inequalities for the CLSP-L are derived by Sürie and Stadtler (2003) and

used in a time-oriented decomposition approach with overlapping time windows.

A standard MIP solver is applied to the subproblems that are defined during the

decomposition. Quadt (2004) and Quadt and Kuhn (2005) use aggregation and

decomposition techniques to solve a CLSP-L that is formulated for the bottleneck

resource in a multi-stage production system. Gupta and Magnusson (2005) study

the case of both sequence-dependent setup times and costs.

The MLCLSP-L extends the MLCLSP through the inclusion of setup carry-overs.

The MLCLSP which was introduced by Billington (1983) has been subject to sub-

stantial research for more than three decades. Tempelmeier and Helber (1994), Hel-

ber (1995) and Tempelmeier and Derstroff (1996) presented early product-oriented

decomposition approaches for the MLCLSP with general bill-of-material structures.

The heuristic proposed by Tempelmeier and Derstroff (1996) uses Lagrangean re-
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laxation to decompose the original problem into a number of uncapacitated single-

product Wagner-Whitin problems (see Wagner and Whitin (1958)). This yields a

lower bound on the objective function value and a starting point for a heuristic

finite scheduling procedure that aims at a feasible production plan and an upper

bound on the minimum objective value. A linear programming-based approach

that uses coefficient modification is proposed by Katok et al. (1998). A mixed-

integer programming-based heuristic with internally rolling schedules is developed

by Stadtler (2003). He solves a series of interrelated subproblems with overlapping

time windows. The simple plant location formulation of the lot sizing problem is

used to speed up the optimization process of the subproblems. The same idea is

used for the single-level case treated in Sürie and Stadtler (2003). Stadtler (2003)

reports high-quality solutions for small to medium-sized problems. However, as lead

times are neglected, it is usually impossible to generate a feasible schedule from an

MLCLSP solution. A similar algorithm is presented by Rossi (2003).

Pitakaso et al. (2006) propose to decompose the MLCLSP with respect to prod-

ucts and periods. The form of the decomposition, which results in a sequence

of subproblems comprising different sub-rectangles of the product-period matrix, is

governed by an ant colony optimization (ACO) meta heuristic. Another population-

based “memetic” algorithm is proposed by Berretta and Rodrigues (2004). Tem-

pelmeier and Buschkühl (2008) consider the MLCLSP-L with single-period setup

carry-overs and modify the Lagrangean heuristic of Tempelmeier and Derstroff

(1996) to deal with this situation.

Helber and Sahling (2008) develop the Fix-and-Optimize approach for the ML-

CLSP and compare it to the heuristics of Tempelmeier and Derstroff (1996) and

Stadtler (2003). The numerical results show that this approach outperforms Stadtler’s

heuristic with respect to both solution time and quality and the Lagrangean heuris-

tic of Tempelmeier and Derstroff with respect to the solution quality. In the sequel

the Fix-and-Optimize approach is adjusted to solve the MLCLSP-L with linked lot

sizes and multiple setup carry-overs.

5



3 Problem statement and model formulation

We consider a general multi-level product structure with several end products. The

external demand dkt for product k in period t is given and must be satisfied without

backorders. For each product k an initial inventory ŷk is given. Each product

is produced on a single resource j with limited capacity bjt per period, that can

be extended by using overtime Ojt. In the heuristic to be presented, overtime is

basically used as a slack variable in order to guarantee that the MIP solver always

finds a feasible solution. Product k can only be produced in period t if the associated

resource has the required product-specific setup state γkt = 1. This setup state can

either have been carried over from the preceding period t − 1 or it can result from

a new setup operation performed in period t. In the former case, the binary setup

carry-over variable ωkt is set to 1. This may happen over multiple consecutive

periods. A setup operation may cause setup costs as well as setup time.

Our objective is to determine production quantities Qkt and end-of-period inven-

tory levels Ykt for product k in period t as well as a setup pattern that minimize the

sum of setup, holding and overtime costs. In the following mathematical formulation

of the optimization model the notation in Table 1 is used.
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Table 1: Notation used for model MLCLSP-L

Indices and index sets:
J set of resources (j ∈ {1, . . . , J})
K set of products (k ∈ {1, . . . , K})
T set of periods (t ∈ {1, . . . , T})
Kj set of products produced by resource j
Nk set of immediate successors of product k

Parameters:
aki number of units of product k required to produce one unit of product i

(Gozinto factor)
bjt available capacity of resource j in period t
Mkt big number
dkt external demand of product k in period t
ocj overtime cost per unit of overtime at resource j
hk holding cost of product k per unit and period
sk setup cost of product k
tpk production time per unit of product k
tsk setup time of product k
ŷk physical initial inventory for product k

Decision variables:
Ojt overtime at resource j in period t
Qkt production quantity (lot size) of product k in period t
Ykt inventory of product k at the end of period t
Y 0
k initial inventory of product k
γkt binary setup state variable of product k in period t
ωkt binary setup carry-over variable for item k at the beginning of period t
νjt auxiliary variable for resource j in period t
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Model MLCLSP-L

min Z =
∑
k∈K

∑
t∈T

[
sk · (γkt − ωkt) + hk · Ykt

]
+
∑
j∈J

∑
t∈T

ocj · Ojt (1)

subject to:

Yk,t−1 +Qkt −
∑
i∈Nk

aki ·Qi,t+1 − Ykt = dkt, ∀k, t = 2, . . . , T − 1 (2)

Yk,T−1 +QkT − YkT = dkT , ∀k (3)

ŷk −
∑
i∈Nk

aki ·Qi1 − Y 0
k = 0, ∀k (4)

Y 0
k +Qk1 −

∑
i∈Nk

aki ·Qi2 − Yk1 = dk1, ∀k (5)

∑
k∈Kj

[
tpk ·Qkt + tsk · (γkt − ωkt)

]
≤ bjt +Ojt, ∀j, t (6)

Qkt ≤Mkt · γkt, ∀ k, t (7)∑
k∈Kj

ωkt ≤ 1, ∀j, t (8)

ωkt ≤ γk,t−1, ∀k, t (9)

ωkt ≤ γkt, ∀k, t (10)

ωkt + ωk,t+1 ≤ 1 + νjt, ∀j, k ∈ Kj, t (11)

(γkt − ωkt) + νjt ≤ 1, ∀j, k ∈ Kj, t (12)

ωk1 = 0, ∀k (13)

Qkt, Ykt ≥ 0, ∀k, t (14)

Y 0
k ≥ 0, ∀k (15)

Ojt, νjt ≥ 0, ∀j, t (16)

γkt, ωkt ∈ {0, 1}, ∀k, t (17)

The objective function (1) defines the sum of the setup, holding and overtime

costs. A setup operation with associated setup costs and setup time for produkt k

8



occurs in period t if the resource is in the setup state (γkt = 1) and there has been

no setup carry-over (ωkt = 0).

The inventory balance equations (2) to (5) reflect the planned lead time in the

multi-level production structure. From the initial physical inventory ŷk for product

k only Y 0
k units enter the balance equations (5) for product k in period t = 1 as the

remaining units are required by the successors items i ∈ Nk in the first period, as

described in equation (4). Given the lead time of one period between production

stages, it is always possible to transform the setup pattern and the lot sizes into

a detailed schedule for the resources. Constraints (6) ensure that the production

quantities and setup times meet the capacity constraints for all resources.

The inequalities (7) state that a product can only be produced in a period if

its associated resource is in the correct setup state. According to inequalities (8), a

setup carry-over into period t is possible for at most one product k at each resource j.

Inequalities (9) and (10) require that in case of a setup carry-over, the resource is

set up for product k both in periods t − 1 and t. Constraints (11) and (12) model

multi-period setup carry-overs. If the setup state of a resource is carried over from

period (t− 1) to t and further to period (t+ 1), then no setup operation must occur

in period t. Thus, ωkt + ωk,t+1 = 2 and νjt = 1. Hence, according to (10), γkt = 1,

and (12), (γkt−ωkt) = 0, which means that the resource remains in the setup state k.

Equalities (13) state that there is no initial setup state for the resources in

the first period. Constraints (14) – (16) are the non-negativity constraints for the

production quantity, inventory level, overtime and auxiliary variables. Setup state

and carry-over variables are restricted to be binary, according to constraint (17).

Formally, this version of the MLCLSP-L is always feasible as there is no limit on

overtime. The overtime cost coefficient ocj can be used to price out undesired

overtime from the solution by the algorithm presented in the next section.

The solution of model MLCLSP-L with the help of a MIP solver is usually

restricted to very small problem instances, as the linear-programming relaxation

of the above ”inventory and lot size” formulation provides only relatively weak

lower bounds. However, the simple plant location reformulation applied by Stadtler
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(2003) to the MLCLSP can also be used to reformulate model MLCLSP-L. We take

advantage of this reformulation to compute lower and upper bounds on the objective

function values as a benchmark in our numerical study in Section 5.

4 The Fix-and-Optimize Algorithm

4.1 Basic idea

The reasoning behind our algorithm for the MLCLSP-L is that the number (2|K|·|T |)

of binary setup state and setup carry-over variables γkt and ωkt determines most of

the numerical effort in the Branch&Bound process required to solve the mixed-

integer program. By contrast, the number of real-valued variables is of secondary

importance. We therefore iteratively solve a series of subproblems s ∈ S that are

derived from the MLCLSP-L in a systematic manner and that can be solved quickly.

In each iteration of the decomposition algorithm we treat one such subproblem s ∈ S.

For each subproblem s, most of the binary setup state variables γkt are set to a fixed

value γfixkt . The same holds true for the binary setup carry-over variables ωkt, which

are set to ωfixkt . This leads to a very limited number of non-fixed binary variables

which are optimized in a given subproblem. A standard MIP solver is then used

to solve the subproblem to optimality. From the solution of the subproblem we

determine the new temporary solution for the binary setup variables. The next

iteration of the algorithm treats a new subproblem with a different subset of fixed

binary variables. However, in each subproblem we consider the complete set of

real-valued decision variables. This eliminates the need to freeze a subset of the

real-valued decision variables as well as to take care of end-of-horizon effects as

in approaches with internally rolling schedules, e. g. the one proposed by Stadtler

(2003). Note that our approach differs from a Relax-and-Fix heuristic (Pochet and

Wolsey 2006, pp. 109) as we never deal with relaxed binary setup variables in our

subproblems.
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4.2 Definition of subproblems

In order to define a subproblem, we use the additional notation shown in Table 2.

Table 2: Additional notation for the definition of a subproblem
Sets:
(k, t) ∈ KT set of all product-period combinations
KT optγ,s ⊆ KT set of product-period combinations for which binary setup state

variables γkt are optimized in the current subproblem (KT = K×T )
KT optω,s ⊆ KT set of product-period combinations for which binary setup carry-

over variables ωkt are optimized in the current subproblem
KT fixγ,s ⊆ KT set of product-period combinations for which binary setup state

variables γkt are fixed in the current subproblem
KT fixω,s ⊆ KT set of product-period combinations for which binary setup carry-

over variables ωkt are fixed in the current subproblem
Parameters:
γkt exogenous value of the fixed setup state variables γkt
ωkt exogenous value of the fixed setup carry-over variables ωkt
Zk estimated costs associated to product k

A subproblem MLCLSP-L-SUB is derived from model MLCLSP-L simply by

adding the constraints

γkt = γkt ∀ (k, t) ∈ KT fixγ,s . (18)

ωkt = ωkt ∀ (k, t) ∈ KT fixω,s . (19)

This reduces the solution space with respect to the binary variables to the sets

KT optγ,s = KT \ KT fixγ,s and KT optω,s = KT \ KT fixω,s . We are aware that this is not the

mathematically most compact form to state the model. However, modern solvers

automatically detect and resolve the redundancies of the current formulation.

In our algorithm, we decompose the original problem into ordered sets s ∈ S of

subproblems. The relative number

∆s =
|KT optγ,s|+ |KT optω,s|

2 · |KT |
(20)

of non-fixed binary variables in subproblem s determines to which degree the lot

sizing decision w. r. t. to products and periods are made simultaneously in an in-
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stance of model MLCLSP-L-SUB. The larger ∆s is for a given instance of problem

MLCLSP-L-SUB, the more time-consuming is the solution process and the higher

will be the quality of the solution. If an instance s of problem MLCLSP-L-SUB

contains only few non-fixed setup variables, i.e, 0 < ∆s � 1, these should be se-

lected very carefully, as there should be strong interdependencies between these

variables in order to offer trade-offs to be used within the optimization. We propose

the following three ways of decomposing the problem into ordered sets s ∈ S of

subproblems:

• Product-oriented decomposition: In this type of decomposition, in a given

subproblem s all binary setup state variables γkt are optimized for a single

product k over the complete planning horizon |T |. In addition, we optimize

all binary setup carry-over variables ωk̂t for all products k̂ ∈ Kj(k) that require

the same resource j(k) as product k.

• Resource-oriented decomposition: Here, with respect to the setup state

variables γkt, each subproblem s is defined for a (single) resource j and a time

window of four consecutive periods. Unless this time window contains the

first or last period, the setup carry-over variables ωkt refer to all the periods

within this time window and the one period immediately following the current

time window. Assume, for example, that in the current subproblem we are

dealing with the setup states in periods 3, 4, 5 and 6. Then we would consider

setup carry-overs from periods 3 to 7, again for all products k ∈ Kj. In two

successive subproblems s related to the same resource j we use an overlap of

two periods, e.g. periods 1 to 4 for the first subproblem, periods 3 to 6 for the

second one etc.

• Process-oriented decomposition: With respect to the input-output-rela-

tionships between products, in each subproblem s we consider the setup state

variables γkt of product k and one of its immediate successors i ∈ Nk for a

subset of periods t. For each edge in the BOM graph we define two successive

subproblems s such that the first one covers the first half of the planning
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horizon and the other one the second half. In addition, we consider the setup

carry-over variables ωkt for all products k̂ that require either the same resource

as product k or as product k’s immediate successor i, i. e. k̂ ∈ (Kj(k) ∪ Kj(i)).

From these setup carry-over variables we consider the subset defined for the

first half of the periods plus the immediately succeeding period in the first

subproblem (periods 1 to 5 in our example) and the second half (periods 5 to

8) in the second subproblem.

Note that each type of decomposition reflects a specific perspective on the overall

optimization problem. The decomposition types are combined in the following four

variants of our algorithm:

• Variant 1: Product-oriented decomposition only

• Variant 2: Product-oriented decomposition first, then resource-oriented de-

composition

• Variant 3: Product-oriented decomposition first, then process-oriented de-

composition

• Variant 4: Product-oriented decomposition first, then resource-oriented de-

composition, finally process-oriented decomposition

We observed that it can be worthwhile to treat each subproblem more than once,

in particular until a local optimum is reached, which suggests an iterative layout of

the heuristic.

The product-oriented decomposition is the first step in all four variants of the

algorithm. In this type of decomposition, we found it useful to start with those

products that are responsible for most of the costs. To compute product-specific

costs, we allocate overtime costs proportionally to the capacity requirements of the

products. Given that the latter are not known in advance, we estimate product-

specific costs Zk from the solution of the LP-relaxation of problem MLCLSP-L for
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each product type as follows:

Zk =
∑
t∈T

(sk · (γrelkt − ωrelkt ) + hk · Ykt)

+

∑
t∈T

[
tpk ·Qkt + tsk · (γrelkt − ωrelkt )

]
·
[∑
t∈T

ocj(k),t ·Oj(k),t

]
∑

i∈Kj(k)

∑
t∈T

[
tpi ·Qit + tsi · (γrelit − ωrelit )

] (21)

where γrelkt and ωrelkt are the optimum values of the binary setup variables γkt and ωkt

in the LP-relaxation and Qkt, Ykt and Oj(k),t are the corresponding optimum values

of the other decision variables (lot sizes, inventory, overtime). In this cost allocation

scheme, the cost of overtime is charged to the products proportionally to the capacity

usage of the respective resource. We order the products according to decreasing Zk

in the ordered set S of subproblems for the product-oriented decomposition.

4.3 The algorithm

The basic structure of our method is outlined in Algorithm 1. At the beginning, we

assume that each resource has the required setup state for all products it can possibly

produce during each period. Given this setup state pattern, we initially determine

production quantities, inventory levels, planned overtime and a first setup carry-over

pattern. This initial solution yields an initial objective value Znew. Particularly in

the presence of setup times, this solution may be economically unattractive, but we

observed that the iterative algorithm prices out unnecessary setups and overtime

quickly. After the initialization, the algorithm iterates through the ordered set of

subproblems according to the selected variant of the algorithm (1 to 4, see above)

either once (`max = 1) or until it reaches a local optimum (`max = ∞). Then it

terminates and reports the solution that leads to the local optimum Zold.

Note that each solution to a subproblem s yields an objective value Z that is at

least as good as the currently best value Zold. For this reason, a new solution is only

accepted if it yields lower cost than the currently best solution. We use a boolean

variable CapFeas to indicate whether a capacity feasible solution has already been
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found. A capacity infeasible solution (with overtime) is never accepted as a new

solution if there is a known capacity feasible solution already.

Algorithm 1 Fix-and-optimize algorithm

γkt = 1,∀(k, t) ∈ KT
KT fixγ,s ← KT
KT fixω,s ← ∅
solve MLCLSP-L-SUB and determine objective function value Z
Znew = Z
ωkt = ωkt,∀(k, t) ∈ KT
if
∑

j∈J
∑

t∈T Ojt = 0 then
CapFeas= yes

else
CapFeas= no

end if
` = 0
repeat
` = `+ 1
Zold = Znew

for each decomposition S in the current variant of the algorithm do
for each subproblem s ∈ S do

determine KT optγ,s and KT fixγ,s = KT \KT optγ,s for subproblem s

determine KT optω,s and KT fixω,s = KT \KT optω,s for subproblem s
solve MLCLSP-L-SUB and determine objective function value Z
if
∑

j∈J
∑

t∈T Ojt = 0 then
CapFeasnew= yes

else
CapFeasnew= no

end if
if Z < Zold and {CapFeasnew or [not(CapFeasnew) and not(CapFeas)]}
then
γkt = γkt,∀(k, t) ∈ KT optγ,s

ωkt = ωkt,∀(k, t) ∈ KT optω,s

Znew = Z
if CapFeasnew then
CapFeas= yes

end if
end if

end for
end for

until ` = `max or Znew ≥= Zold
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5 Numerical Results

5.1 Test sets and reference values

In order to evaluate the solution quality of the proposed algorithm, we used test

instances developed and explained in detail by Tempelmeier and Buschkühl (2008).

A total number of 1,920 different problem instances with up to 40 products, 16

periods, and 6 resources are grouped into six classes as described in Table 3. A de-

tailed description of the test instances is downloadable from http://www.scmp.uni-

koeln.de/publikationen/ORS2008MLCLSPL.zip.

Table 3: Dimensions of the test sets
Products Demand periods Resources Test instances

Class 1 10 4 3 480
Class 2 10 8 3 480
Class 3 20 8 6 240
Class 4 20 16 6 240
Class 5 40 8 6 240
Class 6 40 16 6 240

We compare our results to the lower and upper bounds obtained by a truncated

Branch&Bound method using CPLEX 10.0 on a Unix workstation with eight parallel

UltraSPARC-III-processors with 0.9 GHz each. Furthermore, we used the simple

plant location reformulation of the MLCLSP-L. In many cases we were unable to

compute the optimal solution within a given time limit of one CPU hour for each

problem instance. The Fix-and-Optimize algorithm was implemented in Delphi on

a 2.13 GHz Intel Pentium Core2 machine, whereby the CPLEX 10.2 callable library

was used to solve the different instances of Problem MLCLSP-L-SUB.

Depending on the variant of the algorithm as described in Section 4, in each

instance of Class 1, 10% to 60% of the binary setup variables are considered simul-

taneously, i.e. 0.1 ≤ ∆s ≤ 0.6 in any one instance of Problem MLCLSP-L-SUB.

This fraction of the optimized binary variables decreases for larger problem instances

with more products and periods. In Class 2 only 10% to 33.1% of the binary vari-

ables were optimized in a single instance of Problem MLCLSP-L-SUB. Furthermore,

in Class 3, 10% to 36.3%, and in Class 4, 5% to 9.1% of the binary variables are
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determined simultaneously. For Class 5, this range was 2.5% to 21.6% of the binary

variables and 2.5% to 10.8% in Class 6.

5.2 Analysis of the numerical results

The numerical results are presented in Tables 4 to 6. We report the following values

for the four variants of the algorithm: “ADUB” denotes the average relative devia-

tion of the solution from the upper bound obtained by the truncated Branch&Bound

approach as explained above. “ADLB” denotes the average relative deviation of the

heuristic solution from the strongest lower bound for the truncated Branch&Bound

process.“Feas” is the fraction of problem instances, for which a feasible solution, i. e.

a solution without overtime, could be found. Finally, “Time” is the computation

time in CPU seconds.

Table 4: Results for Class 1 and Class 2

Problem Class 1 Problem Class 2

ADUB ADLB Feas Time ADUB ADLB Feas Time
[%] [%] [%] [sec] [%] [%] [%] [sec]

Single iteration (lmax = 1)

Var 1 1.47 1.47 100.00 0.08 1.38 1.39 100.00 0.18
Var 2 0.18 0.18 100.00 0.11 0.33 0.34 100.00 0.41
Var 3 1.41 1.41 100.00 0.20 1.28 1.28 100.00 0.47
Var 4 0.18 0.18 100.00 0.24 0.33 0.33 100.00 0.70

Multiple iterations (lmax =∞)

Var 1 0.74 0.74 100.00 0.12 0.83 0.84 100.00 0.29
Var 2 0.12 0.12 100.00 0.18 0.23 0.24 100.00 0.60
Var 3 0.73 0.73 100.00 0.27 0.81 0.81 100.00 0.64
Var 4 0.12 0.12 100.00 0.31 0.22 0.22 100.00 0.88
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Table 5: Results for Class 3 and Class 4

Problem Class 3 Problem Class 4

ADUB ADLB Feas Time ADUB ADLB Feas Time
[%] [%] [%] [sec] [%] [%] [%] [sec]

Single iteration (lmax = 1)

Var 1 1.34 1.34 100.00 0.51 0.91 1.37 100.00 1.09
Var 2 0.55 0.55 100.00 1.02 0.29 0.74 100.00 3.21
Var 3 1.16 1.16 100.00 1.51 0.78 1.24 100.00 3.11
Var 4 0.52 0.52 100.00 2.10 0.27 0.73 100.00 5.23

Multiple iterations (lmax =∞)

Var 1 0.81 0.81 100.00 0.83 0.58 1.04 100.00 1.77
Var 2 0.39 0.39 100.00 1.51 0.15 0.61 100.00 4.57
Var 3 0.80 0.80 100.00 1.98 0.56 1.02 100.00 4.18
Var 4 0.37 0.38 100.00 2.67 0.15 0.60 100.00 6.94

Table 6: Results for Class 5 and Class 6

Problem Class 5 Problem Class 6

ADUB ADLB Feas Time ADUB ADLB Feas Time
[%] [%] [%] [sec] [%] [%] [%] [sec]

Single iteration (lmax = 1)

Var 1 1.49 1.73 100.00 1.59 0.90 1.55 100.00 3.86
Var 2 0.60 0.83 100.00 2.71 0.32 0.97 100.00 8.57
Var 3 1.00 1.23 100.00 5.20 0.58 1.22 100.00 12.11
Var 4 0.50 0.72 100.00 6.56 0.25 0.89 100.00 16.76

Multiple iterations (lmax =∞)

Var 1 0.75 0.98 100.00 2.65 0.47 1.12 100.00 5.97
Var 2 0.44 0.67 100.00 4.28 0.24 0.88 100.00 13.03
Var 3 0.65 0.88 100.00 7.00 0.40 1.04 100.00 15.88
Var 4 0.38 0.61 100.00 8.82 0.19 0.83 100.00 23.56

We observe the following: The Fix-and-Optimize Heuristic determined a feasible

solution for all test instances. Furthermore, in the case of Variant 1 (product-

oriented decomposition) the solution found after a single iteration leads to a maxi-

mum average deviation within a problem class of 1.5% from the lowest-known upper

bound. Furthermore, a single iteration of Variant 2 (resource-oriented decomposi-

tion) results in a better solution quality than multiple iterations of Variant 1. Vari-

ant 2 outperforms Variant 3 (process-oriented decomposition). However, a combi-
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nation of both (Variant 4) leads to better solutions than Variant 2.

Taking all problem classes together, the average deviation of the solution ob-

tained with Variant 4 from the best-known upper bound is less than 0.5%. As

expected, the solution time increases with the number of binary variables. Still,

even in Class 6, our solution approach needs only 23.5 CPU seconds on average to

generate high-quality solutions.

6 Conclusions and Outlook

We have presented an algorithm to solve the MLCLSP-L with multi-period setup

carry-overs. In the underlying model we assume a lead time of one period between

production stages in order to guarantee that the production plans can be consistently

disaggregated into a detailed schedule. The algorithm was tested against a large set

of test problems. It appears that the crucial component of the algorithm is the

selection of a good subset of products and periods over which the setup carry-over

variables are optimized. If this subset fits well to the respective subset of setup state

variables, the Fix-and-Optimize approach appears to work very well.

Future work will address the case of parallel machines, which makes the MLCLSP-

L formulation much more relevant for industrial applications. If multiple identical

machines within a machine group exist, it may be economically attractive to have

some machines continuously setup over several periods for a product with high reg-

ular demand while the setup of the other machines producing products with low

and erratic demand is frequently changed. It might also be interesting to apply the

Fix-and-Optimize approach to other small-bucket lotsizing models and to incorpo-

rate the limited capacity of the setup operators in the solution approach. Research

in this direction is under way.
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