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Abstract

We interpret the Open Method of Coordination (OMC), recently adopted by

the EU as a mode of governance in the area of social policy and other fields, as

an imitative learning dynamics of the type considered in evolutionary game theory.

The best-practise feature and the iterative design of the OMC correspond to the

behavioral rule “imitate the best.” In a redistribution game with utilitarian gov-

ernments and mobile welfare beneficiaries, we compare the outcomes of imitative

behavior (long-run evolutionary equilibrium), decentralized best-response behavior

(Nash equilibrium), and coordinated policies. The main result is that the OMC

allows policy coordination on a strict subset of the set of Nash equilibria, favoring

in particular coordination on intermediate values of the policy instrument.
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1 Introduction

Over the last fifteen years, a new mode of governance has emerged within the European

Union (EU). Since the European Council summit in Lisbon (March 2000), it has been

coined the Open Method of Coordination (OMC). Initially designed for, and applied in,

social policy (social inclusion, health care, pensions and long-term care), various European

Councils approved of the extension of the OMC to a broad spectrum of policy areas,

encompassing, e.g., immigration, technology and environment.

The Presidency Conclusions of the Lisbon European Council1 define the OMC as “a means

of spreading best practice and achieving greater convergence towards the main EU goals.”

The OMC is best described as an iterative process of mutual learning and imitation among

governments.2

Roughly, the OMC proceeds as follows (see Figure 1 for a sketch): Having agreed on

EU-wide common objectives and indicators, EU member states individually design and

implement their national policies. After a certain period, these national strategies are

jointly evaluated and compared within the EU. Best practices are identified and member

states are encouraged (but not forced) to adopt them. The process is then iterated.

The OMC induces member states to systematically compare themselves to one another

in terms of their (relative) policy performance. It promotes the imitation of successful

policies, thus aiming at policy convergence (Trubek and Mosher, 2001). Diversity, though,

is not disallowed (Zeitlin, 2005; Daly, 2007). The OMC is a soft-law method, leaving to

member states control of their policies (Pochet, 2005), thus keeping agency costs and losses

in national sovereignty minimal (Borrás and Jacobsson, 2004). The rationale behind the

OMC is the hope that the quality of policy decisions improves and that policy-learning

through benchmarking is enhanced.

In this paper, we provide a theoretical model of the OMC and an assessment of its

performance in a social policy (redistribution) setting. Following the design depicted in

1Available at http://europa.eu.int/council/off/conclu/mar2000/index.htm
2While the OMC still lacks a unique and precise definition, there seems to be a consensus

among its commentators that “learning” and “imitation of best practise” are core ingredients of the

method. Detailed information on the OMC in the area of social policy in the EU is available at

http://ec.europa.eu/employment social/spsi/the process en.htm.
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Figure 1: The iterative OMC process.

Figure 1, we model the OMC as an iterative process with an emphasis on mimicking best

practices that, at the same time, allows for country-specific deviations. The resulting

political process exhibits evolutionary learning with imitation and experimentation. This

allows us to employ concepts and results from evolutionary game theory in the analysis of

the OMC. Specifically, we argue that the OMC leads to the emergence of evolutionarily

stable strategies (ESS). An ESS is a strategy which, once chosen by all players, cannot

be invaded by any competing alternative strategy. ESS are also the outcome of imitative

learning. For an iterated process like the OMC with its emphasis on copying best practices

evolutionary stability, thus, appears to be the appropriate solution concept.

In its most common usage, evolutionary game theory considers large populations of players

who are randomly matched to recurrently play some game. In that case, ESS are always

Nash equilibrium strategies.3 For the application in this paper, however, the number

of players (say, the now 27 governments of the EU member states) is far from infinite.

Therefore, finite-population results have to be applied. With a small number of players,

3Moreover, they are asymptotically stable in the replicator dynamics (see, e.g., Weibull, 1995). The

replicator dynamics, in turn, can be justified on the basis of imitation of other randomly observed,

successful strategies (Björnerstedt and Weibull, 1996). In this sense, a central contribution of evolutionary

game theory has been to show that boundedly rational behavior, like imitation, does not preclude the

emergence of Nash equilibrium and, thus, of rational outcomes in the aggregate.
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ESS is not necessarily a refinement of Nash equilibrium. Rather, ESS can be interpreted

as Nash equilibrium strategies for a game defined in relative (rather than absolute) payoffs

(see Schaffer, 1988). This makes the concept suitable for the analysis of the OMC, where

policy adoption is recommended on the basis of governments’ relative performance. The

tension between finite-population ESS and Nash equilibrium will not show up in our

model. In Section 3 we will show that all ESS of our model are indeed Nash equilibria of

the game.4

We do want to stress the importance of the strategic effects arising in a setting with a finite

number of players. In our analysis we compare the ESS resulting from the OMC to Nash

equilibria and co-operative solutions of the policy competition game. These two solution

concepts represent the traditional modes of governance in the EU: they are the outcomes

when, respectively, policies remain fully decentralized (fiscal competition) or are fully

coordinated (integration or community method). In general, all these concepts differ in

the presence of payoff externalities (in our model: fiscal externalities). It therefore makes

sense to put the OMC into an explicitly game-theoretic context, even though the literature

on the OMC hardly ever mentions strategic interdependencies as a relevant impact factor

on the method’s performance.5 Our main result will be that the ESS coming out of the

OMC are indeed a subset of the set of Nash equilibria. However, we will find no general

logical nexus between ESS and efficiency.

More specifically, we embed the OMC into a standard game of redistribution from rich

to poor in a multi-country setting with labour mobility. As a stylized example of social

policy, this application seems reasonably close to the contexts for which the OMC was

originally designed. In our model, the poor beneficiaries of transfers are internationally

mobile and settle where the welfare state is most generous. Governments are inequality-

averse utilitarians and, thus, have a preference for redistribution. With decentralization,

transfer policies are best responses to the policies of other jurisdictions. The decentral-

4The relation between Nash equilibrium and ESS for finite populations has been explored by Ania

(2008) and Guse et al. (2008) and is still not fully understood.
5A few exceptions should be mentioned: Pestieau (2005) and Coelli et al. (2008) relate the OMC

to yardstick competition and its idea that information spill-overs would enable citizens to compare the

performance of their governments with that of goverments elsewhere and then to punish and reward

politicians. However, no formal analysis is provided. Büchs (2008) informally analyzes the OMC as

a “two-level” (more precisely: two-stage) game where governments first agree on objectives and then

implement policies to meet these objectives.
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ized redistribution game has a large set of Nash equilibria. With the OMC, however,

governments adopt imitative behavioral rules or, which turns out to be equivalent, choose

policies that perform best relative to what other governments do. Comparing the resulting

ESS with the Nash equilibria of the decentralized redistribution game, we find in Section 3

that the former are a strict subset of the latter. Hence, in our model the OMC cannot

achieve anything that could not also be obtained via a decentralized approach. However,

the OMC avoids some extreme outcomes that are possible under decentralization.

As our main contribution, we provide in Section 4 a dynamic approach that reflects the

iterative and imitative gist of the OMC as illustrated in Figure 1. For commonly agreed-

upon objectives (represented in the model by a social welfare function), governments

choose policies mimicking what was observed to be successful in previous periods; this

captures the idea of learning from other’s experience. The “open” nature of the OMC

process is modeled as experimentation: there is no binding commitment to adopt best

practices and countries are free to implement policies as they wish. We show that such a

process of imitation and experimentation indeed converges to an ESS. Not all ESS, how-

ever, are equally robust to experimentation. In particular, long-run equilibria come from

the “medium” range of ESS, resulting in a convergence towards moderate redistribution

policies where transfers to the poor are neither extremely low nor overly generous. Em-

pirically, a trend of convergence of social policies and the absence of a race-to-the-bottom

have been observed for OMC participants by Coelli et al. (2008). This fits well to our

theoretical observations.

To summarize, our paper makes the following points. Models of learning and evolution in

games provide a suitable framework for an analysis of the OMC. Evolutionary stability

captures both the static (relative performance) and the dynamic features (learning pro-

cess) of the OMC. The imitative process of the OMC converges and settles at intermediate

transfer levels. However, we will illustrate how the OMC can result in underprovision as

well as in overprovision of redistribution.

The rest of this paper is organized as follows. Section 2 sets up a game of decentralized

redistribution. Section 3 derives Nash equilibria and ESS for that game (static analysis).

Section 4 presents a formal analysis of the imitation dynamics induced by the OMC.

Section 5 discusses efficiency issues and some basic extensions of the model. Section 6

concludes. All proofs are relegated to the Appendix.
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2 The Model

2.1 Mobility and redistribution

There are n ≥ 2 identical countries that form an integrated economic area with free

mobility. Countries, indexed by i = 1, . . . , n, decide on whether and, if so, to what

degree to engage in redistribution among their residents. In each country there is one

very rich and immobile resident earning wR; this normalization to one rich per country

is innocuous in our framework. A large population of poor individuals, each earning

wP < wR, can benefit from redistribution. Poor individuals are perfectly mobile and

decide where to establish their residence based on the generosity of social policy. Let

ν ≥ n be the total size of the population of poor individuals in the economic area. Each

individual inelastically supplies one unit of labor. Thus, labor supply and basic earnings

do not depend on social policy; this guarantees that the total size of the population of

individuals affected by redistribution is constant.

We denote by ℓi (with 0 ≤ ℓi ≤ ν) the amount of mobile poor living in country i.

Redistribution from rich to poor is organized as follows. Each country i implements

a non-negative lump-sum transfer, si, payable to each poor within its jurisdiction and

financed by a lump-sum tax ti on its rich resident. Government budgets are required to

balance; i.e., the sum of transfers equals the amount of revenues raised:

si · ℓi = ti.

With such a redistribution scheme, consumption levels of the poor and the rich residing

in country i, respectively, amount to

cP
i = wP + si and cR

i = wR − ti = wR − ℓi · si.

The set of possible subsidies is restricted to S = [0, wR]. We henceforth write s =

(s1, . . . , sn) ∈ Sn for vectors of redistributive policies. It is convenient to use the notation

s = (si| s−i), where si is the subsidy chosen by country i and (with some abuse of notation)

s−i is the vector of subsidies chosen by countries other than country i or any permutation

thereof. Finally, denote si = max{s−i}; for any given i, si is the maximum subsidy chosen

by any country other than i.

Individuals care only about their consumption. Thus, mobile individuals establish their

residence in the country with the most generous redistribution policy. Given s = (si| s−i),
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denote by Mi(s−i) = {j 6= i|sj = si} the set of countries offering the highest subsidy when

we exclude i and let mi(s−i) = |Mi(s−i)| be its cardinality. Given a vector s of subsidies,

we denote the distribution of mobile poor by (ℓ1(s), . . . , ℓn(s)), where ℓi(s) denotes the

amount of poor residing in country i. Assume that whenever two countries, i and j,

choose the same transfer level, they attract the same amount of poor; i.e.

si = sj =⇒ ℓi(s) = ℓj(s).

As the mobile poor settle only in the most generous countries, their distribution across

countries follows the pattern in (1):

ℓi(s) = ℓ(si| s−i) :=





0 if si < si

ν
1+mi(s−i)

if si = si

ν if si > si.

(1)

Clearly, 0 ≤ ℓi(s) ≤ ν and
∑n

i=1 ℓi(s) = ν. Two observations about (1) will become

important later on. First, the fraction of the poor residing in country i is invariant to

permutations of other countries’ subsidies. Second, so expressed, ℓ(si| s−i) is also the

amount of poor that would reside in any country (not only i) choosing s = si when all

other countries choose subsidies according to s−i.

We postulate our model in terms of governments choosing subsidies that attract mobile

poor. This is in line with models by Wildasin (1991, 1994), Cremer and Pestieau (2003),

and many others. Alternatively, we could have chosen to make poor individuals immobile,

let rich individuals be mobile, and governments choose taxes instead of subsidies. This

would not change the essence of our analysis.6 A potentially more critical modeling choice

is the assumption that all poor are mobile. In Section 5 we discuss the robustness of our

results to the introduction of some immobile poor. Due to costless mobility, migration

responses in our model are extremely sensitive and discontinuous: a slight change in

transfers might cause a complete reshuffling of the population in the economic area. This

assumption, which is similarly made in other papers (see, e.g., Cremer and Pestieau, 2003;

Kolmar, 2007), gives our approach a Bertrand-type flavor. In a companion paper, Ania

and Wagener (2009) consider a model with smooth migration flows.

6It is well-known, however, that results for decentralized redistribution change if both tax payers and

welfare recipients are mobile. See e.g. Leite-Monteiro (1997).
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2.2 Policy objectives

At least since Mansoorian and Myers (1997), it is well-known that government objective

functions play an important role in decentralized redistribution games where population

sizes are endogenous (also see Cremer and Pestieau, 2004). We consider here utilitarian

governments that evaluate individuals’ utility derived from consumption by some utility

function, u(c), which is twice continuously differentiable and such that u′(c) > 0 > u′′(c)

for all c ≥ 0. We assume that u(wP ) ≥ 0, and there exists K ≥ 0 such that u(0) < −K.

The government of any country i = 1, . . . , n assesses different policies by comparing the

sum of the utilities of those currently living in i under such policies; i.e.

πi(s) = ℓi(s) · u(cP
i ) + u(cR

i ) = ℓi(s) · u(wP + si) + u(wR − ℓi(s) · si). (2)

The fact that ℓi(s) is invariant to permutations of other countries’ subsidies allows to

write payoffs also as:

πi(s) = π(si| s−i) = ℓ(si| s−i) · u(wP + si) + u(wR − ℓ(si| s−i) · si), (3)

where now π(si| s−i) is the payoff to any country choosing s = si when all other countries

choose subsidies according to the vector s−i.

If all governments set identical transfers, the poor will be equally distributed across coun-

tries (i.e., ℓi(s) = ν/n). Then the optimal subsidy is given by7

s0 := arg max
s∈S

{ν

n
· u(wP + s) + u(wR − ν/n · s)

}
(4)

=
wR − wP

1 + ν/n
.

We refer to s0 as the efficient symmetric solution; transfers s0 lead to an egalitarian

income distribution.

The objective function (2) is called generalized utilitarianism. In settings with variable

population sizes, it is one out of many utilitarian-type social welfare functions (Blackorby

et al., 2009). A serious flaw of generalized utilitarianism is that it gives rise to the so

7To see this, first observe that s0 is strictly positive since the objective function is strictly increasing

at s = 0 by strict concavity of u(c) and the fact that wP < wR. Moreover, s0 must satisfy the first order

condition u′(wP + s0) = u′(wR − ν/n · s0) which gives the expression in the second line of (4); clearly

s0 < n/ν · wR, so that the rich is not completely expropriated in the symmetric efficient allocation.
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called repugnant conclusion (Parfit, 1982; Blackorby et al., 2009) – for every population

of arbitrary well-offs, there exists another, suitably larger population of paupers such that

utilitarians will strictly prefer the latter to the former. This substitutability of population

size for quality of life is ethically questionable. Obviously, the set of Nash equilibria, and

our results, depend crucially on the choice of objectives. Our focus here is on the workings

of the OMC given a particular type of objective function, which is meant to reflect the

common objectives and target indicators that member states agreed upon.

3 Static Analysis: Nash equilibria vs. ESS

The model presented in Section 2 defines a game where the players (countries i = 1, . . . , n)

simultaneously choose subsidies out of a common strategy set given by the feasible set

of subsidies S = [0, wR]. Migration decisions as summarized by expression (1) determine

the payoffs πi : Sn → R which are given by expression (2). The game is symmetric, since

payoffs can be written as πi(s) = π(si| s−i) shown in (3). Payoffs do not depend on the

players’ names and are invariant to permutations of other players’ strategies.

Before proceeding with the analysis, let us recall here the definitions of a symmetric Nash

equilibrium and a finite-population evolutionarily stable strategy and shortly comment on

the difference between the two concepts. By focusing directly on symmetric equilibria we

can write both definitions using the same notation.8

Definition 1 A strategy sN is played in a symmetric Nash equilibrium if

π(sN | sN , sN , . . . , sN) ≥ π(s| sN , sN , . . . , sN) for all s ∈ S.

A strategy sE ∈ S is said to be an evolutionarily stable strategy (ESS) if

π(sE| s, sE, . . . , sE) ≥ π(s| sE , sE, . . . , sE) for all s ∈ S.

8Schaffer (1988) gives a definition of evolutionary stability for a finite population of N individuals

who are randomly matched to play an n-person game. We take here Schaffer’s definition for the case of

n = N . See also Vega-Redondo (1996, pp. 31-33) for a discussion of this concept. See Crawford (1991)

and Tanaka (2000) for closely related concepts. See Nowak et al. (2004) for a recent dynamic concept of

evolutionary stability for finite populations.

9



We say that a Nash equilibrium or an ESS is strict if the corresponding inequality holds

strictly for all s′ 6= s.

In a Nash equilibrium no player would strictly benefit from a deviation, given what other

players are doing. In an evolutionarily stable profile no player would be able to gain a

strict relative advantage by deviating. Note that for a Nash equilibrium we compare the

deviator’s payoffs before and after deviation. In an evolutionarily stable profile, instead,

we compare payoffs to the deviator, choosing s, with payoffs to the non-deviators, choosing

sE , after a unilateral deviation. For this reason, when the population is finite and each

player has a non-negligible impact on the payoffs of all other players, it may pay in relative

terms to deviate from a Nash equilibrium, if the loss imposed on non-deviators is bigger

than the loss suffered by the deviators themselves. This is referred to as spiteful behavior

(Hamilton, 1970).9

Before we characterize the Nash equilibria and the ESS of the game, let us introduce the

following family of auxiliary functions.

f(k, s) =
ν

k
· u(wP + s) + u

(
wR − ν

k
· s

)

where k ∈ {1, . . . , n}. The value of f(k, s) can be interpreted as the payoff to any

of k countries equally sharing all the poor at subsidy level s, of course provided they

attract the poor with that subsidy (i.e. s is currently the maximum subsidy). Note that

f(k, 0) ≥ u(wR). By the strict concavity of u(c) and since wP < wR, we get that f(k, s)

is strictly increasing at s = 0. Moreover, for every k, f(k, s) is strictly concave in s. Let

s∗(k) = arg max
s≥0

f(k, s).

The properties of f guarantee that s∗(k) is strictly positive for all k and it must satisfy

the first order condition

u′(wP + s∗(k)) = u′(wR − ν/k · s∗(k)),

which yields

s∗(k) =
wR − wP

1 + ν
k

.

9Such considerations would not play a role in a continuum population, since each player has a negligible

impact on the payoffs of others in that case. It is well known that ESS are always Nash equilibrium

strategies in a continuum population. See, e.g., Weibull (1995, p. 36).
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u(wR)

f(1, s)

f(2, s)

f(n, s)

s∗(1) s(n) ŝ(1) ŝ(2) ŝ( n

2
) ŝ(n− 2) ŝ(n− 1) ŝ(n)

Figure 2: Properties of auxiliary welfare functions f(k, s).

Given that k countries share the burden of redistribution, they maximize social welfare

by choosing s = s∗(k). Clearly, 0 < s∗(k) < k/ν · wR is increasing in k; i.e., social policy

should optimally be more generous as more countries engage in redistribution.

Given any k ∈ {1, . . . , n}, define ŝ(k) as the strictly positive value of s that solves

f(k, ŝ(k)) = u(wR),

and s̄(k) as the strictly positive value that solves

f(k, s̄(k)) = f(1, s̄(k)).

At ŝ(k), a country is indifferent between paying transfers ŝ(k) to ν/k poor and not at-

tracting any poor at all. At s̄(k), a country is indifferent between paying transfers s̄(k)

to ν/k poor and, at the same transfer, hosting all poor. In Appendix A we show that the

family of functions {f(k, s)}k=1,...,n and the corresponding values of ŝ(k) and s̄(k) have

the properties depicted in Figure 2.10 In particular, we show that

s∗(1) < s̄(2) < s̄(3) < . . . < s̄(n) < ŝ(1) < ŝ(2) < . . . < ŝ(n). (5)

10Our game has a structure akin to that of an oligopolistic market of the type analyzed by Dastidar

(1995), where firms have decreasing returns to scale and compete in prices.
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This observation allows an easy characterization of Nash equilibria and ESS. We first

show that our game has a large set of symmetric, pure-strategy Nash equilibria:

Proposition 1 Under generalized utilitarianism the set of pure-strategy Nash equilibria

is given by

ΣN = {s = (s, . . . , s) | s̄(n) ≤ s ≤ ŝ(n)}.

Observe that transfer levels at Nash equilibria are quite generous; even overprovision of

transfers (i.e., values of sN larger than s0 = s∗(n)) is possible in a Nash equilibrium.

This is in contrast with the widespread fear of an erosion of the welfare state due to

migration pressures (Cremer and Pestieau, 2004). It is a consequence of the government

objective which entails a strong preference for large population sizes (recall the repugnant

conclusion). Hence, the widely feared demise of the welfare state does not occur in our

model (see Secton 5 for modifications).

Our next proposition characterizes the set of ESS. It shows that ESS are a strict subset

of the set of Nash equilibrium strategies found in Proposition 1:

Proposition 2 Under generalized utilitarianism the set of ESS is the interval

SE = [ŝ(1), ŝ(n − 1)].

Proposition 2 conveys that whatever can be achieved at an ESS could also be achieved

through decentralization at a Nash equilibrium. The set of ESS, however, is a strict subset

of the set of Nash equilibria, precluding some extremely low and extremely high subsidies

that can be rationalized as a Nash equilibrium. In particular, for s ∈ [s̄(n), ŝ(1)), subsidies

are still too low and a single country could still achieve a relative advantage through more

redistribution even if it attracted all poor. The situation with s ∈ (ŝ(n − 1), ŝ(n)] is also

too unstable; if a single country were to lower its subsidy, all others would be left with

too high subsidies given the number of countries sharing the burden of redistribution.

It is worth pointing out special properties of the two extreme values in the interval SE.

Starting at the symmetric profile where all countries set s = ŝ(n − 1), a deviation down-

wards to some s′ < s = ŝ(n − 1) would result in a relocation of all poor among the

remaining n − 1 non-deviating countries; their payoff, however, would be exactly u(wR)
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by definition of ŝ(n− 1) and the deviator would have no strict disadvantage. This cannot

happen with any other ESS in the interval SE — from any other ESS a deviator would

suffer a strict disadvantage. All ESS in the interval are strict except the upper boundary

ŝ(n − 1), which is ESS, but it is not strict. This will make a subtle difference in the

dynamics analysis below.

4 The OMC as a Dynamic Imitative Process

In the present section we come to what we consider is the spirit of the OMC. We now

explicitly take a dynamic approach, allowing countries to observe each others’ subsidies

and welfare levels and to make sequential decisions based on this information. We assume

that countries tend to adopt subsidy levels associated with the highest welfare levels cur-

rently observed. Occasionally, countries can experiment with random subsidies. However,

such experiments are followed by other countries only when they prove to be successful

compared to other currently observed subsidy levels and will not persist otherwise. The

model intends to capture the main features of the OMC as stated by the European Com-

mission (see Figure 1 again). In our model, the (symmetric) welfare function stands for

the commonly agreed-upon objectives; subsidies are the policy instrument and each pe-

riod welfare levels constitute the target indicator that is reported by each country. Our

imitation dynamics intends to capture the iterative loop by which countries learn from

each other’s experience. Finally, experimentation captures the open nature of the process;

namely, the most successful policies observed and the recommendations of the Commis-

sion are not binding – countries are allowed to adopt other policies based on their own

motivations to do so, which may range from mistakes to national political interests. We

now proceed to introduce and analyze the dynamic model.

The analysis is applied to a discretized version of the model presented in Section 3.

Specifically, we assume that countries choose subsidies from a finite set Γ ⊂ S. For

simplicity of exposition, we assume that Γ contains the values ŝ(k) for all k = 1, . . . , n.11

The state space of the process is Γn, the state at t = 1, 2, . . . is given by the vector of

subsidies chosen by all countries at t denoted

s(t) = (s1(t), . . . , sn(t)) .

11Note that this assumption may preclude Γ from being a regular grid.
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Subsidies at t determine welfare levels given by the vector

π (s(t)) = (π1 (s(t)) , . . . , πn (s(t))) ,

where πi (s(t)) is the welfare attained by country i in state s(t) and is defined as in

expression (2) in Section 3. In any period t = 1, 2, . . . all countries observe s(t) and the

vector π (s(t)). Given any s(t), define the set

B(s(t)) = {s ∈ Γ | s = si(t) for some i and πi(s(t)) ≥ πj(s(t)) for all j} .

The set B(s(t)) contains all subsidy levels that have earned highest welfare in period t.

At the end of every t each country has a probability 0 < λ < 1 of revising its subsidy for

the next period. In doing so, it chooses any s ∈ B(s(t)) with positive probability. With

probability 1−λ this kind of imitative revision does not take place; this may reflect some

inertia in observing the system or in revising subsidies, due for example to restrictions

in the administrative or political decision-making process that are left out of our model.

Regardless of the results of imitation or inertia, at any point in time, each country has

probability 0 ≤ ε < 1 to experiment with any subsidy s ∈ Γ at random. Both, revision

and experimentation opportunities, are drawn independently across countries. Given λ

and ε, let P λ,ε
s,s′ be the probability of a direct transition of the process from state s to state

s′. This defines a Markov process with transition probability matrix given by

P λ,ε =
(
P λ,ε

s,s′

)

s,s′∈Γn

.

We refer to the process with ε = 0 as the unperturbed imitation dynamics. A state s

that is reached with positive probability with P λ,0 but cannot be abandoned without

experimentation (i.e. P λ,0
ss

′ = 0 for all s′ 6= s) is called an absorbing state of the unperturbed

dynamics. An obvious property of imitation is that it leads to monomorphic states – in

our setup, states where all countries choose the same subsidy level. Define

M = {s ∈ Γn | s = (s, . . . , s), s ∈ Γ}.

From any s(t) 6∈ M there is positive probability that all countries revise their subsidies in

the same period and that they all choose the same s ∈ B(s(t)), reaching a monomorphic

state. At such a monomorphic state with an identical subsidy for all countries, the set

of best-performing strategies B simply consists of that subsidy, so imitation alone cannot

take the system out of a monomorphic state. This gives us
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Lemma 1 The set M of monomorphic states is the set of absorbing states of the unper-

turbed imitation dynamics P λ,0.

With experimentation, i.e., for ε > 0, however, there is positive probability to exit every

state and the model presents permanent randomness. The following features of the model

make the Markov process well behaved. First, there is positive probability (no matter how

small) that any subset of countries experiment simultaneously and that they experiment

with any subsidy so that P λ,ε
ss

′ > 0 for all s, s′ ∈ Γn and the process is irreducible. Moreover,

at any given period there is also positive probability that no country revises its subsidy

due to inertia (λ, ε < 1) and the process stays at the same state for one period; i.e.,

P λ,ε
ss

> 0 for all s. This implies that the Markov process is aperiodic. For every λ and ε,

this guarantees convergence to a unique invariant distribution denoted

µλ,ε =
(
µλ,ε (s)

)
s∈Γn

,

which satisfies µλ,ε = µλ,εP λ,ε, where µλ,ε (s) gives both, the probability that the system

is at any state s ∈ Γn in the long run as well as the average frequency with which the

process visits any state s ∈ Γn along any sample path.

Following the literature on stochastic evolutionary learning models, the analysis in this

paper focusses on the limit invariant distribution µλ = limε→0 µλ,ε. States with positive

probability in µλ are called stochastically stable (alternatively, long-run equilibria). These

are the states that we would observe almost always as the probability of experimentation

approaches zero. This distribution exists, and it is a fundamental result in this literature

that it only gives positive probability to absorbing sets of the unperturbed dynamics – in

our case singleton monomorphic states. Henceforth, we focus the analysis on the set M

from Lemma 1 – only monomorphic states are candidates to be observed in the long run

as the probability of experimentation becomes small.12 The formal proofs are relegated to

Appendix C. Here, we provide an intuitive explanation of our main result which appears

in Proposition 4 at the end of this section.

Define by

E = {s ∈ M | ŝ(1) ≤ s < ŝ(n − 1)}
12The seminal papers in this literature are Foster and Young (1990), Young (1993), and Kandori et

al. (1993). Ellison (2000) gives an alternative characterization of stochastically stable states using the

concepts of radius and (modified) coradius. Our analysis relates also to Nöldeke and Samuelson (1993)

and Samuelson (1994) and their concepts of adjacent states and mutation-connected component.
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the subset of monomorphic states in which all countries choose a subsidy that is strict ESS;

E corresponds essentially to the interval SE from Proposition 2 above. From a state in

E, a single country experimenting with a different subsidy would perform strictly worse

and will not be followed by imitation. I.e., states in E cannot be abandoned after a single

experimentation. All other states, however, can be abandoned after a single experiment.

It is always possible to do this in favor of some subsidy in the interval SE. To see this,

recall that ŝ(k) is the subsidy at which k countries sharing all the poor would attain social

welfare exactly equal to u(wR); for lower (higher) subsidies their welfare would be strictly

higher (lower) than u(wR). Now suppose the process is currently at a monomorphic state

with s < ŝ(1) and consider a deviation to ŝ(1). The deviating country will be the only

one actively performing redistribution but will attain welfare level exactly equal to u(wR).

Both the deviator and non-deviators are equally successful. Thus, at the next opportunity

for revision there is a positive probability to follow the deviator by imitation. The case

of high subsidies is even stronger. Suppose the process is currently at a state where all

countries set subsidy s > ŝ(n−1). If a single country lowers its subsidy (e.g. to any subsidy

in the interval SE), the welfare of the remaining n − 1 non-deviating countries will fall

below u(wR) and the deviator will be followed. Finally, note that ŝ(n−1) is excluded from

E. Starting at the monomorphic state where all countries choose s = ŝ(n− 1), if a single

country lowers its subsidy (discontinuing its redistribution policy), both the deviator and

the non-deviators are equally successful and there is positive probability that the deviator

will be followed. These arguments show that E can be reached from outside if a single

country experiments with a subsidy that is a strict ESS, but E cannot be abandoned with

a single experiment. This makes it more likely that the process moves into the set E than

that it moves out.13 Recall from Section 3 that the interval SE is itself a subset of the set

of strategies played in any Nash equilibrium. Our prediction, summarized in the following

proposition, is that we always end up in E and thus always in the set of Nash equilibria.

Proposition 3 If s∗ is stochastically stable, then s∗ ∈ E ⊂ ΣN .

By definition of strict ESS, single experiments will not be enough to move the process

from one state to another within the set E. Yet it is possible to abandon states in E

after the simultaneous deviation of several experimenting countries. We will argue that

the number of simultaneous experiments needed to disturb states in E increases as we

13In the terminology of Ellison (2000), the set E has coradius 1 and radius strictly larger than 1. Thus,

stochastically stable states must be contained in E.
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move towards intermediate levels of the subsidy.14 To see this, we partition the set E into

subintervals

Ek = {s ∈ M | ŝ(k − 1) ≤ s < ŝ(k)}, k = 2, . . . , n − 1.

States in Ek are monomorphic with subsidies in the interval [ŝ(k − 1), ŝ(k)). It is also

convenient to introduce some notation for monomorphic states with subsidy equal to ŝ(k),

which must often be treated separately in our analysis. Let

sk = (ŝ(k), . . . , ŝ(k)).

Except for the lower bound of the interval, these subsidies could be profitably sustained

with at least k countries, where profitably means here with welfare higher than or equal

to u(wR). Instead, if less than k countries actively engaging in redistribution set a subsidy

in (ŝ(k − 1), ŝ(k)), welfare will fall below u(wR). Although in our partition state sk is an

element of Ek+1, the same applies to subsidy ŝ(k).

• Moving from lower to higher subsidies.

Notice that the process will move away from state s1 and any other state in E2 if two

countries experiment with the same higher subsidy out of the interval (ŝ(1), ŝ(2)].

In particular, it is possible to go from any state in E2 to any other state in E2

with a strictly higher subsidy, or to reach state s2 in E3, with two simultaneous

experiments. Analogously, the process will move away from any state in E3 to any

other state in E3 with higher subsidy or to state s3 if three countries simultaneously

experiment with the same higher subsidy in (ŝ(2), ŝ(3)], and so on. In general,

given any pair s, s′ ∈ Ek with s < s′, state s′ can be reached from s if k countries

simultaneously experiment with s′. Moreover, state sk can always be reached from

any monomorphic state with lower subsidy if k countries simultaneously experiment

with ŝ(k). Coordinating on higher subsidies requires more and more countries as k

increases and, hence, transitions upwards become less likely the higher k.

14Underlying this is the fact that strategies in the interval SE display different levels of so-called m-

stability (see Schaffer, 1988). A strategy is m-stable if it is robust to the simultaneous deviation of m

players to the same alternative strategy. A strategy is called globally stable if it is m-stable for all

m ∈ [1, n). Note that it is enough that n − m players experiment with a m-stable strategy to move the

system to that strategy, since players choosing the m-stable strategy perform better.

17



• Moving from higher to lower subsidies.

Since migration takes place to countries with highest subsidies, experimenting with

lower subsidies means giving up redistribution policy and losing all poor. Experi-

mentation with lower subsidies can thus only be successful if the non-deviators are

left with welfare lower than or equal to u(wR). All subsidy levels associated to

states in En−1 can be sustained by n− 1 countries with welfare strictly higher than

u(wR). Therefore, we would need at least two countries simultaneously lowering

their subsidies (in this case experimentation does not necessarily have to be with

the same subsidy) in order to move away from states in En−1. Analogously, we

would need three countries simultaneously lowering their subsidies to leave states

in Ek−2, and so on. In general, the process will move downwards from any state

in Ek if n − k + 1 countries lower their subsidies. Moving from more to less gen-

erous redistribution policies, that is from higher to lower subsidies, requires more

and more simultaneously experimenting countries the lower the starting subsidy is,

i.e.ḟor lower k. States with high subsidies are more likely to be disturbed in favor

of lower subsidies. At states with lower subsidies it becomes less likely to continue

with further lowering subsidies.

These findings can be roughly summarized as follows. From states in Ek with low k the

process is more likely to move upwards; for high k the process is more likely to move

downwards. Detailed accounting of these transition probabilities has to be done carefully

depending on whether n is odd or even and, in particular, for values of k around n/2.

This is done in the proof in Appendix C. In Figure 3 we illustrate the case of n odd –

the relevant case for the current EU-27.

ŝ(1) ŝ(2) ŝ(3) . . . ŝ
(⌈

n
2

⌉
− 1

)
ŝ
(⌈

n
2

⌉)
. . . ŝ(n − 3) ŝ(n − 2) ŝ(n − 1)

1 12 23 3

⌈
n
2

⌉
− 1

⌈
n
2

⌉
− 1

⌈
n
2

⌉

Figure 3: Most likely transition paths. The case of n odd.

The central interval for the case of n odd is E⌈n

2
⌉. As Figure 3 shows, the lower and the

upper bounds of this interval can be reached from outside with ⌈n
2
⌉−1 simultaneous exper-

iments. Within E⌈n

2
⌉ it is then possible to move upwards with exactly ⌈n

2
⌉ experiments
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up to the state s⌈
n

2
⌉ ∈ E⌈n

2
⌉+1 which itself can be disturbed downwards with ⌈n

2
⌉ − 1

experiments (e.g., with n = 5 we need two deviations downwards to exit s3). Moving

downwards from any state in E⌈n

2
⌉, including its lower bound, requires ⌈n

2
⌉ experiments

(with n = 5 we need three deviations downwards to exit s2). The process thus moves into

E⌈n

2
⌉ with ⌈n

2
⌉ − 1 experiments and out of it with ⌈n

2
⌉ experiments. Within the set we

need the same experiments to move up and down. A typical path of this process is likely

to move into E⌈n

2
⌉ eventually and then stay bouncing up and down in this set.15 Hence,

Proposition 4 The set of stochastically stable states is

i. E⌈n

2
⌉ if n is odd.

ii. E
n

2 ∪ {sn

2 } if n is even;

The main difference between the cases of odd and even n in Proposition 4 is that the

upper bound of the interval, s
n

2 , can be included in the prediction in the case of n even.

This is because, in that case, n/2 experiments are enough to reach s
n

2 but also to exit it

downwards.

Proposition 4 shows that the most likely outcomes of the OMC applied to decentralized

redistribution lie in the intermediate range of the ESS. Intuitively, low subsidy levels can

be easily destabilized by a small number of countries coordinating with their experiments

on the same higher subsidy; high subsidy levels become unprofitable if only a small number

of countries cut their subsidies. Only the intermediate subsidies, which correspond to

intermediate values of the ESS are robust to such small-group experimentation.

The learning process of the OMC, thus, eschews ESS with very low or overly generous

support for the poor. A fortiori, since ESS are a subset of the set of Nash equilibria

in our model, the OMC also avoids potentially extreme states that could emerge in the

15The proof in Appendix C is done by showing that states s ∈ E⌈n

2
⌉ have minimum cost trees (see

e.g. Theorem 1 in Samuelson (1994)). The illustration above shows that, for the case of n odd, we could

alternatively use the radius-coradius theorem of Ellison (2000). However, we would need to resort to tree

surgery to show that all states in E⌈n

2
⌉ are stochastically stable. Also for even n there are many states

in the two central intervals with radius equal to their modified coradius. For these reasons and because

the set E⌈n

2
⌉ resembles what Samuelson (1994) calls a mutation-connected component it turns out to be

more convenient to compute transition costs.
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traditional setting of decentralized choice of redistribution policies. In that sense, the

learning process in the OMC can be viewed as a moderating device.

5 Discussion of the results

5.1 Efficiency

Given that, in general, an important motivation for policy coordination is the avoidance of

externality-induced efficiency failures of decentralization, it seems natural to ask whether

the learning process of the OMC indeed leads to efficient policy outcomes. Formally, we

have to check for the relationship between the symmetric efficient solution, s0, and the set

of stochastically stable states characterized in Proposition 4. Intuitively, s0 = s∗(n) max-

imizes the joint welfare function f(n, s), whereas the values of ŝ
(⌈

n
2

⌉
− 1

)
and ŝ

(⌈
n
2

⌉)
,

relevant to define E⌈n

2
⌉, refer to properties of the functions f(n−1

2
, s) and f(n

2
, s). Tech-

nically, there is no good reason why s0 should be related to our prediction in the set

E⌈n

2
⌉. Indeed, it is possible to construct examples where the efficient outcome is in our

prediction. In general, however, the predictions of our model entail subsidies which could

be higher or lower than the efficient outcome. This is illustrated in Example 1 bellow. It

should still be stressed that the convergence to “intermediate” subsidy levels precludes the

more extreme outcomes that could emerge under decentralization in a Nash equilibrium.

Example 1 Consider a utility function of the form u(x) =
√

x − 1. Take wP = 1 and

assume that wR ≤ 4. We have that

ŝ(k) =
4
(√

wR − 1
) (

ν
k

+
√

wR

)
(

ν
k

+ 1
)2

Take n = 10, in which case our prediction is always the interval (ŝ(4), ŝ(5)). Table 1

summarizes our results for different values of wR and ν. We see that the efficient out-

come, s0, may always be lower than ŝ(4), in which case we would predict inefficiently high

redistribution; it may be always higher that ŝ(5), in which case we would predict ineffi-

ciently low redistribution; finally, the efficient outcome may some times be contained in

our prediction.

20



wR ν s0 ŝ(4) ŝ(5)

2 12 5
11

2
√

2−1
4

2 20 1
3

4
√

2−3
9

4(3
√

2−2)
25

4 20 1 24
25

Table 1: Efficiency results

5.2 Mobility of the poor

Let us now briefly discuss the implications of our assumption on perfect mobility of the

poor. We will argue that our qualitative results are robust to the introduction of a small

fraction of immobile poor in each country. Consider a small variation of our model, where

all countries have some fixed amount β of immobile (native) poor. The parameter β

measures the relative mass of immobile poor to rich in any given country. Symmetry is

preserved if β is the same for all countries. Assume ν > nβ; that is the total amount

of immobile poor is smaller than the amount of mobile poor. All other features of our

model are as before. The total amount of poor living in country i is now given by

ℓ̃i(s) := β + ℓi(s), where ℓi(s) is determined as in (1). Governments are still assumed to

adhere to generalized utilitarianism. Thus, payoffs can be written as in expression (2) by

replacing ℓi(s) with ℓ̃i(s). Countries now always have an incentive to actively pursue some

transfer policy, at least for their native poor. If no mobile poor moves to country i; i.e., if

ℓ̃i = β, its government would set the transfer to maximize the following welfare function

g(β, s) = β · u(wP + s) + u(wR − βs).

Note that g(β, s) is a strictly concave function of s with g(β, 0) > u(wR) and g′(β, 0) > 0.

The optimal transfer in the absence of mobile poor is then given by

s̃0 =
wR − wP

1 + β
.

Our assumptions guarantee that g(β, s) has the same properties as our auxiliary functions

f(k, s), derived in Appendix A. Thus, for β < ν/n, we have that s̃0 > s∗(n) = s0.

Intuitively, when the fraction of immobile poor is not too large, optimal transfer policy

can be more generous when a country only has to provide social policy for the native

immobile. Moreover, define s̃ as the value of the subsidy that satisfies g(β, s̃) = u(wR).

This is the analogous to our previous ŝ(k), which we proved to be strictly increasing in k.
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Again, since β < ν/n, we have that s̃ > ŝ(n). An intuitive picture can be obtained from

Figure 2 by replacing the horizontal line at the value u(wR) by a humped g curve with the

same features as the f curves and cutting through u(wR) further to the right. The points

at which g(β, s) cuts trough f(1, k) and f(n − 1, s) will now be the boundaries of the

ESS interval. Note finally that g(β, ŝ(n − 1)) > u(wR) = f(n − 1, ŝ(n − 1)); analogously,

g(β, ŝ(1)) > u(wR) = f(1, ŝ(1)). This indicates that the bounds of the ESS interval will

be lower than for the case without immobile poor. All other elements of the analysis are

as before.

5.3 Average utilitarianism

Finally, we turn our attention to the welfare function. Obviously, payoffs and, thus, the

equilibria of our game depend crucially on the choice of welfare function (Mansoorian

and Myers, 1997). We discussed at the end of Section 2 that generalized utilitarianism,

given in expression (2), as a government objective has the drawback of allowing for the

repugnant conclusion. With decentralized redistribution, this strong predilection for large

population sizes leads to quite generous subsidies to the mobile poor – an observation that

is at odds with the widespread fear of a decline of the welfare state in the presence of labor

mobility. There exist social welfare functions that avoid the repugnant conclusion (for a

survey, see Blackorby et al., 2009). One alternative that has captured some attention is

average utilitarianism. As the name suggests, government payoffs given by

πAU
i (s) =

1

ℓi(s) + 1
· [ℓi(s) · u(wP + si) + u(wR − ℓi(s) · si)] . (6)

It can be easily checked that the symmetric efficient solution under average utilitarianism

coincides with the one obtained for generalized utilitarianism, s0, given by expression (4).

However, average utilitarianism gives a large welfare weight to well-off people, providing

strong incentives to cut back transfers to the poor. This actually results in a remarkable

efficiency failure both in a Nash equilibrium and in an ESS.

To see this, note first that for ℓi = 0, we have πAU
i = u(wR). Denote λi = ℓi

1+ℓi

. By strict

monotonicity and strict concavity of u we have that, for any ℓi > 0,

πAU
i = λiu(wP + si) + (1 − λi)u(wR − ℓisi) <

u(λi(wP + si) + (1 − λi)(wR − ℓisi)) = u

(
wR + ℓiwP

1 + ℓi

)
< u(wR). (7)
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This implies that at any profile with a subset of countries sharing the burden of redistri-

bution at some strictly positive subsidy level, there is an incentive to cut down transfers

(leading to ℓi = 0). The only Nash equilibrium will have all countries setting si = 0.

Expression (7) also shows that s = 0 is the only ESS of the game, since at any symmetric

profile with s > 0 a relative advantage can be obtained by cutting down s; alternatively,

starting at the symmetric profile with si = 0 for all i, any increase in s results in a rel-

ative disadvantage. Clearly, the imitative process of the OMC will also not deliver any

improvement over the inefficient Nash equilibrium.

6 Conclusions

We propose to analyse the Open Method of Coordination (OMC), which the EU has

adopted since its Lisbon Summit in 2000 for social policy and elsewhere, as a dynamic

stochastic learning process of the type studied in evolutionary game theory. The OMC is

based on the idea that, for certain commonly agreed policy objectives, national policies

emerge from a process where governments compare themselves to one another in terms

of policy performance, learn from each other, and imitate what they perceive as best

practices. If convergence occurs under the OMC, then not due to express legislation but

by the force of example.

We formalize and explore the workings of OMC for the particular case of income redistri-

bution in an integrated economic area with perfectly mobile social welfare beneficiaries.

Our main observation is that the OMC strongly favors coordination on a subset of Nash

equilibria. In a dynamic interpretation, the OMC results in a powerful equilibrium refine-

ment. In particular, intermediate values of subsidies that can be sustained by coordination

of approximately half of the countries are the most likely ones to be observed in the long

run.

To our knowledge, this is the first paper that provides a formal, game theoretic analysis

of the OMC. Both opponents and advocates of the OMC will, with good reason, argue

that our stylized analysis ignores many of the OMC’s advantages (e.g., the higher degree

of legitimacy), defines away a number of problems (e.g., the definition and measurement

of performance indicators, communication procedures etc.) and discusses the OMC in

an artificial setting (decentralized redistribution) to which it may not at all be suited.
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Notwithstanding these concerns, our analysis entails important messages for policy-makers

and mechanism designers in the EU where welfare and redistribution policies are still in

the domain of national governments. The hope that the OMC will “recalibrate” European

welfare states (Ferrera et al., 2000) seems justified. On a first pass, the OMC does indeed

provide a successful way to attain policy coordination and to avoid extreme, undesirable

outcomes. This appears to be in line with preliminary empirical evidence compiled in

Coelli et al. (2008).

A Properties of the payoff function

We show here the main properties of the family of functions {f(k, s)}k=1,...,n that are used

in the proofs of our results. Recall

f(k, s) =
ν

k
· u(wP + s) + u(wR − ν/k · s) k = 1, . . . , n.

Notice f(k, 0) ≥ u(wR) and fs(k, 0) = ν/k · (u′(wP ) − u′(wR)) > 0, since u′′ < 0 and

wP < wR implies u′(wP ) > u′(wR). Moreover, fss(k, s) < 0.16

Recall s∗(k) = arg maxs≥0 f(k, s) = wR−wP

1+ ν

k

satisfies

fs(k, s∗(k)) =
ν

k
(u′(wP + s∗(k)) − u′ (wR − ν/k · s∗(k))) = 0.

Clearly, s∗(k) < k
ν
wR and s∗(k) is strictly increasing with k.

Given k ∈ {1, . . . , n}, let ŝ(k) be a strictly positive value of s such that f(k, ŝ(k)) = u(wR).

The properties of f imply that f(k, s) > u(wR) for all s ∈ (0, s∗(k)]. By definition of s∗(k)

and fss < 0, f is strictly decreasing for all s > s∗(k). Moreover, for s = k
ν
wR we have that

f(k,
k

ν
wR) =

ν

k
u(wP +

k

ν
wR) + u(0) < u(wR)

for u(0) sufficiently low. In particular, ν
k
u(wP + k

ν
wR) is strictly decreasing with k.17 Let

16We adopt the conventional notation fi(k, s) = ∂f(k,s)
∂i

and fij(k, s) = ∂fi(k,s)
∂j∂i

with i, j = k, s.
17Define F (x) = ν/x · u(wP + x/ν · wR) with x ∈ R++. We have that

F ′(x) = − ν

x2
u(wP +

x

ν
wR) +

wR

x
u′(wP +

x

ν
wR) < 0,
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u(0) < −K := u(wR)− ν · u(wP + 1/ν ·wR) to obtain the desired inequality. This implies

existence and uniqueness of ŝ(k) for all k and it shows that s∗(k) < ŝ(k) < k
ν
wR. Finally,

we have that ŝ(k′) > ŝ(k) for all k, k′ ∈ {1, . . . , n} and k′ > k. To see this, note that, by

definition, ŝ(k) satisfies

Γ(k, s) :=
k

ν
·
[
u(wR) − u

(
wR − ν

k
s
)]

= u(wP + s). (8)

The right hand side of expressions (8) is strictly increasing and strictly concave with s

and it equals u(wP ) for s = 0. For any k, Γ(k, 0) = 0 ≤ u(wP ) and Γ(k, s) is strictly

increasing and strictly convex in s with

Γs(k, s) = u′
(
wR − ν

k
s
)

> 0.

Furthermore, u′′ < 0 implies that Γs(k
′, s) < Γs(k, s) for all s > 0 and k′ > k; i.e. the Γ

functions become flatter with s as we increase k. Thus, Γ(k, s) > Γ(k′, s) for s > 0 and

k′ > k. It follows that ŝ(k′) > ŝ(k) for all k, k′ ∈ {1, . . . , n} and k′ > k.

Given k ∈ {1, . . . , n}, let s̄(k) be a strictly positive s such that f(k, s̄(k)) = f(1, s̄(k)).

We now proceed to show existence and uniqueness of s̄(k). To this purpose define

∆(k, s) := f(1, s) − f(k, s)

= ν

(
1 − 1

k

)
· u(wP + s) + u(wR − νs) − u

(
wR − ν

k
s
)

. (9)

Clearly, ∆(k, 0) ≥ 0. Moreover, strict concavity of u implies that18

∆(k, s) > ν

(
1 − 1

k

)
{u(wP + s) − s · u′(wR − ν · s)} . (10)

For s ≤ s∗(1) we have wP +s ≤ wR−ν ·s and, by u′′ < 0, then u′(wP +s) ≥ u′(wR−ν ·s).
For s ≤ s∗(1), we can then replace the right hand side of expression (10) by the following

smaller expression

∆(k, s) > ν

(
1 − 1

k

)
{u(wP + s) − s · u′(wP + s)} > ν

(
1 − 1

k

)
u(wP ) ≥ 0. (11)

since, by strict concavity of u(c), u(wP + y) − yu′(wP + y) > u(wP ) ≥ 0 for all y > 0.
18By strict concavity

u(wR − ν/k · s) < u(wR − ν · s) +

(
1 − 1

k

)
ν · s · u′(wR − ν · s).
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The second inequality in (11) follows again from strict concavity of u (cf. Footnote 17).

This shows that ∆(k, s) > 0 for s ∈ (0, s∗(1)] and thus, if s̄(k) exists, we must have

s̄(k) > s∗(1). Furthermore,

∆s(k, s) = ν

(
1 − 1

k

)
· u′(wP + s) − ν · u′(wR − νs) +

ν

k
· u′

(
wR − ν

k
s
)

= ν

(
1 − 1

k

)
· [u′(wP + s) − u′(wR − νs)] +

ν

k
·
[
u′

(
wR − ν

k
s
)
− u′(wR − νs)

]

< ν

(
1 − 1

k

)
· [u′(wP + s) − u′(wR − νs)] .

The inequality follows from u′ (wR − ν
k
s
)
− u′(wR − νs) < 0 by u′′ < 0. Recall that

u′(wP + s) − u′(wR − νs) ≤ 0 for s ≥ s∗(1). Thus, ∆s(k, s) < 0 for all s ≥ s∗(1). Finally,

take s = ŝ(1). We know that s∗(1) < ŝ(1) < ŝ(k) for k > 1 and we have that

∆(k, ŝ(1)) = f(1, ŝ(1)) − f(k, ŝ(1)) = u(wR) − f(k, ŝ(1)) < 0. (12)

Existence and uniqueness of s̄(k) for all k > 1 follows. Furthermore, (11) and (12) also

imply that s∗(1) < s̄(k) < ŝ(1) for all k. Finally, re-writing (9), we have that s̄(k) must

satisfy

Ω(k, s) :=
k

ν(k − 1)
·
[
u

(
wR − ν

k
s
)
− u(wR − νs)

]
= u(wP + s).

It is easy to check that strict concavity of u implies Ω(k, s) is strictly decreasing with k

and, thus, s̄(k) increases with k.

B Proofs of Section 3

Proof of Proposition 1. We proceed in two steps.

Step 1: All Nash equilibria are symmetric.

Consider any non-symmetric profile (s1, . . . , sn) with si 6= sj for some i 6= j. Without

loss of generality suppose si < sj. Country i attracts currently no poor and gets payoff

u(wR). The payoff to all countries currently choosing maximum subsidy can be expressed

as f(mi(s−i), s̄i), where s̄ := s̄i is the current maximum subsidy and m := mi(s−i)

is the number of countries currently choosing maximum subsidy. If s̄ > ŝ(m), then

f(m, s̄) < u(wR). This cannot be an equilibrium, since any of the countries currently

26



choosing maximum subsidy could strictly increase its payoffs by lowering the subsidy,

thus attracting no poor. If, alternatively, s̄ ≤ ŝ(m), then f(m, s̄) ≥ u(wR). Since ŝ(m) <

ŝ(m + 1), we have that f(m + 1, s̄) > u(wR). Thus, if country i would deviate from si

and choose s̄, it would strictly improve its payoffs.

Step 2: Characterization of Nash equilibria

Consider any symmetric profile s = (s, . . . , s). Payoffs to all countries at s can be ex-

pressed as f(n, s).

(i) Suppose s < s̄(n). Then, by definition of s̄(n), f(1, s) > f(n, s); i.e. a single country

alone offering subsidy s would attain strictly greater payoffs. By continuity, there

exists s′ such that s < s′ < s̄(n) where f(1, s′) > f(n, s). Thus, there are incentives

to deviate.

(ii) Suppose s > ŝ(n). Then, by definition of ŝ(n), f(n, s) < u(wR); i.e. the subsidy is

too generous and these countries would be better off by attracting no poor. Any

country could strictly improve by choosing s′ < s.

(iii) Suppose now that s̄(n) ≤ s ≤ ŝ(n). By definition of s̄(n) we have f(n, s) ≥ f(1, s)

and by definition of ŝ(n) we have f(n, s) ≥ u(wR). Any country reducing the

subsidy would get payoff u(wR) with no strict improvement. Any country increasing

the subsidy to s′ > s would get payoff f(1, s′). Recall s̄(n) > s∗(1) and, thus,

f(1, s′) < f(1, s) ≤ f(n, s). Therefore, there are no incentives to deviate.

It follows from (i)-(iii) that [s̄(n), ŝ(n)] is the interval of equilibrium subsidies.

Proof of Proposition 2. Consider any symmetric profile s = (s, . . . , s). Suppose a

single country deviates to some subsidy s′ 6= s. The relevant payoffs to characterize ESS

are now the payoffs obtained after deviation.

(i) Suppose first s < ŝ(1). A deviation upwards with s < s′ < ŝ(1) gives payoff

f(1, s′) > u(wR) for the deviator while all others get u(wR) after deviation. Thus,

it is possible to obtain a strict relative advantage and s < ŝ(1) is not ESS.

(ii) Consider now s > ŝ(n−1). A deviation downwards to any s′ < s gives the deviating

country payoff u(wR). After deviation, non-deviators get payoff f(n−1, s) < u(wR)
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by definition of ŝ(n−1). Thus, the deviator has a strict advantage and s > ŝ(n−1)

is not ESS.

(iii) Let now s ∈ [ŝ(1), ŝ(n − 1)]. Deviations to s′ < s ≤ ŝ(n − 1) will earn payoff

u(wR) while those countries sticking to s obtain f(n − 1, s) ≥ u(wR). Deviations

to s′ > s ≥ ŝ(1) will earn the deviator a payoff f(1, s′) < u(wR) while all others

get u(wR). Thus, it is not possible to attain a strict relative advantage through

deviation.

It follows from (i)-(iii) that only s ∈ [ŝ(1), ŝ(n − 1)] are ESS.

C Proofs of Section 4

Proof of Lemma 1. From any s(t) 6∈ M there is positive probability that all countries

revise their subsidies at the same time and that they all choose the same s ∈ B(s(t)),

reaching a monomorphic state. At a monomorphic state s(t) = (s, . . . , s) ∈ M we have

that B(s(t)) = {s}, so imitation alone cannot take the system out of a monomorphic

state.

The support of the limit invariant distribution is contained in the set M of absorb-

ing monomorphic states (see, e.g., Samuelson, 1994, Theorem 1). We thus restrict the

mutation-counting analysis to states s ∈ M . Let s ∈ M be an absorbing state of P λ,0.

The basin of attraction of s is the set of states from which there is positive probability

that the unperturbed imitation dynamics moves the process to s in a finite number of

periods. Given P λ,ε, an s-tree on Γn, denoted h, is a collection of ordered pairs (s′, s′′),

or arrows from s′ to s′′, such that:

i.) For each s′ ∈ Γn, there is at most one arrow from s′ to any other s′′ ∈ Γn.

ii.) For each s′ ∈ M \ {s}, there is a sequence of pairs {(s′, s1), (s1, s2), . . . , (sm, s′′)}
with s′′ in the basin of attraction of s.

We denote H(s) the set of all possible s-trees. Let s′, s′′ ∈ Γn and define the cost of an

arrow from s′ to s′′, denoted c(s′, s′′), as the minimum number of experiments needed to

28



get from s′ to s′′ in the following sense. Let d(s′, r) be the number of coordinates which

differ between s′ and any r ∈ Γn. Let P (s′′) be the basin of attraction of state s′′. Then

c(s′, s′′) = min
r∈P (s′′)

d(s′, r)

The cost of a sequence of pairs and the cost of an s-tree can be obtained as the sum of

costs of all pairs in the sequence, respectively all pairs in the s-tree. Denote by

C(s) = min
h∈H(s)

∑

(s′,s′′)∈h

c(s′, s′′)

the cost of a minimum-cost s-tree. An absorbing state s∗ is stochastically stable (i.e., s∗

is in the support of the limit invariant distribution) if and only if s∗ solves mins∈M C(s);

i.e. stochastically stable states have minimum-cost trees.

Proof of Proposition 3. Consider the set

E = {s ∈ M | ŝ(1) ≤ s < ŝ(n − 1)}.

Denote sk = (ŝ(k), . . . , ŝ(k)) with k = 1, . . . , n. Let us first argue that for all s 6∈ E, there

exists s′ ∈ E such that C(s′) < C(s) and, thus, s 6∈ E cannot be stochastically stable.

Let s(t) = (s, . . . , s) ∈ M be state at which the process starts in period t and call

s′(t + 1) ∈ Γn the resulting state when one of the countries deviates to subsidy s′ ∈ Γ

in period t + 1 while the remaining n − 1 countries still choose s. Consider the following

cases separately:

(i) Suppose s < ŝ(1) and s′ = ŝ(1). The deviating country attracts all poor and gets

payoff u (wR) by definition of ŝ(1). Non-deviating countries with lower subsidies

attract no poor and also get u (wR). It follows that B(s′(t + 1)) = {s, s′}.

(ii) Suppose s ≥ ŝ(n − 1) and s′ ∈ [ŝ(1), ŝ(n − 1)) ∩ Γ. The deviating country with

lower subsidy attracts no poor and gets payoff u (wR). The remaining n − 1 non-

deviating countries must now share all the poor at s ≥ ŝ(n − 1) which results in

payoff f(n−1, s) ≤ u (wR) by definition of ŝ(n−1). It follows that s′ ∈ B(s′(t+1)).

Both in (i) and (ii) there is positive probability that all countries revise their subsidies

and choose s′ at the end of t + 1.
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(iii) Suppose ŝ(1) ≤ s < ŝ(n−1). If s′ < s (deviation downwards), the deviating country

gets u (wR), while the remaining n − 1 non-deviating countries with s < ŝ(n − 1)

get payoffs f(n − 1, s) > u (wR) by definition of ŝ(n − 1). Alternatively, if s′ > s

(deviation upwards), the deviating country with s′ > s ≥ ŝ(1) attracts all poor and

gets payoffs f(1, s′) < u (wR), while the non-deviating countries get u (wR). In both

cases s′ 6∈ B(s′(t + 1)).

It follows from (i) and (ii) that one experimenting country is enough to move the process

from any s 6∈ E to some s′ ∈ E. By (iii), however, one experimenting country alone is

not enough to exit states s ∈ E. Now take any s ∈ M such that s < ŝ(1) and consider

any s-tree of minimum cost C(s). We can now construct an s1-tree of minimum cost in

the following way: connect s to s1 at cost c(s, s1) = 1 as described in (i) and remove the

arrow starting at s1; by (iii) we have that c(s1, s′) > 1 for all s′ so that we have reduced

the total cost of the tree and thus C(s) > C(s1). We can now proceed analogously with

any s ∈ M such that s ≥ ŝ(n − 1) and any s′ ∈ E; by (ii) and (iii) C(s′) < C(s).

Proof of Proposition 4. Define the following partition of the set E

Ek = {s ∈ M | ŝ(k − 1) ≤ s < ŝ(k)} k = 2, . . . , n − 1.

States in Ek are monomorphic. Note, however, that all these subsidies could be profitably

sustained with k countries, where profitably means here with welfare higher than or equal

to u(wR). If less than k countries actively engaging in redistribution set a subsidy in

(ŝ(k − 1), ŝ(k)), welfare will fall strictly below u(wR). Although in our partition state sk

is an element of Ek+1, the same applies to subsidy ŝ(k). Analogously, state sk−1 ∈ Ek

but subsidy ŝ(k − 1) can be sustained with at least k − 1 countries. Denote I(n) the set

of central states given as follows:

(i) If n is odd, I(n) = E⌈n

2
⌉

(ii) If n is even, I(n) = E
n

2 ∪ {sn

2 }

We now proceed to prove the proposition in three steps. First, we compute the cost

of reaching (exiting) any state in E from (to) a lower and from a higher state. Then,

argueing as in the proof of Proposition 3, we show that for any state which does not

belong to the set I(n) of central states we can find some state in I(n) with strictly lower
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cost trees. This shows that states which are not central cannot be stochastically stable.

Finally, we will argue that all states in I(n) have minimum-cost trees of equal costs. It

follows that all states in I(n) are stochastically stable.

Step 1: Transitions upwards are increasingly costly depending on the state to be reached.

Transition downwards are decreasingly costly depending on the state we want to exit.

Let the process start at s(t) ∈ Ek in period t and denote s′(t + 1) ∈ Γn the resulting

state after deviation. Consider the following cases separately:

(i) Suppose s′(t + 1) has k′ countries choosing s′ > s with ŝ(k′ − 1) < s′ ≤ ŝ(k′) and

k′ ≥ k. Deviating countries get payoff f(k′, s′) ≥ u (wR) by definition of ŝ(k′). The

remaining non-deviating countries get u (wR). It follows that s′ ∈ B(s′(t + 1)).

(ii) Suppose s′(t + 1) has n − k + 1 deviating countries choosing s′ < s. Deviating

countries get payoff u (wR). The remaining k− 1 non-deviating countries get payoff

f(k − 1, s) ≤ u (wR). It follows that s′ ∈ B(s′(t + 1)).

Both in (i) and (ii) there is positive probability that all countries revise their subsidies

and choose s′ at the end of t + 1.

(iii) If k̃ < k′ countries coordinate on s′ > s with s′ ∈ (ŝ(k′ − 1), ŝ(k′)], their payoff

will be f(k̃, s′) < u(wR), implying B(s′(t + 1)) = {s}, so that the process will not

exit s(t). Moreover, since ŝ(k′) increases with k′, the minimum number of experi-

ments needed to exit s(t) ∈ Ek upwards is k′ = k for s < s′ ≤ ŝ(k). Analogously,

less than n − k + 1 countries are not enough to exit states in Ek downwards.

It follows from (i)–(iii) that for any pair s, s′ ∈ E we have:

(A) c(s, s′) = k if s′ > s and ŝ(k − 1) < s′ ≤ ŝ(k).

(B) c(s, s′) = n − k + 1 if s′ < s and s ∈ Ek.

Therefore, the cost of moving upwards to a state s′ ∈ Ek′ \ sk′−1 increases with k′; i.e. it

is higher the higher the state we want to reach. Instead the cost of moving downwards

from state s ∈ Ek decreases with k; i.e. it is lower the higher the state we intend to leave.

31



Step 2: Central states have lower cost trees.

Here we proceed as in the proof of Proposition 3. There will be a slight difference for the

cases of odd and even n.

We want to show that for all s ∈ E \ I(n), there exists s′ ∈ I(n) such that C(s′) < C(s).

Therefore, states s 6∈ I(n) cannot be stochastically stable.

Case 2.1. Suppose that n is odd.

• States to the left of I(n). Take any s ∈ Ek with k ≤
⌈

n
2

⌉
− 1. Let h be an s-tree of

minimum cost C(s). Note that (A) and (B) above imply that the cheapest way to

connect state s⌈n

2
⌉−1 to h is with a direct transition to the basin of attraction of s

at cost
⌈

n
2

⌉
. On the other hand, by (A) we can connect s directly to the basin of

attraction of s⌈n

2
⌉−1 at cost

⌈
n
2

⌉
−1. We can now remove from h the transition from

s⌈n

2
⌉−1 to s saving

⌈
n
2

⌉
and we can add the opposite transition at cost

⌈
n
2

⌉
− 1. The

result is an s⌈n

2
⌉−1-tree with cost strictly lower than C(s), implying that s cannot

be stochastically stable.

• States to the right of I(n). Take now any s ∈ Ek with k >
⌈

n
2

⌉
. Let h be an s-tree

of minimum cost C(s). Consider s′ ∈ E⌈n

2
⌉, then s > s′. By (A), the cheapest way

to connect s′ to h is with a direct transition to the basin of attraction of s at cost

higher than or equal to
⌈

n
2

⌉
.19 On the other hand, by (B) we can connect s to s′

at cost n − k + 1 <
⌈

n
2

⌉
. We can now remove from h the transition from s′ to s

saving at least
⌈

n
2

⌉
and we can add the opposite transition adding cost strictly lower

than
⌈

n
2

⌉
. The result is an s′-tree with cost strictly lower than C(s), implying that

s cannot be stochastically stable.

Case 2.2. The case of even n can be proved analogously with the only difference that:

states to the left of I(n) can be connected to s
n

2
−1 ∈ I(n) at cost n

2
−1 while the opposite

transition costs n
2

+ 1; states to the right of I(n) can be connected to any s ∈ I(n), in

particular also to s
n

2 , at cost n
2

while exiting I(n) to the right costs at least n
2

+ 1.

Step 3: All s-trees for states in I(n) have the same costs.

Suppose n is odd. Take s, s′ ∈ I(n) = E⌈n

2
⌉ with s′ 6= s. Notice we can always reach s

19Note state s
⌈n

2
⌉ ∈ E⌈n

2
⌉+1 can be reached at cost exactly

⌈
n
2

⌉
.
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from s′ and vice-versa with a direct transition at cost
⌈

n
2

⌉
. Suppose h is an s-tree of

minimum cost C(s). We can construct an s′-tree as we did in Step 2, but the total cost

of the tree will not change. Thus C(s′) ≤ C(s). In fact, there is no way to reduce the

total cost and C(s′) = C(s) because there is no way to move up or down within E⌈n

2
⌉

with less than
⌈

n
2

⌉
experiments and we have shown so far that moving out of I(n) is even

more costly.

Suppose n is even. Take s, s′ ∈ I(n) = E
n

2 ∪{sn

2 }. Assume without loss of generality that

s < s′. Suppose h is an s-tree of minimum cost C(s). We can now remove from h the

arrow starting at s′ which must have cost at least n
2

and connect s with a direct transition

to the basin of attraction of s′ with n
2

(this is possible because s < s′). This results in an

s′-tree of cost no higher than C(s). Thus, C(s′) ≤ C(s). Suppose now h′ is an s′-tree of

minimum cost C(s′). Remove from h′ the arrows starting at s and at s
n

2 , at cost at least
n
2

each; connect s′ with a direct transition to the basin of attraction of s
n

2 and connect

s
n

2 to the basin of attraction of s, both with n
2

experiments. This results in an s-tree of

cost no higher than C(s′). Thus, C(s) ≤ C(s′). It follows that C(s) = C(s′) for any pair

s, s′ ∈ I(n).

References

Ania, Ana B., 2008, Evolutionary Dynamics and Nash Equilibrium in Finite Popula-

tions, with an Application to Price Competition. Journal of Economic Behavior and

Organization 65, 472-488.

Ania, Ana B., and Andreas Wagener, 2009, Decentralized Redistribution when Govern-

ments Care about Relative Performance. Mimeo.

Björnerstedt, Jonas, and Jörgen Weibull, 1996. Nash equilibrium and evolution by imita-

tion. In: Keneth Arrow et al., eds., The Rational Foundations of Economic Behaviour,

MacMillan, 155-171.

Blackorby, Charles, Walter Bossert, and David Donaldson, 2009, Population Ethics. In:

Paul Anand, Prasanta Pattanaik, and Clemens Puppe, eds., Handbook of Rational and

Social Choice, Oxford University Press, 483-500.

Bordignon, Massimo, Floriana Cerniglia, and Federico Revelli, 2004, Yardstick Competi-

33



tion in Intergovernmental Relationships: Theory and Empirical Predictions. Economics

Letters 83, 325-333.

Borrás, Susana, and Kerstin Jacobsson, 2004, The Open Method of Coordination and

New Governance Patterns in the EU. Journal of European Public Policy 11, 185-208.
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