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The Empirical Relation between Credit Quality,
Recovery, and Correlation

Abstract

Credit risk is an important issue in many finance areas, such as the determination
of cost of capital, the valuation of corporate bonds and pricing of credit derivatives.
Credit risk has also been a cause and consequence of the current financial crisis.
Thus, methods for measuring credit risk, default probabilities, and recoveries have
caught more and more attention in the financial literature.

The majority of industry credit portfolio risk models, as well as recent scientific
results, are based on isolated modules for default probabilities and recoveries in
the event of default. This paper shows that these common methods lead to various
econometric drawbacks when the parameters are interpreted and aggregated for risk
capital allocation and pricing purposes.

This paper provides a top down approach in which individual credit risk parame-
ters are derived analytically from a single model. This model allows for a i) dynamic,
ii) consistent, and iii) unbiased modeling of credit portfolio risks. An empirical anal-
ysis provides evidence for the inferred relationship between credit quality, recovery
and correlation.
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1 Introduction

Financial institutions were surprised that during the current financial crisis, in-
dividual risk parameters deteriorated jointly. As a result, credit portfolio losses
dramatically exceeded the predictions provided by internal risk models. Mea-
suring credit portfolio losses is also of great concern to fixed income investors.
A large growth of investments in credit portfolios rather than single name
credits has occurred via mechanisms such as collateralized debt obligations.
According to a recent study by the British Bankers’ Association (2006), 54
percent of the global $20 trillion credit derivatives market consists of portfolio
products. The evaluation of credit portfolio risks requires the understanding
of individual risk drivers as well as their dependence structure.

Credit portfolio risk is measured by various parameters such as default proba-
bilities, loss rates given default, exposures at default and dependence param-
eters such as correlations and more general copulas. It is common practice to
model these parameters independently and to introduce the dependence struc-
ture thereafter. This practice is supported by the implementation of isolated
models provided by external vendors.

Various authors address the default probability. Ohlson (1980), Shumway
(2001), and McNeil & Wendin (2007) model the default probability for one-
year risk horizons and Duffie et al. (2007) model default probabilities for
multiple-year risk horizons. Within this stream of literature, credit ratings are
often used as aggregated explanations of financial risk. Ratings measure the
financial risk of corporate bond issuers, corporate bond issues and structured
finance securities. Fundamental issues relating to the general extent to which
credit rating changes convey new information has a rich pedigree that is the
subject of ongoing academic debate and investigation. For example, Radelet
& Sachs (1998) and Ferri et al. (1999) find that rating changes are pro-cyclical
which would suggest that they provide only a limited amount of new infor-
mation to the market. Ederington & Goh (1993), Dichev & Piotroski (2001)
and Purda (2007) find that corporate credit rating downgrades do provide
news to the market, although most studies find that rating upgrades do not.
Jorion et al. (2005) show that after Regulation Fair Disclosure, the market
impact of both downgrades and upgrades is significant and of greater magni-
tude compared to that observed in the pre-Regulation Fair Disclosure period.
The relative roles of different CRAs have also been studied. For example, Miu
& Ozdemir (2002) examine the effect of divergent Moody’s and S&P ratings
of banks; while Beaver et al. (2006) consider the informational advantage of
certified (Moody’s) versus non-certified (Egan Jones) rating agencies.

Research on recoveries and loss rates given default are quite recent. Pan &
Singleton (2008) derive the implicit risk structure of recoveries from sovereign
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CDS spreads. Contributions which focus on recoveries from defaulted issuers
include Carey (1998), Pykhtin (2003). Acharya et al. (2007), Qi & Yang (2009)
and Grunert & Weber (2009). Acharya et al. (2007) develop an empirical
model for recoveries using explanatory co-variables which are economically
motivated. Most of the empirical results in the recent literature using defaulted
issuers are from common linear regression models which will be shown to be
problematic later on in our paper.

Research on dependencies between risk parameters can be split into two cat-
egories. Firstly, dependencies between default events and asset value returns
are modeled. Dietsch & Petey (2004) present a non-parametric approach and
McNeil & Wendin (2007) apply a generalized mixed model approach using
Maximum-Likelihood. Secondly, (compare Hu & Perraudin 2002, Tasche 2004,
Altman et al. 2005) derive dependencies between default events and loss rates
given default.

Credit portfolio models aggregate parameters for the likelihood, severity and
dependence structure underlying a credit portfolio and forecast the distribu-
tion of future credit losses. Examples for well known credit portfolio mod-
els are CreditRisk+ (Credit Suisse Financial Products 1997), CreditMetrics
(Gupton et al. 1997) and CreditPortfolioManager (Gupton et al. 1997). Newer
applications in relation to collateralized debt obligations are VECTOR from
Fitch rating agency (see Fitch Ratings 2006), CDOROM from Moody’s rating
agency (see Moody’s 2006) and CDO Evaluator from Standard and Poor’s
rating agency (see Standard & Poor’s 2005). This independent modeling is
the major focus of the present paper as it introduces a potential for bias of
the credit portfolio loss forecasts and bank capital.

In relation to the current literature, various shortcomings can be identified.
Firstly, default probabilities, recovery rates and correlations are often modeled
as constant over time. Secondly, credit risk parameters are modeled indepen-
dently and possibly inconsistently. The omission of elements of the association
structure generally involves an underestimation of credit portfolio risk (com-
pare Altman et al. 2005). The most prominent example is the recent proposals
by the Basel Committee on Banking Supervision (2006) which are also known
as Basel II. Thirdly, conditional parameters such as recoveries which are con-
ditional upon the occurrence of default are modeled by (ordinary least square)
regression models which do not take the conditionality into account and lead
to a bias of the estimated parameters. One exception is Pykhtin (2003) who
accounts for this mortality bias and derives closed-form expressions for the
Expected Loss and the Value-at-Risk. However, the paper does not provide
empirical solutions for parameter estimation. Interestingly, Pykhtin (2003)
even acknowledges that in his paper (“[The average LGD] is impossible to
estimate”).
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The present paper extends the previous literature by empirically parameter-
izing a PD-recovery model. It includes observable idiosyncratic as well as un-
observable systematic information. The following contributions are made:

(1) Presentation of an original and relevant model framework: In a first-in-
kind model, credit portfolio risks are modeled by an econometric Tobit
framework which involves a limited number of parameters (including cor-
relations) and is therefore subject to a low degree of model risk. This
econometric approach involves a top down approach which models the
asset value returns of underlying borrowers and subsequently derives the
risk parameters. This approach allows for a i) dynamic, ii) consistent,
and iii) unbiased modeling of credit portfolio risks and avoids drawbacks
of common linear regression models.

(2) Calibration to available data: Credit portfolio risk is explained by ob-
served historic recovery rates. In contrast to market values for debt (or
spreads) or equity, recovery rates are generally observable for past bor-
rower defaults, which is particularly useful for retail loans. The majority
of commercial banks’ loan portfolios consists of mortgage loans for which
rich recovery histories are available.

(3) Provision of empirical reference values: The models are applied to a
database provided by the rating agency Moody’s. The dynamic behavior
of recovery implied asset return volatilities, correlations and their de-
terminants are analyzed. Using the unbiased estimation technique, the
information content of credit ratings is tested for default probabilities as
well as recoveries. Credit ratings have been highly criticized in the cur-
rent financial crisis due to their failure to predict corporate credit default
risk.

(4) Ability to stress-test and assess model risk: The model captures the de-
pendence on the business cycle of credit portfolio risk. Future credit risk
losses can be based on stochastic and deterministic economic downturn
scenarios. Due to the top down approach, all derived credit risk parame-
ters are stressed consistently for such scenarios.

The rest of the paper proceeds as follows. Section 2 defines a structural default
process based on an obligor’s asset value and an empirical version of the model.
Section 3 describes the data and presents the empirical results. The model
is extended to asset return correlations in Section 4 and empirical results
for this model are provided. In Section 5, the resulting Basel II capital is
compared to a model with deterministic recoveries and the best practice US
industry approach. Closed-end formulas for the Expected Loss, Value-at-Risk
and Downturn Loss Given Default are presented. Section 6 concludes with a
summary and a discussion of the model and the findings.
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2 The Basic Models

2.1 Asset Value Dynamics and Likelihood of a Credit Default

We derive the default probability and the recovery rate in an asset value
model. Let V denote the value of a firm’s assets (compare Merton 1974). V is
assumed to follow a stochastic process which can be described by

dV = δ · V · dt+ σ · V · dW, (1)

where δ ∈ < is an exogenous parameter and σ > 0 is an exogenous volatility
parameter. dt represents the passage of time and dW is a Brownian motion.
The change in the logarithmic firm value lnV between time 0 and T can be
written as

S(T ) = lnV (T )− ln v(0) = (δ − 0.5σ2)T + σ
√
T · ε (2)

where ε is a standard normally distributed random variable.

The firm is assumed to be financed by debt and equity. Debt consists of a zero
coupon bond with nominal k and maturity T . At maturity the bondholders
receive either a payment k or the value of the firm’s assets, whichever is lower.
In the case V (T ) < k the bond issue defaults and bondholders receive a frac-
tion of the notional which is also known as recovery. The default indicator is
denoted by the random variable

D =

1 borrower defaults

0 otherwise
(3)

Hence, the probability of default is

λ = P (D = 1|v(0)) = P (V (T ) < k|v(0)) = P (S(T ) < ln k − ln v(0))

= P

R(T ) <
ln k

v(0)
− (δ − 0.5σ2) · T
σ ·
√
T


= Φ(−d(T )) (4)

where Φ(·) is the standard normal cumulative density function,R(T ) = S(T )−(δ−0.5σ2)·T
σ·
√
T
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is the normalized asset return and d(T ) = −
ln k

v(0)
−(δ−0.5σ2)·T
σ·
√
T

is the normalized
default threshold which is also known as Distance-to-Default.

2.2 Severity of a Bond Default

In this setting, the repayment ratio RR is the minimum of the asset value to
debt ratio and one

RR = min{V (T )

k
, 1} (5)

Defining the default point c by

c = ln k − ln v0 (6)

gives the transformation

lnRR = min{lnV (T )− ln k, 0}
= min{lnV (T )− ln v(0)− (ln k − ln v(0)), 0}
= min{S(T )− c, 0} (7)

Equation (7) shows that the natural logarithm (log) of the repayment ratio is
normally distributed but truncated by zero with non-zero values if a default
event occurs.

2.3 The Empirical Factor Model

The subscript i is introduced for the respective borrower and the number of
borrowers is denoted by n. A time-horizon of one year is considered. Thus, the
transformed log-repayment ratio can be written as

lnRRi = min{Si(1)− ci, 0} (8)

i = 1, ..., n. This representation assumes that the observed variables Yi, i.e.,
the log-repayment ratios, satisfy
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Yi = ln(RRi) = min{Y ∗i , 0} (9)

(compare Tobin 1958). Y ∗ is a latent variable generated by a classical regres-
sion model

Y ∗i = β′xi + σ · Ui (10)

where β represents a vector of parameters, xi a vector of covariates, which
may include an intercept, and Ui a random error. Note that yi < 0 implies an
obligor default event. The errors are assumed to be independent and identically
standard normally distributed.

The conditional density of the log-repayment ratio, i.e., the density of the
log-recovery rate given default is

h(yi|Yi < 0,xi) =
φ(−(yi − β′xi)/σ)

σ · (1− Φ(β′xi/σ))
(11)

for yi < 0, where φ(·) is the density function of the standard normal distri-
bution. Then a closed-form expression for the conditional expectation of the
log-recoveries Yi given xi and Yi < 0 can be derived as

E(Yi|Yi < 0,xi) =
1

1− Φ(β′xi/σ)

∫ 0

−∞
zf(z)dz

= β′xi − σ
φ(β′xi/σ)

1− Φ(β′xi/σ)
(12)

where f(·) is the density of a normal distributed random variable with mean
β′xi and variance σ2. Note that the probability of default is

PDi = P (Di = 1|xi) = Φ(−β′xi/σ) (13)

The standardized linear predictor β′xi/σ equals the Distance-to-Default. Please
note that PDi relates to the econometric model while λ relates to the theo-
retical asset value model.

Figure 1 shows a graphical interpretation of the relation between the linear
predictor β′xi, the probability of default (PD), and the volatility σ. Equation
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(13) shows that the PD is a non-linear decreasing function of the linear pre-
dictor and a non-linear increasing (decreasing) function of the volatility for
low (high) linear predictors.

[Insert Figure 1 here]

The conditional expectation of Yi given xi is

E(Yi|xi) = (β′xi)(1− Φ(β′xi/σ))− σφ(β′xi/σ) (14)

Equations (12) and (14) have important consequences for the estimation of
determinants for the recoveries using regression models. In both instances, the
expectation of Yi does not equal the linear predictor β′xi. Thus, the estimates
for β are biased and inconsistent if they are i) estimated using non-zero obser-
vations of the Yi, or ii) by treating the values of Yi which are zero as regular
dependent variables as in common linear regression models. Note that this
is the case in most recent contributions which empirically estimated recovery
rates (compare Section 1).

The variance of the conditional expectation of Yi is given by

V(Yi|Yi < 0,xi) = σ2−σ2·
(
−β′xi/σ +

φ(β′xi/σ)

1− Φ(β′xi/σ)

)
· φ(β′xi/σ)

1− Φ(β′xi/σ)
(15)

Finally, the expectation of the recovery rate given the firm’s default is derived.
First, we define the recovery rate given default as

RGDi = exp[Y −i ] (16)

that is, it is defined only if the borrower defaults. Then, the expected recovery
rate given default is

ERGDi = E(RGDi) = E(RRi|Di = 1,xi) =
∫ 0

−∞
exp(yi) · h(yi|Yi < 0,xi)dyi

=
∫ 0

−∞
exp(yi) ·

φ(−(yi − β′xi)/σ)

σ · (1− Φ(β′xi/σ))
dyi

=
1

1− Φ(β′xi/σ)
· exp(β′xi + 0.5σ2) · Φ

(
−β

′xi + σ2

σ

)
(17)
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The derivation of the third equation is given in the Appendix. The expected
loss rate given default (ELGD) is then defined as

ELGDi = 1− E(RRi|Di = 1,xi) = 1− ERGDi (18)

Figure 2 shows the relation between PD, expected loss rate given default
(ELGD), and the volatility σ. Given the volatility, the relationship between
PD and ELGD is monotone: ELGD increases with the PD. The slope of the
PD-ELGD-curve depends on the volatility resulting in an approximately lin-
ear relation for higher values of the volatility. In other words, the positive
correlation between the likelihood and severity of credit risk is driven by the
random asset value and therefore embedded in a causal model. Note that ac-
tual defaults and recoveries (or losses) given default are realizations of random
variables (3) and (16) and will take on values different from their expectations
shown in Figure 2.

[Insert Figure 2 here]

2.4 Model Estimation

The Tobit model parameters are estimated conditional on default using the
Maximum-Likelihood method. The likelihood that obligor i has not defaulted
conditional on xi is

1− PDi = Φ(β′xi/σ) (19)

The likelihood of the log-recovery is

h(yi|xi) · (1− Φ(β′xi/σ)) =
φ((yi − β′xi)/σ)

σ
(20)

and therefore the likelihood for an observed pattern of non-defaults and log-
recoveries is

L =
∏

i∈{yi=0}
(Φ(β′xi/σ)) ·

∏
i∈{yi<0}

(
φ((yi − β′xi)/σ)

σ

)
(21)

It may be more convenient to calculate the log-likelihood
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` =
∑

i∈{yi=0}
ln(Φ(β′xi/σ) +

∑
i∈{yi<0}

ln

(
φ((yi − β′xi)/σ)

σ

)
(22)

which is then maximized with regard to the parameters β and σ. Maximum
likelihood estimation implies that the estimates exist asymptotically, are con-
sistent and asymptotically normally distributed.
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3 Empirical Study

3.1 Data

The empirical analysis is based on recoveries provided by the rating agency
Moody’s. Moody’s measures the recovery of a bond issue upon occurrence of
a default event, i.e., if

• Interest and/or principal payments are missed or delayed,
• Chapter 11 or Chapter 7 bankruptcy is filed, or
• Distressed exchange such as a reduction of the financial obligation occurs.

In order to guarantee a homogeneous risk segment, the data set was restricted
to regular US bond issues. The observation period includes the years 1982 to
2007. Secured bond issues were excluded from the analysis as their default
and recovery characteristics may relate to the collateral value rather than the
asset value of a firm. This data set includes 446,287 observations with 1,293
default and recovery events. A recovery rate is defined as the ratio of the price
of defaulted debt obligations after 30 days of the occurrence of a default event
and the par value.

Table 1 and Table 2 show the number of observations, default rate and mean
recovery per year, rating class, industry and seniority/security level. The rating
class IG comprises investment grade ratings (i.e., Aaa, Aa, A, Baa) and the
rating class C comprises the rating categories Caa, Ca and C.

[Insert Table 1 here]

[Insert Table 2 here]

Figure 3 shows that the ratio of non-investment grade issues to total issues co-
moves with the default rate which demonstrates the power of Moody’s ratings
to predict defaults.

[Insert Figure 3 here]

Generally speaking, default rates decrease and recoveries increase with im-
proving credit quality. Two recessions of the US economy can be identified: a
first one in 1991 during the First Gulf War and a second one in 2001 during

12



the downturn in the internet industry and the terrorist attack in the US. This
negative relationship between default and recovery rates is displayed in Figure
4.

[Insert Figure 4 here]

Figure 5 and Figure 6 show histograms for the absolute recoveries and re-
coveries which are transformed by the natural logarithm. The distribution of
the log-recoveries confirms the assumption of a truncated standard normal
distribution of Y ∗i in Equation (10).

[Insert Figure 5 here]

[Insert Figure 6 here]

3.2 Market-wide Analysis

The base case model is estimated for all observations of the sample period
without covariates. Table 3 shows the results of the parameter estimates in
the first column which is labeled Model (1). From the first row it can be
inferred that the constant (or mean transformed asset return) is 11.4551 and
the volatility is 4.1525 as shown in the row labeled σ.

The standard errors are reported in parentheses in each row below the param-
eter estimates and both estimates are significantly different from zero. This
results in a Distance-to-Default of 2.7586 (i.e., 11.4551 ÷ 4.1525) and an av-
erage probability of default of 0.29 per cent (i.e., Φ(−2.7586)). This estimate
equals the average default rate of the observation period which is 0.29 per
cent (i.e., 1,293 default events ÷ 446,287 observations). The expected recov-
ery from Equation (17) is 43.40 per cent. This estimate is also close to the
average realized recovery rate from the sample which is 39.9 per cent.

Model (2) to Model (4) extend the base case Model (1) by including covariates.
In Model (2), Moody’s rating grades which were assigned to each issue at the
beginning of a year are included as ex-ante measures for the credit quality of
a borrower. The lag enables the use of the models for forecasting applications.
Other lags may be chosen. Each rating grade is modeled by a dummy variable

13



xjit =

1 issue i has assigned rating grade j at the beginning of year t

0 otherwise

(23)

for grades j = BA,B,C.

The estimation results are reported in the second column of Table 3. Note that
owing to the dummy encoding of the rating grades, grade IG is used as the
reference category. Therefore, a borrower with grade IG at the beginning of a
year has an estimated constant of 10.2240 (compared to the average of 11.4551
for all observations). The inclusion of rating information into the model re-
duces the volatility to 2.8097. This demonstrates that credit ratings capture
valuable information regarding the idiosyncratic error in the process of the as-
set returns. Moreover, the last row shows Akaike’s information criterion (AIC)
declining from 20,875 to 13,295 which indicates a substantial improvement of
the goodness-of-fit of the model.

Looking at the results for the other three rating grades it can be seen that all
three effects are significantly different from zero indicating significant differ-
ences for the three grades. For instance, the constant for a grade Ba borrower
is 10.2240− 2.8013 = 7.4227 yielding a lower distance to default, a higher PD
and a lower expected recovery compared to a grade IG borrower. Similarly,
the effects for the other grades can be interpreted where the highest default
probability and lowest recovery is assigned to the riskiest grade C.

While the assessment of credit quality made by the rating agency should be
an obvious indicator for the default probability and the expected recovery, an-
other indicator should be the seniority. The database allows the differentiation
between ‘senior unsecured’ (SU) and ‘subordinated’ (Sub) issues. Analogously,
the seniority status is coded by a dummy variable

xSubi =

1 issue i is subordinated

0 otherwise
(24)

as the reference category SU is used. The results of Model (3) which includes
the seniority status are also shown in Table 3. The constant for the reference
category SU is 11.4395 and therefore higher than that of the average model,
indicating a lower probability of default and a higher recovery rate for senior
secured bonds.

Model (4) shows that the subordination does not add statistically significant
explanatory power to the model after the credit quality is taken into account.
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This is plausible as Moody’s rating categories reflect expected loss rates and
not the likelihood of default.

[Insert Table 3 here]

3.3 Industry-specific Analysis

In a second step, the data set is split according to the Standard Industry
Classification (SIC) code into the industries Commerce (SIC code between 50
and 59), Financial Institutions (FI; SIC code between 60 and 64), Manufac-
turing (SIC code between 20 and 39), Public Utility (PU; SIC code equal to
49), Services (SIC code between 40 and 48) and Others (SIC code below 19).
Industries may constitute homogeneous risk segments in which companies are
subject to similar risk characteristics. Asset values and default thresholds are
expected to be similar for the same industry. The descriptive statistics in Ta-
ble 2 show that in particular Financial Institutions and Public Utility firms
have low default rates and high mean recovery rates. Table 4 summarizes the
parameter estimates for Model (2) for the individual industries.

[Insert Table 4 here]

4 Extension of the Model to Asset Return Correlations

4.1 Factor Model

The framework which has been presented thus far incorporates the residual
volatilities but does not take into account that the firms’ asset returns may be
cross-sectionally correlated. Correlations are an important input into modern
credit portfolio risk models. Small changes of the correlation between asset
returns may have a high impact on the portfolio loss distribution and related
measures.

The random error Ui of Equation (10) is decomposed into

Ui = ω · F + σ̃ · Vi (25)

where F is a systematic error component which simultaneously affects all
assets (which is also known as a systematic random effect), and Vi is an id-
iosyncratic error affecting only asset i, i = 1, ..., n. All errors are standard
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normally distributed and independent from each other. ω and σ̃ are param-
eters which express the exposure to the systematic and idiosyncratic factors.
Note that the total variance is V(Ui) = σ2 = ω2 + σ̃2. Thus, the correlation
between two latent variables Y ∗i and Y ∗j of asset i and j is given by

ρ =
C(Y ∗i , Y

∗
j )

σ · σ
=
ω2

σ2
=

ω2

ω2 + σ̃2
(26)

where C(·) denotes the covariance. This parameter plays a crucial role in most
commercial credit risk models as well as Basel II which will be discussed in
Section 5.

The latent variable Y ∗i extends to

Y ∗i = β′xi + ω · F + σ̃ · Vi (27)

F is an annual realization and ω can be estimated using the econometric
specification

Y ∗it = β′xit + ω · Ft + σ̃ · Vit (28)

where i ∈ nt, t = 1, ...T . T is the number of time series observations available
(e.g., the number of years) and nt is the set of borrowers in period t. Given
this notation the parameters can be estimated by the Maximum-Likelihood
method as shown below.

4.2 Model Estimation

Consider a given realization of the systematic factor Ft = ft. Conditional on
ft the Likelihood for each period is

Lt =
∏

i∈{yit=0}
(Φ((β′xit+ω·ft)/σ̃))·

∏
i∈{yit<0}

(
φ((yit − β′xit − ω · ft)/σ̃)

σ̃

)
(29)

Please note that ft is not observable and that the expectation is calculated
with respect to Ft
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E(Lt) =
∫ ∞
−∞

∏
i∈{yit=0}

(Φ((β′xit + ω · ft)/σ̃)) (30)

·
∏

i∈{yit<0}

(
φ((yit − β′xit − ω · ft)/σ̃)

σ̃

)
φ(ft) dft (31)

Finally, using a time series of T observations, the Log-Likelihood is

` = ln L = ln

(
T∏
t=1

E(Lt)

)
=

T∑
t=1

ln E(Lt) (32)

which is then maximized with regard to the parameters β, ω and σ̃. This op-
eration can be solved numerically using adaptive Gauss-Hermite quadrature.
2

4.3 Empirical Results

Table 5 shows the estimation results for the entire data base in the first column
and the industries in the remaining columns.

The model includes the rating factors which are comparable in relation to
the parameters and significance of the models without asset correlation. For
the overall database we can calculate the total volatility as

√
ω2 + σ̃2 =√

1.02422 + 2.62152 = 2.8145 which is very close to the volatility from the
model without a systematic risk component. The asset correlation given in
the last row is then calculated as ρ = ω2

ω2+σ̃2 = 1.02422

1.02422+2.62152 = 0.1324. For
the industry sectors we find large differences for volatilities and correlations.
Correlations in Commerce, Manufacturing, Services and Others are similar to
the overall correlation. The correlations for Financial Institutions and Public
Utility are much larger. As a result, the overall industries model may reflect
diversification benefits across industries. The AICs show an improvement of
the goodness-of-fit for each industry sector compared to the model without
the systematic factor.

[Insert Table 5 here]

2 A simulation study was conducted to ensure the performance of the estimators.
For space reasons the results are not reported here. Details are available upon
request from the authors.
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5 Implications for Portfolio Credit Risk

5.1 Measurement of Portfolio Credit Risk

Finally, we determine the economic and regulatory capital under the Basel II
rules. Please note that general and specific provisions by the financial insti-
tutions should be sufficient to cover the expected losses, while the Tier I and
Tier II capital should be sufficient to cover the difference between the 99.9th
percentile of the future loss and the Expected Loss, which is also known as
the Credit-Value-at-Risk, (see e.g., C. Bluhm 2002).

Thus, the probability distribution of the future loss of a credit portfolio and
risk figures derived thereof, such as the Expected Loss or the Value-at-Risk
are of a central concern to financial institutions. This generally requires the
forecast of the loss distribution for a future time period, e.g., one year. In the
following, the time subscript is dropped for efficiency of exposition. We denote
the exposure of loan i in the portfolio by ai which is assumed to be known.
Then, the total exposure of the portfolio is a =

∑n
i ai and the proportion of

loan exposure i in the entire portfolio is defined as ηi = ai

a
.

The random loss of borrower i, i = 1, ..., n as a fraction of its total exposure
is denoted by

Li = (1−RGDi) ·Di (33)

where RGDi is the recovery rate given default.

The expected loss of borrower i as a fraction of its total exposure can be
calculated as

Li = E(Li) = E(Di|xi)− E(RGDi ·Di|xi)

= Φ(−β′xi/σ)− 1

1− Φ(β′xi/σ)
· exp(β′xi + 0.5σ2) · Φ

(
−β

′xi + σ2

σ

)
· Φ(−β′xi/σ)

= Φ(−β′xi/σ)− exp(β′xi + 0.5σ2) · Φ
(
−β

′xi + σ2

σ

)
= PDi − ERGDi · PDi

= PDi · ELGDi (34)

where the second line follows from the fact that the recovery is different from
zero only if the borrower defaults and PDi = P (Di = 1|xi) is the probability
of default from Equation (13).
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The loss rate of a portfolio of loans is the weighted average of the individual
loan loss rates given by

L =
n∑
i

ηi(1−RRi) ·Di (35)

The expected portfolio loss is obtained as

L = E(
n∑
i=1

ηiLi) =
n∑
i=1

ηiE(Li) =

=
n∑
i=1

ηi · [PDi − ERGDi · PDi]

=
n∑
i=1

ηi · PDi · ELGDi (36)

For the probability distribution of the portfolio loss and risk measures such
as the Value-at-Risk the dependency structure of the loans is crucial. Gener-
ally speaking, the density of Equation (35) cannot be expressed analytically
but can be obtained by Monte-Carlo simulation. Following Gordy (2003) and
Pykhtin (2003) an analytical solution for the percentiles of the distribution
can be given in the special case of a single stochastic risk factor (which is the
case in our model) and an infinitely granular portfolio. The expected loss rate
for borrower i is expressed conditional on the systematic risk factor:

Li(F ) = E(Li|F ) = E(Di|xi, F )− E(RRi ·Di|xi, F )

= Φ(−(β′xi + ω · F )/σ̃)

− 1

1− Φ((β′xi + ω · F )/σ̃)
· exp(β′xi + ω · F + 0.5σ̃2)

· Φ
(
−β

′xi + ω · F + σ̃2

σ̃

)
· Φ(−(β′xi + ω · F )/σ̃)

= Φ(−(β′xi + ω · F )/σ̃)− exp(β′xi + ω · F + 0.5σ̃2) · Φ
(
−β

′xi + ω · F + σ̃2

σ̃

)
= CPDi(F )− CERGDi(F ) · CPDi(F )

= CPDi(F ) · CELGDi(F ) (37)

where
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CPDi(F ) = Φ(−(β′xi + ω · F )/σ̃) (38)

is the conditional default probability, while

CERGDi(F ) =
1

1− Φ((β′xi + ω · F )/σ̃)
· exp(β′xi + ω · F + 0.5σ̃2)

· Φ
(
−β

′xi + ω · F + σ̃2

σ̃

)
(39)

and CELGDi(F ) = 1 − CERGDi(F ) are the conditional expected recovery
rate given default and expected loss given default given the systematic factor.
The random loss of a granular portfolio is given by

L∞ =
n∑
i

ηiLi(F ) (40)

and is therefore a monotonically increasing function of the systematic fac-
tor. Thus, the α-percentile of the future loss, referred to as Value-at-Risk, is
obtained as

Lα =
n∑
i

ηiLi(F = Φ−1(1− α)) (41)

for 0 < α < 1. Note that this expression reduces to the core of IRB Basel II
formula after a simple reparameterization if the recovery is not modeled via
the asset value model, and instead, is assumed to be deterministic. In Equation
(26), the asset correlation was defined as ρ = ω2

σ2 with σ2 = ω2 + σ̃2. Noting

that 1− ρ = σ̃2

σ2 and rewriting the conditional probability of default results in
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CPDi(F ) = Φ (−(β′xi + ω · F )/σ̃)

= Φ

(
−β

′xi · σ
σ̃ · σ

− ω · F · σ
σ̃ · σ

)

= Φ

(
−β

′xi
σ
· σ
σ̃
− ω · F

σ
· σ
σ̃

)

= Φ

(
−β

′xi
σ
· 1√

1− ρ
−√ρ · F · 1√

1− ρ

)

= Φ

(
Φ−1(PDi)−

√
ρ · F√

1− ρ

)
(42)

which is the conditional default probability in the Basel II IRB approach in
terms of asset correlation where the systematic factor is fixed to the 99.9th
percentile of a standard normally distributed variable and the asset correlation
is expressed as a function of the default probability.

Finally, the model allows for a straightforward definition of so-called ‘Down-
turn Loss Given Default’ for the Basel II model. While a downturn probability
of default can be defined by the conditional default probability (Equation 42)
a similar interpretation is possible for the recovery (or the loss given default)
and the individual or portfolio loss rate. To see this, note that Equations (37),
(39) and (41) depend only on the systematic factor. Therefore a ’downturn
recovery’ is defined as the conditional expected recovery given an adverse re-
alization of the systematic factor according to Equation (39)

CERGDi(F = Φ−1(1− α)) =
1

1− Φ((β′xi + ω · Φ−1(1− α))/σ̃)

· exp(β′xi + ω · Φ−1(1− α) + 0.5σ̃2)

· Φ
(
−β

′xi + ω · Φ−1(1− α) + σ̃2

σ̃

)
(43)

with a downturn loss given default given as CELGDi(F = Φ−1(1 − α)) =
1− CERGDi(F = Φ−1(1− α)).

In the granular portfolio the Downturn LGD is then given as in Equation
(41) where α can be set to 0.999 as proposed by Basel II. In other words, the
Downturn LGD is then based on the same economic stress as the probability
of default.

In summary, given the estimation of a single credit risk model all common
credit risk measures may be calculated. This is shown exemplary for the ran-
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dom effects model for all industries from Section 4.3. Table 6 shows in the first
panel the unstressed measures probability of default, loss given default and
expected loss for different credit ratings categories. The second panel shows
the stressed credit measures conditional probability of default, conditional ex-
pected loss given default and Value-at-Risk based on the 99.9th percentile of
the random systematic risk factor.

[Insert Table 6 here]

5.2 Application: Basel II Regulatory Capital

Table 7 shows the key risk parameters for the calculation of bank capital for
the various rating classes. The risk parameters include the unstressed param-
eters Basel asset correlation, probability of default (PD) and loss rate given
default (ELGD) as well as the stressed parameters conditional probability of
default (CPD) and downturn loss rate given default. Two approaches are com-
pared for the latter: the downturn LGD may firstly be calculated according
to the empirical derivation presented by Equation (43): CELGD or secondly
by a proposal by the Department of the Treasury, Federal Reserve System
and Federal Insurance Corporation (2006): US CELGD which applies a linear
relationship of the downturns LGD on ELGD:

US CELGD = 8% + 92% ∗ ELGD (44)

Please note that under the Basel IRB approach (compare Basel Committee
on Banking Supervision 2006), the regulatory capital is equal to the difference
between the Value-at-Risk (i.e., the product of Basel CPD and loss given
default) and the Expected Loss (i.e., the product of PD and ELGD). The
Value-at-Risk is based on the 99.9th percentile of the random systematic risk
factor and pre-specified asset correlations. The two last rows of Table 7 show
that both a deterministic recovery rate as well as the US proposal lead to
a severe underestimation of the regulatory capital which increases with the
credit risk in a rating category. This underestimation is up to 20.72 per cent
in the instance of deterministic recoveries (rating C) and 16.14 per cent for
Equation 44 (rating C).

[Insert Table 7 here]
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6 Discussion

The industry has fundamentally changed its risk measurement and manage-
ment approaches in recent years by a set of isolated modules which are often
provided by external vendors. This practice results in independent and often
constant recovery rates. Due to the model independence, financial institutions
were surprised that during the current financial crisis, individual risk parame-
ters deteriorated jointly. Recently developed internal risk models were unable
to predict this.

The current risk measurement approach has multiple drawbacks. Firstly, de-
fault probabilities, recovery rates and correlations are often modeled as con-
stant over time. Secondly, credit risk parameters are modeled independently
and possibly inconsistently. Thus, dependencies between parameters are not
included. Thirdly, conditional parameters such as recoveries which are condi-
tional upon the occurrence of default are modeled by (ordinary least square)
regression models, which do not take the conditionality into account and lead
to a severe bias of the estimated parameters.

In response to these shortcomings, this paper provides a top down approach
in which individual credit risk parameters are derived in a closed formula
from a single model. This model allows for a i) dynamic, ii) consistent, and
iii) unbiased modeling of credit portfolio risks. This framework is regression
based and requires the observation of past recoveries or losses but no market
prices. A causal relationship between credit quality, recovery rate, volatility,
and correlation is established.

An empirical analysis provides evidence for the inferred relationship between
credit quality, recoveries and correlation. This approach allows financial in-
stitutions to have a consistent approach across different credit risk measures
used to derive provisions, economic and regulatory capital as well as other
applications such as credit pricing. The empirical analysis identified an under-
estimation of the regulatory capital if downturn loss rates given defaults are
estimated applying the current best practice approaches.

In relation to the current financial crisis, the paper may facilitate an increase
of transparency of credit portfolio risk models. Transparency may increase if
dynamic, consistent, and unbiased models are applied. In addition, the forma-
tion of a market standard as well as ability to stress-test and evaluate model
risk are essential.
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Appendix: derivation of the Expected Recovery Rate Given Default

ERGDi = E(RRi|Di = 1,xi) =
1

1− Φ(β′xi/σ)
· exp(β′xi + 0.5σ2) · Φ

(
−β

′xi + σ2

σ

)

Substitute µi = β′xi and PDi = 1− Φ(µi/σ) and write

ERGDi =
∫ 0

−∞
exp(yi) · h(yi|Yi < 0,xi)dyi

=
∫ 0

−∞
exp(yi) ·

φ(−(yi − µi)/σ)

σ · (1− Φ(µi/σ))
dyi

=
1

σ · PDi

∫ 0

−∞
exp(yi) ·

1√
2π
· exp

(
−(−yi + µi)

2

2σ2

)
dyi

=
1

σ · PDi

· 1√
2π
·
∫ 0

−∞
exp

(
yi −

µ2
i − 2yiµi + y2

i

2σ2

)
dyi

=
1

σ · PDi

· 1√
2π
·
∫ 0

−∞
exp

(
2σ2yi − µ2

i + 2yiµi − y2
i

2σ2

)
dyi

=
1

σ · PDi

· 1√
2π
·
∫ 0

−∞
exp

(
−y2

i + 2yi(µi + σ2)− (µi + σ2)2 − µi + (µi + σ2)2

2σ2

)
dyi

=
1

σ · PDi

· 1√
2π
·
∫ 0

−∞
exp

(
−(yi − (µi + σ2))2 + 2µiσ

2 + σ4

2σ2

)
dyi

=
1

σ · PDi

· 1√
2π
·
∫ 0

−∞
exp

(
−(yi − (µi + σ2))2

2σ2

)
· exp(µi + 0.5σ2)dyi

=
1

PDi

· exp(µi + 0.5σ2) ·
∫ 0

−∞

1√
2πσ2

exp

(
−(yi − (µi + σ2))2

2σ2

)
dyi

=
1

PDi

· exp(µi + 0.5σ2) · Φ
(
−µi + σ2

σ

)
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Figures

Fig. 1. Relation between linear predictor β′x, volatility σ, and probability of default
(PD)

Notes: Probabilities of default are calculated based on σ and β′x according
to Equation (13). For high σ, the relationship between β′x and PD is linear
and for low σ, a firm defaults with a high likelihood (i.e., the PD is high) if
β′x < 0 and a firm does not default with a high likelihood (i.e., the PD is low)
if β′x > 0.
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Fig. 2. Relation between probability of default (PD), expected loss given default
(ELGD), and volatility σ

Notes: ELGD is calculated based on PD and σ according to Equation (17)
and Equation (18).
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Fig. 3. Default rate and non-investment grade rate

Notes: Default rate is the ratio between the number of defaulted issues and
the total number of issues. The non-investment grade rate is the number of
non-investment grade issues to the total number of issues.
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Fig. 4. Default rates for all issues and recovery rates for all issues

Notes: Default rate is the ratio between the number of defaulted issuers and
the total number of issuers. Recovery rate is the ratio of the price of defaulted
debt obligations after 30 days of the occurrence of a default event and the par
value.
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Fig. 5. Absolute frequencies for recoveries

Notes: Recovery rate is the ratio of the price of defaulted debt obligations
after 30 days of the occurrence of a default event and the par value.

Fig. 6. Absolute frequencies for log-recoveries

Notes: Recovery rate is the ratio of the price of defaulted debt obligations
after 30 days of the occurrence of a default event and the par value.
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Table 1
Number of observations, default rates and mean recoveries per year

Year Total observations Default rate Mean recovery

1982 2,491 0.6% 36.1%

1983 2,908 0.6% 54.7%

1984 3,079 0.3% 51.2%

1985 3,420 0.5% 44.5%

1986 4,183 1.1% 42.5%

1987 4,749 1.1% 63.5%

1988 4,996 0.7% 36.8%

1989 5,474 0.7% 38.6%

1990 5,865 1.4% 30.1%

1991 5,871 1.4% 43.2%

1992 5,880 0.7% 46.5%

1993 6,030 0.3% 40.7%

1994 6,645 0.2% 44.5%

1995 7,730 0.4% 56.2%

1996 9,694 0.1% 50.1%

1997 14,223 0.2% 48.3%

1998 19,650 0.1% 40.6%

1999 25,606 0.3% 34.7%

2000 29,405 0.3% 22.5%

2001 29,586 0.6% 35.1%

2002 27,113 0.7% 34.6%

2003 27,595 0.3% 38.7%

2004 37,622 0.1% 60.2%

2005 48,741 0.1% 57.0%

2006 55,246 0.1% 61.5%

2007 52,485 0.0% 66.5%

Sum/ Average 446,287 0.3% 39.9%
Notes: Default rate is the ratio between the number of defaulted issuers and the
total number of issuers. Recovery rate is the ratio of the price of defaulted debt
obligations after 30 days of the occurrence of a default event and the par value.
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Table 2
Number of observations, default rates and mean recoveries per rating class, industry
and seniority/security level

Total observations Default rate Mean recovery

Rating class

IG 406,497 0.0% 55.8%

Ba 16,672 0.4% 54.8%

B 18,753 2.4% 37.5%

Caa-C 4,365 16.5% 38.7%

Industry

Commerce 10,288 1.1% 33.5%

FI 301,942 0.0% 60.5%

Manufacturing 37,749 0.7% 34.6%

PU 19,107 0.2% 64.8%

Services 45,925 0.8% 35.6%

Others 31,276 1.3% 40.0%

Seniority/Security class

Senior unsecured 412,928 0.2% 44.0%

Subordinated 33,359 1.6% 34.0%
Notes: Default rate is the ratio between the number of defaulted issuers and the
total number of issuers. Recovery rate is the ratio of the price of defaulted debt
obligations after 30 days of the occurrence of a default event and the par value.
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Table 3
Parameter estimates for the Tobit models

Model (1) Model (2) Model (3) Model (4)

const 11.4551*** 10.2240*** 11.4395*** 10.2239***

(0.3036) (0.2706) (0.3015) (0.2705)

Rating BA -2.8013*** -2.8016***

(0.1642) (0.1645)

Rating B -4.7005*** -4.7017***

(0.1575) (0.1611)

Rating C -7.4386*** -7.4398***

(0.2074) (0.2098)

Sub -2.9703*** 0.0029

(0.1096) (0.0783)

σ 4.1525*** 2.8097*** 3.9423*** 2.8097***

(0.1079) (0.0691) (0.1018) (0.0691)

AIC 20,875 13,295 19,745 13,297
Notes : Table shows the results of Tobit models for the logarithm of the recovery
rate with rating grades and seniority status as explanatory variables; standard
deviations are in parentheses; ***indicates significance at the 1%-level, **indicates
significance at the 5%-level, *indicates significance at the 10%-level. AIC is Akaike’s
Information Criterion which measures the goodness-of-fit.
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Table 6
Summary of credit risk measures derived from Random Effects Model (6)

Rating IG Rating BA Rating B Rating C

PD 0.0003 0.0060 0.0336 0.1942

ELGD 0.4246 0.4858 0.5419 0.6396

Expected Loss 0.0001 0.0029 0.0182 0.1242

Empirical asset correlation 0.1397 0.1397 0.1397 0.1397

CPD 0.0070 0.0713 0.2334 0.6238

CELGD 0.4709 0.5567 0.6365 0.7700

Value-at-Risk (α=0.999) 0.0033 0.0397 0.1486 0.4803
Notes : PD is calculated according to Equation (13), ELGD is calculated according
to Equation (18), Expected Loss is calculated according to Equation (34), CPD
is calculated according to Equation (38), CELGD is calculated one minus ERGD
which is calculated according to Equation (39), Value-at-Risk is calculated according
to Equation (37).
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