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Abstract

We show that the CUSUM-squared based test for a change in persistence by Leybourne

et al. (2007) is not robust against shifts in the mean. A mean shift leads to serious size

distortions. Therefore, adjusted critical values are needed when it is known that the data

generating process has a mean shift. These are given for the case of one mean break.

Response curves for the critical values are derived and a Monte Carlo study showing the

size and power properties under this general de-trending isgiven.
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1 Introduction

It is well known that structural breaks in the mean of a time series can easily be confused

with long-range dependence. Shifts in the mean can heavily bias estimators for the memory

parameter and therefore create misleading results. For an overview about the problem of spu-

rious long memory due to mean shifts see Sibbertsen (2004). In the recent years a change of

the persistence of a time series, this is a change of the orderof integration, has come more
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and more into the focus of empirical and theoretical researchers. Beginning with Banerjee et

al. (1992) several authors proposed tests for a change in persistence in the classicalI(0)/I(1)

framework. A popular stationarity test against a break in persistence was introduced by Kim

(2000). Kim’s test has the disadvantage to reject the null ifthe data generating process is

constantlyI(1) during the whole sample what is theoretically correct but not desirable. Ley-

bourne et al. (2007) suggest a CUSUM-squares based test to solve this problem. Sibbertsen

and Kruse (2009) generalized this test to the long memory framework by allowing for frac-

tional degrees of integration.

Belaire-Franch (2005) proved that Kim’s test is not robust against mean shifts in the sense that

it has an asymptotic size of one when the data generating process isI(0) with a break in the

mean. Unfortunately, we show that the Leybourne et al. test does not overcome this problem

as it is not robust against mean shifts either. We therefore derive adjusted critical values for

the test under a generalized de-trending allowing for one mean shift.

The rest of the paper is organized as follows. In section 2 thetest for changes in persistence

is briefly described. Section 3 derives its properties undermean shifts and section 4 contains

some Monte Carlo studies. Section 5 gives critical values ofthe test under a generalized

de-trending procedure. Size and power results are given as well. Section 6 concludes.

2 Testing for a break in persistence under long memory

We assume that the data generating process follows an ARFIMA(0,d,0) process. Sibbertsen

and Kruse (2009) generalized a CUSUM of squares-based type test proposed by Leybourne et

al. (2007) to test in this model framework the hypothesis of constant long-range dependencies

versus a change in persistence. The alternative can be either a change in persistence from

stationary to non-stationary long memory or vice versa. Thenull hypothesis tested is

H0 : d = d0 for t = 1, . . . ,T,
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where we assume 1/2 < d0 < 3/2. The alternative hypothesis is either

H01 :







d = d1 ∈ (0,1/2) for t = 1, . . . , [τT ]

d = d2 ∈ (1/2,3/2) for t = [τT ]+1, . . . ,T

or

H10 :







d = d2 ∈ (1/2,3/2) for t = 1, . . . , [τT ]

d = d1 ∈ (0,1/2) for t = [τT ]+1, . . . ,T.

The CUSUM of squares-based test statisticR used in Sibbertsen and Kruse (2009) is given by

R =
infτ∈Λ K f (τ)
infτ∈Λ Kr(τ)

with the forward statistic

K f (τ) = [τT ]−2d0

[τT ]

∑
t=1

v̂2
t,τ

and the reversed statistic of the data generating process

Kr(τ) = (T − [τT ])−2d0

T−[τT ]

∑
t=1

ṽ2
t,τ.

Hereτ is the relative breakpoint where we assume thatτ ⊂ Λ andΛ ⊂ (0,1) and is symmetric

around 0.5. For now we assumeτ to be fixed though unknown.[x] is the ceiling function of

x andν̂t,τ is the residual from the OLS regression ofXt on a constantzt = 1 ∀t based on the

observations up to[τT ]. This is

v̂t,τ = Xt − X̄(τ)

with X̄(τ) = [τT ]−1∑[τT ]
t=1 Xt. Similarly ṽt,τ is defined for the reversed seriesyt = XT−t+1. Thus,

it is given by

ṽt,τ = yt − ȳ(1− τ)

with ȳ(1− τ) = (T − [τT ])−1∑T−[τT ]
t=1 yt .

Sibbertsen and Kruse (2009) derive the limiting distribution of this test statistic and provide

response curves in order to compute critical values for different hypothetical memory param-

etersd0.
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3 Behavior of Test under mean shifts

In order to analyze how the CUSUM of squares-based test behaves under mean shifts let us

introduce some notation first. In what followsτ denotes the relative breakpoint in the memory

parameterd andλ denotes the relative position of the mean shift. For the sakeof notational

simplicity we only consider the easiest break in mean model allowing only for abrupt changes.

Our model is given by

yt = α+δDt + εt (1)

with Dt = 1(t ≥ [λT ] + 1) with 1(·) being the indicator function. In this model a level shift

from α to δ occurs at some unknown breakpoint[λT ]. We further assume thatεt ∼ I(d) with

0≤ d ≤ 1.5. Thus, a possible choice forεt is anARFIMA(p,d,q) model. Let furthermore
P
→

denote convergence in probability.

Theorem 1. Given model (1) with the assumptions given above. Then:

1. for 1/2 < d < 3/2 the value of the test statistic is

R =
infτ∈Λ K f (τ)
infτ∈Λ Kr(τ)

=
infτ≤λ K f (τ)
infτ≥λ Kr(τ)

;

2. for 0≤ d < 1/2 we have R
P
→ 1.

The results can also be derived for a general de-trending. The ideas are the same. It only

introduces more notational difficulties and is therefore left out here.

The result means that the minimization takes place over a restricted interval up to the point

where the mean shift occurs or beginning from this point. Thefurther the mean shift is on the

limits of Λ the smaller is this interval either for the forward or reversed statistic. Therefore,

the occurrence of the minimum in this interval becomes less likely. This can be seen when

considering a typical shape of the forward and reversed statistic as given in Figure 1. Atλ =

0.7 the forward statistic increases immediately and so the minimum can only be found before

the mean shift distorts the forward statistic. This distortion is big enough for the test statistic

to reject the null in most cases. It should be mentioned that we cannot prove inconsistency of

the test in the sense that the test statistic diverges when a mean shift occurs. This is not the
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case and thus allows us to readjust the critical values in thecase of mean shifts as it is done in

section 5.

Figure 1: Forward and backward statistic withλ = 0.7, α = 0, δ = 5 andd = 0.8
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The size distortions are smallest for a mean shift atλ = 0.5 considering that the interval for

the forward and backward statistic have the same length. Therefore, it is less likely that both

minima findings are distorted. Interestingly, these results do not hold for a stationary data

generating process. In this case the test statistic is stillconservative.

Some Monte Carlo underpinning these findings is given in the next section.

4 Monte Carlo study

Our theoretical findings in section 3 can be backed up with Monte Carlo studies. All simu-

lations are computed with the open-source programming language R (2008). The number of

replications is set toM = 2000 and we consider a sample size ofT = 1000, set so high in

order to illustrate the asymptotic results. When there is a mean shift fromα = 0 to δ = 5 in

model (1), the size varies with the relative position of the mean shiftλ as follows.

As shown in section 3 it leads to distorted size results for 1/2 < d < 3/2 no matter what shift

size is used. Ford < 1 it remains most likely above the significance level. The size distortion

increases by getting closer to the limits of theΛ interval. Ford = 1 as well as forλ = 0.5
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Table 1: Empirical size when there is a mean shift using estimated response curves

d = 0.6 d = 0.8

λ 0.10 0.25 0.50 0.75 0.90 0.10 0.25 0.50 0.75 0.90

1L 0.15 0.00 3.75 43.95 34.30 0.35 0.60 1.00 2.60 2.90

5L 0.70 0.65 11.75 67.45 57.20 2.40 3.05 5.15 10.00 11.60

10L 1.20 1.05 19.45 77.15 71.35 5.35 7.00 10.55 17.95 19.90

10U 70.40 74.80 15.80 0.50 0.7519.20 18.45 10.05 6.75 6.60

5U 55.25 62.45 8.40 0.10 0.412.00 11.70 5.60 3.30 3.05

1U 30.45 38.30 2.65 0.00 0.10 3.40 2.70 0.80 0.60 0.50

d = 1.0 d = 1.4

λ 0.10 0.25 0.50 0.75 0.90 0.10 0.25 0.50 0.75 0.90

1L 0.75 1.55 1.20 1.20 0.85 0.15 0.20 0.15 0.1 0.15

5L 4.10 6.00 5.10 4.90 4.90 2.25 2.70 2.15 1.70 2.00

10L 9.30 11.95 9.60 10.05 10.45 6.55 5.65 5.50 4.3 5.25

10U 9.45 8.65 9.65 10.35 10.40 5.55 7.00 6.55 6.45 6.1

5U 4.60 4.85 5.40 5.00 6.30 2.00 2.55 2.45 2.55 2.4

1U 1.00 1.30 1.20 1.00 1.00 0.00 0.30 0.10 0.15 0.05

the smallest size distortion can be observed. Ford > 1 the test statistic tends to conservative

size results. The test statistic does not diverge because ofa mean shift and tends to reject not

properly. Because of the missing mean reverting characteristic for long memory withd > 1

and the thereby explosive performance of the time series, the mean shift no matter what size

has no such strong impact on the test statistic and hence on the size results.

For this onesided test depending on whetherλ is smaller or greater than the intervalΛ, elevated

size values appear at the upper and lower bound respectivelyas shown in Figures 2 and 3. Due

to the fact, that the true position of the break is unknown, distorted size results can always

appear.
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Figure 2: Behavior of the size at the lower 5% tail
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Figure 3: Behavior of the size at the upper 5% tail
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The smaller the long memory parameter, the more distinctiveis this size behavior. Hence at

the boundaries of the time series the test decision is strongly biased by the mean shift and leads

to a false rejection of the null. The following graphic show the distribution of the minima of

the forward and backward statistics forλ = 0.7 andd = 0.8. It shows that the minima of the

forward statistic cumulate at the boundary of 0.8 and aroundλ = 0.7. The reversed statistic

shows similar findings with a cumulation at 0.2.
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Figure 4: Empirical minima of the forward and backward statistics
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5 Adjustment of critical values

Due to the size distortion at the boundaries it is reasonableto adjust the critical values and

take the mean shifts into account. The adjustment of the critical values takes place under the

allowance for one break in the mean. It should be mentioned that for our adjustment proce-

dure the existence of the mean shift has to be known. Estimating mean shifts within a long

memory model with breaking persistence is a difficult task and beyond the scope of this pa-

per. It should be mentioned that the response curves given inthis chapter and thus the critical

values of the test depend onλ. However, as in most applications there are at least rough if

not exact ideas about mean shifts in the data, we consider ourprocedure still as useful for the

practitioner.

We simulate the asymptotic distribution of the test statistic depending ond for the casesd =

0.51 tod = 1.49 withλ = 0.5. Due to the wide range of possible values ofd we fit polynomial
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functions to the sequence of critical values depending ond. The adjusted critical values can

be displayed in response curves given by

qα(d) =
s

∑
i=0

βid
i.

qα denotes theα-quantile of the asymptotic distribution and s the maximal polynomial order

which is set to nine. The parametersβi are estimated with OLS. For different values ofλ the

response curves are parallel so the functional form remainsunchanged for different values of

λ though the parameters change.

Table 2: Estimated response curve when a mean shift occurs

β0 β1 β2 β3 β4 β5 β6 β7 β8 β9

1L 0.965 0 0 0 -21.507 66.386 -89.993 65.334 -24.904 3.927

5L -162.657 1700.856 -7729.333 20149.046 -33212.416 35896.289 -25444.859 11411.826 -2940.170 331.773

10L 0.931 0 0 0 -2.550 2.475 0 0 -0.675 0.283

10U 1.132 0 0 0 0 0 10.268 -18.031 11.346 -2.557

5U 1.161 0 0 0 0 0 16.821 -30.738 20.506 -4.932

1U 0.975 0 0 0 18.784 -41.418 39.564 -13.136 0 0

OLS estimates forβi (i = 0,1, . . . 9) are reported in columns;βi = 0 means that the parameter is set equal to zero.

The size and power properties of the test using the estimatedresponse curves for one break

in the mean are reported in Tables 3 and 4, respectively.

Table 3: Empirical size

d 0.55 0.70 0.85 1.25

1L 0.4 1.0 0.7 2.2

5L 3.3 5.3 3.9 3.4

10L 8.5 9.7 9.8 8.1

10U 10.4 9.3 11.1 10.2

5U 5.6 5.0 5.8 5.8

1U 1.0 1.2 1.3 1.2

The size experiments with the adjusted critical values showthat it is useful to correct for

the effect of the mean shift. When it is known or likely that the time series contains a mean

shift the test gains good size properties and appropriate power results. This is very helpful to

know when you consider the additional size distortion if themean shift is neglected.
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Table 4: Power Experiment for one break at the 5% level

d 0.8→ 0.4 0.4→ 0.8 0.6→ 0.0 0.0→ 0.6 0.6→ 0.4 0.4→ 0.6

83.7 96.2 96.0 77.0 58.5 54.9

The mean shift model can be extended to a more general mean shift model allowing for a

smooth transition. It can be driven by a logistic transitionfunction which is modeling a smooth

mean shift between the regimes. All results for the abrupt mean shift stay valid. It is just a

special case of the general mean shift model. The model can also be extended to more than

one break.

6 Conclusion

In this paper we show that the Leybourne et al. (2007) test on abreak in persistence becomes

biased when the data generating process has a shift in the mean function. The test is therefore

not robust against mean shifts. The size of the test is most likely even higher than the chosen

significance level. Therefore, the null of no change in persistence is falsely rejected by the

test due to mean shifts. Mean shifts do effect the test decision even more when they occur at

the extreme ends of the sampling period.

As the test is distorted when a mean shift occurs, it is usefulto correct for this effect when it

is known or likely to have mean shifts in the data. We give adjusted critical values for the case

of one mean shift and provide response curves for them. It is shown that the test has good size

and reasonable power properties.
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Appendix

Proof

Proof of Theorem 1:

1. Let us first assume that 0.5 < d < 1.5. Let us furthermore assume thatτ ≤ λ. The case

τ ≥ λ is analogous with an interchange of the forward and reverse statistics.

The main advantage of our simple break point model is that we only have to consider

the case of a de-meaning of the time series. Due to the fact that a level shift occurs we

consider the case of de-meaning instead of de-trending which would be appropriate in

the case of a broken trend. For the residuals of (1) we have before the persistence break

ê j = ε j − [τT ]−1
[τT ]

∑
t=1

εt

respectively afterwards

ê j = ε j − [(1− τ)T ]−1
T

∑
t=[τT ]+1

εt − [(1− τ)T ]−1δ
T

∑
t=[τT ]+1

Dt +δD j.

Assumeτ ≤ b ≤ λ and t = [bT ]. For a fixedτ the mean shift is behind the assumed

persistence shift and thus the forward statistics remains unchanged:

K f (τ) = [τT ]−2d0

[τT ]

∑
t=1

v̂2
t,τ → L f

d(τ).

Have in mind that the test always works under the alternativeand therefore the existence

of a persistence shift is assumed.

For the reversed statistic ˜vt,τ we obtain:

ṽ[bT ],τ = ṽ[λT ],τ + ṽ[λT ]+1,τ

=
T−[λT ]

∑
j=1

ε j −

T−[λT ]

∑
j=1

ε̄−δ
T−[λT ]

∑
j=1

D̄

+
T−[bT ]

∑
j=T−([λT ]+1)

ε j −

T−[bT ]

∑
j=T−([λT ]+1)

ε̄−δ
T−[bT ]

∑
j=T−([λT ]+1)

D̄+
T−[bT ]

∑
j=T−([λT ]+1)

δD j
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with ε̄ andD̄ being the mean ofε andD over the respective time interval.

If λ ≤ τ the reversed statistic remains unchanged and we have for theforward statistic:

v̂[bT ],τ = v̂[λT ],τ + v̂[λT ]+1,τ

=
[λT ]

∑
j=1

ε j −

[λT ]

∑
j=1

ε̄−δ
[λT ]

∑
j=1

D̄

+
[bT ]

∑
j=[λT ]+1

ε j −

[bT ]

∑
j=[λT ]+1

ε̄−δ
[bT ]

∑
j=[λT ]+1

D̄+
[bT ]

∑
j=[λT ]+1

δD j.

The statistic is minimized over allτ ∈ Λ up toλ in the first situation and afterwards in

the second. This means that up toτ = λ the forward statistic remains unchanged and

afterwards the mean shift will effect the residuals by reason that the de-meaning has to

consider the mean shift. Thus, forτ > λ the square of the forward statistic increases and

therefore the minimum is in the intervalτ ≤ λ and it is greater or equal the minimum

which is obtained without a mean shift.

We have a similar argument for the reversed statistic. Forτ > λ it remains unchanged.

The changing mean does not affect the recursive de-meaning and thus the residuals

remain unchanged. Forτ < λ the reversed statistic increases and the minimum is thus

in the intervalτ ≥ λ. This proves the first part of the theorem.

2. Let us finally consider the case where 0≤ d < 0.5. Because of the arguments used

before, the minimum of the forward statistic is located earlier thanλ and that of the

backward statistic later thanλ. Therefore, we are in a similar situation as in Sibbertsen

and Kruse (2009), Theorem 4, and can therefore adopt the samearguments as in their

proof.♦
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