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Abstract

We have developed a new test against spurious long memory based on the in-
variance of long memory parameter to aggregation. By using the local Whittle
estimator, the statistic takes the supremum among combinations of paired ag-
gregated series. Simulations show that the test performs good in finite sample
sizes, and is able to distinguish long memory from spurious processes with ex-
cellent power. Moreover, the empirical application gives further evidence that
the observed long memory in German stock returns is spurious.

Keywords: Local-Whittle method, Spurious long memory, Change point, Ag-
gregation

1 Introduction

Let xt be a linear long memory process characterized mainly by the following condition

ρk ∼ Cρ(k)k2d−1, as k →∞ (1)

for d ∈ (0, 0.5). We consider an aggregated long memory process defined as

yt =
m−1∑
j=0

xmt−j =
m−1∑
j=0

Bjxmt (2)
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where B is backshift operator and m denotes the aggregation level. Chambers (1998), Man
and Tiao (2001) and Souza (2008) show that if xt satisfies (1) with d < 0.5, then its ag-
gregation process yt also satisfies (1) with the same fractional integration order d. This
condition implies invariance of the memory parameter to aggregation.

Spurious long memory can arise in many cases. Especially in stock market data, it has been
still highly debated whether the observed long memory is real or spurious phenomena. Many
studies found long memory in the volatility of stock returns (Hiemstra and Jones (1997),
Henry (2002), Tolvi (2003) and among others). Lobato and Savin (1998) and the references
therein discuss the real and spurious long memory properties of stock market data. They
investigated the major causes of spurious long memory, such as aggregation, nonstation-
arity and regime switching. By using LM type test of Lobato and Robinson (2003), they
estimated the memory parameter and tested the significance of the parameter to conclude
whether the observed memory is real or spurious. However, it is well known that several
processes are able to create spurious long memory by generating a certain degree of frac-
tional integration (see Granger and Ding (1996), Granger and Teräsvirta (1999), Kuswanto
and Sibbertsen (2008) and among others). Therefore, developing a test which is able to dis-
tinguish long memory from the spurious processes is still of interest, which may lead to the
proper model choice.

The fact that the memory parameter does not change with aggregation can be used as a
means to distinguish long memory from the spurious processes. Ohanissian et al. (2008)
estimates the memory parameter across several aggregation levels and proposes Wald type
test to distinguish these two phenomena. They show that the test is able to detect the spu-
rious process under alternative with very considerable power. Their results are based on
the simulation study by examining very large number of observation, meaning that it has
good performance for high frequency data and our initial study shows that the test losses
the power significantly under finite sample size. They uses GPH estimator of Geweke and
Porter-Hudak (1983) method to estimate the memory parameter and the theoretical prop-
erties of the test has been well investigated. However, Teles et al. (1999) proved that using
GPH estimator of aggregated series for testing long memory has very serious consequences
on the power of the test which may lead to the wrong conclusion, especially using bandwidth
frequency T 0.5.

In this paper, we propose a new test against spurious long memory based on the invariance
principle, in line with the basic idea of Ohanissian et al. (2008). Our test is developed by
calculating the statistic value for every pair of aggregation level and taking the maximum
among the values, the same concept with testing change in the memory parameter of Beran
and Terrin (1996). We estimate the memory parameter by semi-parametric local Whittle
maximum likelihood instead of GPH estimator. This estimation method has been proved to
have smallest bias estimate with minimum standard deviation (Souza (2007)).

This paper is organized as follows. Section 2 discusses the main result including the pro-
posed test and its asymptotic distribution. Section 3 presents the performance of the test in
finite sample size. The empirical application , ie. the case of German stock returns is given
in section 4. The proof is given in appendix.
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2 Main Result

A stationary ARFIMA(p, d, q) process xt has the following representation:

φ(B)(1−B)dxt = θ(B)εt t = 1, ..., N (3)

where B is the backshift operator, φ(B) and θ(B) are the AR and MA polynomials respec-
tively and εt is a white noise process with variance σ2

ε . The spectral density of (3) satisfies

fx(ω) = Cf (ω)|ω|−2d as ω → 0 (4)

We aggregate the process xt by a level of aggregation m following (2), with m = 2, ...,M .
Under the aggregated series yt, the series length becomes n = N/m. Note that m = 1
corresponds to the original series xt. The spectral density of yt with memory parameter d
satisfies

fy(λ) ∼ m2d+1Cfx(ω)|λ|−2d, as λ→ 0 (5)

where λ = 2πjm/N = ωm and the periodogram of yt is given by

Iy(m)(λj) =
1

2πn

∣∣∣∣∣∣
n∑
j=1

(yj − ȳ) expijλj

∣∣∣∣∣∣
2

, ȳ =
n∑
j=1

yj/n (6)

Our statistic is constructed based on the semi-parametric local Whittle estimator proposed
by Robinson Robinson (1995). Let us consider the Gaussian objective function for original
series xt:

Q(G, d) =
1
l

l∑
j=1

[
log(Gω−2d

j ) +
ω2d
j

G
Ix(ωj)

]
(7)

by which discrete averaging is evaluated over a small bandwidth frequency l < N . AsG can
be estimated by Ĝ = 1

l

∑l
1 ω

2d
j Ix(ωj), then the memory parameter d can be estimated by

minimizing the following objective function

Q(d) = log

(
1
l

l∑
1

ω2d
j Ix(ωj)

)
− 2d

1
l

l∑
1

logωj (8)

Souza (2007) discusses consistency of the estimator for aggregated series. It is worthwhile
to summarize it as follows. Under the following regularity conditions:

1. f(ω) ∼ G0ω
−2d as ω → 0+ where G0 ∈ (0,∞),−0.5 < ∆1 ≤ d ≤ ∆2 < 0.5.

2. f(ω) is differentiable near the origin such that

d

dω
log f(ω) = O(ω−1) as ω → 0+
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3.

xt −E[x0] =
∞∑
j=0

αjεt−j ,

∞∑
j=0

α2
j <∞

where E(εt|Ft−1) = 0,E(ε2t |Ft−1) = 1 a.s., t = 0,±1, ..., in which Ft is the σ-
field of events generated by εs, s ≤ t, and there exists a random variable εt such that
E(ε2t ) <∞ and for all η > 0 and some K > 0, P (|εt| > η) ≤ KP (|εt| > η).

4. As N →∞, 1
l + l

N → 0

5. f(ω) is bounded above, f ′(ω) exists and is finite in the vicinity of the non-zero Nyquist
frequencies.

6. f(ω) ∼ G0ω
−2d(1 + O(ωβ)) as ω → 0+ for some β ∈ (0, 2] where G0 ∈ (0,∞) and

−0.5 < ∆1 ≤ d ≤ ∆2 < 0.5.

7. α(ω) is differentiable near the origin such that

d

dω
α(ω) = O

(
|α(ω)|
ω

)
, as ω → 0+

where α(ω) =
∑∞

j=0 αje
ijω

8. Condition 3 holds and E(ε3t |Ft−1) = µ3, a.s.,E(ε4t ) = µ4, t = 0,±1, ... for finite con-
stant µ3 and µ4.

9. There exists a β satisfying Condition 6 such that

1
l

+
l1+2β(log l)2

N2β
→ 0, as N →∞

If condition (1) to (5) hold for xt, then it builds the consistency of the local Whittle estimator
for aggregated time series yt. Also, if condition (5) to (9) hold for xt, then the local Whittle
estimator for yt is asymptotically normal such that

√
l(d̂− d) D→ N(0, 1/4) (9)

The readers are referred to Souza (2007) for the proof and the details of these conditions.

Now, consider two objective functions for two aggregated series y(m1) and y(m2) as follows:

Q(n1, d) = log

(
1
l

l∑
1

λ2d
j Iy(m1)(λj)

)
− 2d

1
l

l∑
1

log λj

Q(n2, d) = log

(
1
l

l∑
1

λ2d
j Iy(m2)(λj)

)
− 2d

1
l

l∑
1

log λj
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where Q(n1, d) and Q(n2, d) denote the objective function of the aggregated series yt with
level m1 and m2 respectively. From this, the local Whittle estimator d̂ is defined by

d̂(m1) = argmin Q(n1; d̂), d̂(m2) = argmin Q(n2; d̂)

We will test the constancy of the estimated memory parameter among several aggregation
levels to prove the invariance principle of the memory parameter to aggregation. The null
hypothesis we attempt to test is that

H0 : d(m1) = d(m2) = ... = d(mM )

The alternative hypothesis is therefore defined as any violation of the equalities in H0, i.e at
least one pair of aggregated levels, mi and mj , d(mi) 6= d(mj) where i 6= j.

In this paper, the idea of the test is similar to testing change in long memory parameter
(see Beran and Terrin (1996), Horväth and Shao (1999), Lee and Lee (2007)). To test the
constancy of the long memory parameter between two aggregated levels {m1 6= m2}, we
propose the following statistic

zm1,m2 =
√
n1 + n2

{
n1n2

(n1 + n2)2

}(
d̂(m1) − d̂(m2)

)
.

The calculation of zm1,m2 involves two levels of aggregated series for all combinations of the
paired m. It means that for any choice of M aggregation level, we have MC2 values of z.
In this case, M is chosen such that the aggregated series can still be used for estimating
the long memory parameter. The supremum value is proposed as the statistical test. There-
fore, to test the constancy of parameter d among several aggregation levels, we suggest the
statistic

χn = max
1≤i,j≤M

|zmi,mj |, i 6= j.

Let ak is the coefficient of moving average representation of yt defined as yt =
∑∞

i=0 aiεt−i,
bk = 1

4π2

∫ π
−π e

ikλf−1(λ, d)dλ and ck = b0ak + 2
∑k

i=1 biak−i. The asymptotic distribution
of the proposed test statistic is given in the following theorem.

Theorem 1:
Assume 0 < d < 0.5 and the condition (5), (6), (7), (8) and (9) are satisfied, then by the
asymptotic normality of d̂ we have for m1 6= m2

zm1,m2

D→ σB(t)

in D[0, 1] as T →∞ where T = n1 + n2, and B(t), 0 ≤ t ≤ 1 is a Brownian bridge with D→
denotes convergence in distribution. Hence, the statistic χn converges to

χn
D→ σ sup

0≤t≤1
|B(t)|, i 6= j

5



and the variance σ2 is given by

σ2 = E(ε40 − σ4
ε )

 ∞∑
j=0

ajcj

2

+ σ2
ε

∞∑
i=1

 ∞∑
j=0

{ajcj+i + cjaj+i}

2

Proof: see appendix

From the theorem above, we reject the null hypothesis for large values of χn. In principle,
it is possible to generate the critical values from a sequence of Brownian bridge B(t) and
variance σ2 as written in the theorem. However, it seems that σ2 has a very complicated
form which leads to some difficulties. To avoid this, the critical values will be determined by
using the simulated sampling distribution of χn.

3 Simulation

This section carries out simulation studies to obtain the critical values, as well as to assess
the test performance in finite sample. As we pointed out above, the critical values are ob-
tained by using the simulated sampling distribution of max1≤i,j≤M |zmi,mj |. It is done by
generating 50000 sample sizes and 10000 replications. The aggregation levels are set to be
m = 2, 3, 4, 6, 8, 12, which are commonly used in empirical applications (Teles et al. (1999),
(2008)). In the latter work, they studied the effect of the use of aggregate time series on the
Dickey-Fuller test for unit root and a new unit root test based on aggregate time series was
developed. In brief, the procedure to obtain the critical values can be described as follows:

• we generate the process under null hypothesis with sample size of 50000

• we apply the test statistic with each setting of aggregation level to obtain the statistic
zm1,m2 as well as χn

• we do above steps 10000 times and therefore, we have 10000 values of χn.

• we tabulate the sampling distribution of χn to determine the quantile of the sampling
distribution as the critical values. Having this sampling distribution, we do not need

to generate σ and B(t) since we have that χn
D→ σ sup0≤t≤1 |B(t)|.

It is easy implemented procedure and commonly applied to simulate the critical value of
tests whose nonstandard asymptotic distribution such as unit root Dickey Fuller test and
the extensions.
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Table 1: Quantile of the asymptotic distribution

d sign. level Aggregation level (m)
2 3 4 6 8 12

0.1 90% 0.4542 0.5549 0.6030 0.6872 0.7586 0.7588
95% 0.5258 0.6456 0.7133 0.7740 0.8248 0.8407
99% 0.7098 0.8253 0.8708 0.9034 0.9518 1.0595

0.2 90% 0.5095 0.6351 0.6579 0.7232 0.7454 0.7780
95% 0.5909 0.7203 0.7650 0.8108 0.8454 0.8516
99% 0.8253 0.8708 0.9177 0.9756 0.9784 0.9967

0.3 90% 0.5164 0.6572 0.7160 0.7298 0.7802 0.7953
95% 0.6347 0.7617 0.8025 0.8354 0.8723 0.8849
99% 0.8195 0.9282 0.9832 1.0579 1.0718 1.0534

0.4 90% 0.6111 0.6981 0.7530 0.8083 0.8226 0.8390
95% 0.7037 0.8213 0.8495 0.8982 0.9517 0.9179
99% 0.8732 0.9930 1.0313 1.0782 1.0995 1.0796

Table 1 provides the critical values of the test for d = 0.1, 0.2, 0.3, 0.4. We see that the critical
value increases with d and m through the constant σ in theorem 2.1.

Size experiment is done by evaluating the performance of the test in finite sample size. In
this case, we generate 1000 time series of 5000 sample sizes. The rejection rate is calculated
based on the critical values in table 1. The data generating process (DGP) is pure stationary
long memory with a certain degree of fractional integration d = 0.1, 0.2, 0.3, 0.4. Therefore,
the DGP does not account for short dependencies φ and θ written in (3). The model can be
rewritten as

(1−B)dxt = εt t = 1, ..., N.

Table 2 presents mean and standard deviation of the estimated long memory parameter for
several aggregation levels. It is useful to assess the performance of the local Whittle estima-
tor.

Table 2: Invariance of memory parameter to aggregation

d Aggregation level (m)
2 3 4 6 8 12

0.1 0.1002
(0.0209)

0.1053
(0.0253)

0.1016
(0.0262)

0.1021
(0.0377)

0.1045
(0.0377)

0.0999
(0.047)

0.2 0.2061
(0.0227)

0.2030
(0.0275)

0.2070
(0.0296)

0.2007
(0.0372)

0.2112
(0.0412)

0.2131
(0.0490)

0.3 0.3058
(0.0254)

0.3084
(0.0283)

0.3106
(0.0309)

0.3138
(0.0370)

0.3155
(0.0370)

0.3160
(0.0400)

0.4 0.4088
(0.0220)

0.4143
(0.0244)

0.4135
(0.0308)

0.4163
(0.0336)

0.4160
(0.0405)

0.4238
(0.0527)

Note: The Data Generating Process (DGP) is ARFIMA(0,d,0)

As expected, the estimated memory parameters are very close to the original value. For
instance, under ARFIMA(0,0.1,0), the estimated memory parameters range from 0.0999 to
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0.1053. Also, under DGP ARFIMA(0,0.2,0), the estimated memory parameters range from
0.2007 to 0.2131 and so for ARFIMA(0,0.3,0) and ARFIMA(0,0.4,0). It indicates that the
local Whittle estimator is a good approximation for our test. In line with Souza (2003), the
standard deviation of the estimated memory parameter increases with the aggregation level.
The following table presents the result of size experiment.

Table 3: Size experiment

d nom. size Aggregation level (m)
2 3 4 6 8 12

0.1 0.05 0.059 0.042 0.041 0.049 0.053 0.044
0.1 0.106 0.086 0.103 0.086 0.093 0.096

0.2 0.05 0.058 0.037 0.052 0.043 0.057 0.051
0.1 0.090 0.088 0.098 0.078 0.103 0.085

0.3 0.05 0.055 0.032 0.047 0.054 0.056 0.045
0.1 0.101 0.088 0.070 0.097 0.101 0.078

0.4 0.05 0.042 0.054 0.050 0.046 0.048 0.046
0.1 0.090 0.101 0.092 0.087 0.098 0.094

Note: The Data Generating Process (DGP) is ARFIMA(0,d,0)

From table 3, it is obvious that the rejection rate is very close to the nominal value although
some values indicate size distortion, meaning that the test is correctly sized under the null
of long memory process.

The power experiment is carried out by generating several processes which are able cre-
ate spurious long memory, ie. Markov switching, STOP-BREAK and random level shift
process. These models can be described as follows:

• Markov-switching process

xt =
{
φ1xt−1 + εt if st = 1
φ2xt−1 + εt if st = 2

with εt ∼ N(0, 1), st is state of the Markov process with the state transition probability
p00 and p11.

• STOP-BREAK process

xt = µt + εt, µt = µt−1 +
ε2t−1

γ + ε2t−1

εt−1

with εt ∼ N(0, 1).

• Stationary random level shift process

xt = µt + εt, µt = (1− jt)µt−1 + jtεt

with jt is IID Bernoulli(p), εt ∼ iidN(0, σ2
εt

) and εt ∼ iidN(0, σ2
εt).
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• Nonstationary random level shift process

xt = µt + εt, µt = µt−1 + jtεt

with jt is IID Bernoulli(p), εt and εt are defined as in the stationary random level shift
process.

These models are strong candidates which can easily mislead the properties of long memory
(Granger and Ding (1996), Diebold and Ineoue (2001), Granger and Hyung (2004), Sib-
bertsen (2004b), Banarje and Urga (2005), etc). We call them as model 1, model 2, model
3 and model 4 respectively hereafter. Basically, they are short memory processes with zero
integration order. Therefore, any degree of fractional integration more than zero observed
from these processes are spurious results. For each model, the considered parameters as
well as the result of power experiment can be seen in table 4, 5, 6 and 7.

In this part, we generate data with two different sample sizes,N = 2000 andN = 5000 with
1000 replications. Note that for N = 2000, it is considered a very small sample in practice,
especially in the context of volatility modeling. Meanwhile,N = 5000 is a reasonable sample
size for this case. Moreover, aggregating 5000 sample size with level of 12 results on big
enough sample required to estimate the memory parameter. In the table, we present mean
value of the fractional integration order obtained from 5000 sample sizes. Smaller bias is
observed for smaller sample size. However, we omit the results for the reason of space.

Table 4: Power experiment

Model 1

p00 = p11 = 0.90 p00 = p11 = 0.90 p00 = p11 = 0.90
φ1 = −φ2 = 0.8 φ1 = −φ2 = 0.5 ε1 = N(1, 1), ε2 = N(−1, 1)

m mean(d) reject freq. mean(d) reject freq. mean(d) reject freq.
N=2000 N=5000 N=2000 N=5000 N=2000 N=5000

1 0.3470
(0.0251)

- - 0.1031
(0.0193)

- - 0.3281
(0.0154)

- -

2 0.2115
(0.0319)

0.989 1.000 0.0450
(0.0225)

0.799 0.949 0.2712
(0.0211)

0.207 0.878

3 0.1567
(0.0318)

0.994 1.000 0.0366
(0.0271)

0.666 0.940 0.2419
(0.0285)

0.432 0.995

4 0.1178
(0.0376)

0.998 1.000 0.0253
(0.0306)

0.731 0.940 0.1759
(0.0340)

0.680 0.995

6 0.0988
(0.0370)

0.999 1.000 0.0200
(0.0359)

0.722 0.901 0.1299
(0.0337)

0.795 1.000

8 0.0610
(0.0455)

1.000 1.000 0.0120
(0.0407)

0.653 0.870 0.0943
(0.0437)

0.808 1.000

12 0.0411
(0.0495)

1.000 1.000 0.0072
(0.0518)

0.567 0.854 0.0679
(0.0456)

0.852 1.000

Note: The third model specification has parameter φ1 = −φ2 = 0
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Table 5: Power experiment

Model 2

γ = 180 γ = 90 γ = 40
m mean(d) reject freq. mean(d) reject freq. mean(d) reject freq.

N=2000 N=5000 N=2000 N=5000 N=2000 N=5000
1 0.2290

(0.0587)
- - 0.3409

(0.0571)
- - 0.4709

(0.0554)
- -

2 0.2842
(0.0590)

0.608 0.989 0.4055
(0.0655)

0.809 0.985 0.5660
(0.0645)

0.999 1.000

3 0.3353
(0.0658)

0.794 1.000 0.4589
(0.0667)

0.928 0.996 0.6276
(0.0696)

0.998 1.000

4 0.3577
(0.0712)

0.735 1.000 0.5025
(0.0713)

0.957 0.995 0.6708
(0.0738)

1.000 1.000

6 0.4005
(0.0831)

0.779 1.000 0.5586
(0.07613)

0.985 1.000 0.7407
(0.0689)

1.000 1.000

8 0.4458
(0.0781)

0.823 1.000 0.6003
(0.0797)

0.987 1.000 0.7815
(0.0602)

1.000 1.000

12 0.5011
(0.0865)

0.828 1.000 0.6817
(0.0852)

0.987 1.000 0.8417
(0.0569)

1.000 1.000

Table 6: Power experiment

Model 3

p = 0.001 p = 0.01 p = 0.1
m mean(d) reject freq. mean(d) reject freq. mean(d) reject freq.

N=2000 N=5000 N=2000 N=5000 N=2000 N=5000
1 0.2596

(0.0919)
- - 0.4931

(0.0738)
- - 0.6581

(0.2208)
- -

2 0.3370
(0.1134)

0.553 0.951 0.5845
(0.0777)

0.955 1.000 0.7238
(0.2788)

- -

3 0.3747
(0.1223)

0.625 0.965 0.6419
(0.0899)

0.986 1.000 0.8070
(0.2468)

- -

4 0.4047
(0.1275)

0.647 0.963 0.6881
(0.0940)

0.985 1.000 0.8022
(0.2980)

- -

6 0.4606
(0.1596)

0.664 0.968 0.7563
(0.0925)

0.992 1.000 0.8770
(0.2527)

- -

8 0.4926
(0.1659)

0.668 0.978 0.8106
(0.09004)

0.983 1.000 0.8797
(0.2782)

- -

12 0.5976
(0.1617)

0.634 0.981 0.8554
(0.1097)

0.990 1.000 0.8747
(0.3131)

- -

10



Table 7: Power experiment

Model 4

p = 0.001 p = 0.01 p = 0.1
m mean(d) reject freq. mean(d) reject freq. mean(d) reject freq.

N=2000 N=5000 N=2000 N=5000 N=2000 N=5000
1 0.2802

(0.0911)
- - 0.4927

(0.0681)
- - 0.7185

(0.0567)
- -

2 0.3374
(0.1109)

0.553 0.941 0.5950
(0.0723)

0.963 1.000 0.8266
(0.0486)

- -

3 0.3875
(0.1048)

0.560 0.964 0.6496
(0.0712)

0.996 1.000 0.8806
(0.0407)

- -

4 0.4064
(0.1277)

0.618 0.972 0.7110
(0.0713)

0.999 1.000 0.9124
(0.0361)

- -

6 0.4587
(0.1445)

0.683 0.973 0.7656
(0.0692)

1.000 1.000 0.9483
(0.0347)

- -

8 0.5258
(0.1254)

0.640 0.975 0.8118
(0.0664)

1.000 1.000 0.9665
(0.0368)

- -

12 0.5757
(0.1398)

0.626 0.980 0.8744
(0.0607)

1.000 1.000 0.9827
(0.0470)

- -

Dealing with the ability of the processes to resemble long memory, we see that all data gen-
erating processes are able to generate fractional integration orders which lie in long memory
range. It can be seen from the mean values of the long memory parameter under m = 1,
which corresponds to the original series. Therefore, the examined parameters are correctly
specified. However, the point of consideration in this paper is not focused on whether the
models are able to create spurious long memory or not, since it has been proved in the afore-
mentioned references. Through the power experiment, we assess the behavior of the esti-
mated memory parameter to aggregation and the ability of our test to specify these models
into their class, which is spurious long memory. Since our test involves a pair of aggregation
levels, thus we cannot obtain any value for m = 1. We denote it with "-" in the table.

Let us consider Markov switching processes in table 4. The choice of the transition proba-
bilities mainly refers to previous works which found that the higher the transition probability
pii, the longer the process is expected to remain in state i and the process becomes more
persistent. Under this condition, the process will easily be confused with long memory (see
Kuswanto and Sibbertsen (2007, 2008) for intensive simulation results). The first two pa-
rameter settings in model 1 are general Markov switching processes and the last is Markov
switching with iid regimes (MS-IID) and therefore, φ1 = −φ2 = 0. From table 4, under
the defined parameter settings, the test is able to specify the Markov switching processes
as spurious long memory process with high power. Only two cases have power lower than
0.5. The power increases with sample size and shows no monotonic tendency regarding the
level of aggregation. However, we can see that most cases have higher power with higher
aggregation level.

Now, we discuss the results for model 2. The STOP-BREAK model was introduced by En-
gle and Smith [?]. Similar results as Markov switching are observed for this case. Under
the three different parameter settings defined in table 5, the test is able to detect the model
as spurious long memory with satisfying power, both in small and medium sample size. Es-
pecially when N = 5000, the power reaches almost one for all cases. For random level shift
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processes, either stationary or nonstationary, the test also performs very well. Under small
probability of Bernoulli distribution, the estimated fractional integration parameters are bi-
ased toward stationary long memory. For p = 0.1, the memory parameter is biased toward
nonstationary long memory. It indicates that higher probability leads to a more persistent
process. Since our test is derived under stationary long memory condition, therefore, this
case (nonstationary long memory with d ≥ 0.5) is out of consideration and the power of the
test cannot be presented. The considered random level shift processes in this paper were
firstly introduced by Chen and Tiao (1990). Further conditions about the possibility of these
models to resemble long memory has been clearly investigated by Breidt and Hsu (2002).

Our results in this experiment are consistent with the test proposed by Ohanissian et al.
(2008). Their test is also able to distinguish long memory from the spurious processes with
extremely high power by setting N = 610304. Since Ohanissian et al. (2008) uses Wald
type test, it is well known that the test will tend to have full power for infinite sample size.
However as we pointed out before, their test looses the power significantly in finite sample
size. Therefore, our test fills this gap by having good performance in finite sample size.

4 Empirical Application

The dataset used in this study consists of daily absolute and squared returns for 9 German
stock price series, listed in the DAX30. The examined cases are Allianz, BASF, BAYER,
BMW, Commerz Bank, Continental, Deutsche Bank, Siemens and Volskwagen (VW) span-
ning from the period of January 1973 to December 2007. Therefore we have 9132 observa-
tions for each stock. Several previous studies have considered German stock returns and
found long memory in the considered cases (Sibbertsen (2004a), Gurgul and Wojtowiczh
(2006)), based on the fact that several estimation procedures such as GPH, Whittle esti-
mator or Wavelet estimator give a fractional integration order within long memory interval.
Again, it becomes crucial since several processes are able to create spurious long memory by
having a certain degree of fractional integration as discussed in the previous section. Has-
sler and Olivares (2007) independently study the daily absolute returns of the German stock
price index DAX and found a significant break in mean, which might be one source of the
spurious long memory.

Figure 1 and 2 depict the autocorrelation function (ACF) of absolute and squared returns
of the considered stocks respectively. We plot the autocorrelations up to 300 lags. The
figures show that the autocorrelations of both absolute and squared returns are strongly
correlated until long lags. They decay slowly with hyperbolic rates and show the property
of long memory process. Again, having this property does not provide enough evidence
that the processes are long memory. Kuswanto and Sibbertsen (2008) demonstrate that
several nonlinear processes under specific parameter settings may produce the same feature
of autocorrelation function as long memory. This similarity holds also for the spectrum of
both processes. Therefore, using only this information may lead to the wrong conclusion.

We apply our new test as a formal procedure to detect whether long memory observed in the
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Figure 1: ACF plot of absolute returns

German stocks is real or spurious. The results of the test are presented in table 8 and table
9, for absolute and squared returns respectively. In the tables, we provide the estimated long
memory parameter of the aggregated series under several aggregated levels m. The value
in the last column is statistic χn obtained from applying the test with m = 12. This choice
is based on the simulations which suggest that the test tends to have more power for high
aggregation level. Table 8 presents the results of the test for absolute returns.

Table 8: Test for absolute returns

stock m |λn|
1 2 3 4 6 8 12

Allianz 0.1959 0.2170 0.2363 0.2426 0.2587 0.2883 0.3272 1.0166*
BASF 0.2365 0.2945 0.3201 0.3201 0.2982 0.3070 0.3475 1.7279*
BAYER 0.2491 0.2880 0.3373 0.3640 0.3872 0.3963 0.4189 1.9809*
BMW 0.2437 0.3015 0.3569 0.3730 0.3894 0.3942 0.4050 2.3434*
Commerz Bank 0.2705 0.3142 0.3534 0.3795 0.3982 0.4335 0.4806 1.8642*
Continental 0.2060 0.2280 0.2460 0.2455 0.2499 0.2763 0.3068 0.8276**
Deutsche Bank 0.2701 0.3398 0.3936 0.3986 0.3966 0.3898 0.4367 2.5551*
Siemens 0.2951 0.3480 0.3766 0.3404 0.4323 0.4709 0.5167 2.3127*
VW 0.2278 0.2829 0.3097 0.3473 0.3440 0.3582 0.3623 2.0418*

The * and ** sign represent significance under 5% and 10% level respectively

From the table, by 5% level of significance the test rejects almost all cases, except for Conti-
nental. Since we have under the alternative hypothesis that there is a violation to the invari-
ant condition of the estimated memory parameters, then to reject the null hypothesis means
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Figure 2: ACF plot of squared returns

that the observed long memory is spurious. Continental is the only case which seems to
have real long memory. It is quiet natural if we look at the d values under several aggrega-
tion levels, they are very close to each other. For this, we are only able to reject the null of
long memory by 10% level of significance. Now we analyze the results for squared returns,
which are given in the following table

Table 9: Test for squared returns

stock m |λn|
1 2 3 4 6 8 12

Allianz 0.1470 0.1713 0.2020 0.2244 0.2467 0.2675 0.2763 1.6631*
BASF 0.2378 0.2673 0.2783 0.2629 0.2319 0.2389 0.2739 0.8362**
BAYER 0.1422 0.1501 0.1912 0.2911 0.3087 0.2995 0.2601 2.4222*
BMW 0.1994 0.2486 0.3128 0.3268 0.3227 0.3290 0.3191 2.3460*
Commerz Bank 0.2385 0.3029 0.3362 0.3622 0.3646 0.3801 0.4076 2.1151*
Continental 0.2028 0.2290 0.2615 0.2646 0.2555 0.2762 0.3037 1.2861*
Deutsche Bank 0.2326 0.3109 0.3698 0.3631 0.3505 0.3281 0.3399 2.8387*
Siemens 0.2469 0.2842 0.3215 0.3812 0.4020 0.4202 0.4285 2.2959*
VW 0.1757 0.2454 0.2724 0.3049 0.2987 0.2991 0.2968 2.2086*

The * and ** sign represent significance under 5% and 10% level respectively

In line with the result for absolute returns, the test rejects the null of real long memory. By
5% level of significance, it fails to reject the null only for BASF case. Therefore, we may say
that long memory observed in most of the German stock returns is spurious process, both
in absolute and squared returns. The existence of this spurious process could be the result
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of non-stationarity, regime switching, mean shift, aggregation, etc. These results thus give
new evidence about the behavior of German stock returns dealing with long memory.

5 Conclusion

This paper contributes to the literature on spurious long memory tests by providing a sim-
ple procedure to detect the spurious long memory based on the invariance principle of the
estimated memory parameter under several aggregation levels. The test performs well in
finite sample size. The empirical application gives evidence of spurious long memory in the
absolute and squared German stock returns.

6 Appendix

This session gives the proof of theorem 1. We start the proof by showing that the following
holds

Q(n)− σW (n) = O(n1/2−ε) a.s << A1 >>

where {W (t), 0 ≤ t < ∞} is a Wiener process and ε > 0. By theorem 1.1 of Horväth and
Shao (1999), condition<< A1 >> is satisfied if we can show that there exists ς > 0, τ > 0,
ϑ > 0 satisfying ς + τ > 1/2 and ϑ+ 2ς > 1, such that

(i). ak = O(|k|−
1
2
−ς), (ii). bk = O(|k|−

1
2
−ϑ), (iii). ck = O(|k|−

1
2
−τ ) (10)

where ak, bk, ck are defined in the previous section.

Suppose that the original series xt has the following infinite moving average representation:

xt =
∞∑
i=1

αiεt−i (11)

where εt is mean zero independent, identical distributed random variable and having variance
σ2
ε . Now, equation (2) can be written as

yt =
m−1∑
j=0

Bj
∞∑
i=1

αiεt−i (12)

=
∞∑
i=0

aiεt−i (13)

where ai =
i∑

j=i−m+1

αj and αj = 0 for j < 0. Before we examine (i), we firstly need to show

that ai converges in mean square. This condition has been previously examined by Teles et
al. (1999). Nevertheless, let us describe it in brief here since it is very important for the test.
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Let us define

(1 +B)d =
∞∑
j=0

ϕjB
j (14)

whereϕj =
(
d
j

)
=

Γ(d+ 1)
Γ(j + 1)Γ(d− j + 1)

and satisfiesϕj ∼
Γ(d+ 1)

2π
(1)−(j−d−1/2)j−(d+1)

as j → ∞. From the definition of aggregated long memory yt in (2) and the theorem 1 of
Teles et al. (1999),

(1 +B + ...+Bm−1)d =
m−1∏
j=1

(1 + ζjB)d (15)

=
m−1∏
j=1

[ ∞∑
k=0

ϕkζ
k
j B

k

]
(16)

therefore, for d > −0.5,
m−1∏
j=1

[ ∞∑
k=0

|ϕkζkj |2
]
< ∞ and this implies that

∞∑
j=0

a2
j < ∞, which

is the basic condition allowing to develop test statistic by using aggregated long memory.
Moreover, from equation (6), it implies

ak ∼ C(k)k2d−1 (17)

as k →∞ for some C slowly varying at infinity.

To examine (ii), let us define bk = 1
4π2

∫ π
−π e

ikλf−1(λ, d)dλ and assume that f(λ, d) and
f−1(λ, d) are continuous at all λ and d (Tsay and Chan (2005)) such that

∂f−1(λ, d)
∂d

≈ O(|λ|−2d) (18)

Recall the covariance of yt as follow

Eyjyk = σ2
xρ(j − k) = σ2

x

∫ π

−π
ei(j−k)λdλ (19)

Define a Teoplitz matrix Rnxn with the j, k-th entry ρ(j − k) and a matrix Anxn with the
j, k-th entry bj−k. Then, by condition (1) and Parseval relation, Anxn can be defined as an
inverse of the covariance matrixRnxn (Fox and Taqqu (1986), Bleher (1981)) written as

R
(

1
4π2

f−1(λ, d)
)

(20)

By this relation, we intend to get the asymptotic of bk. Furthermore, by proposition 1 of
Souza (2008), the autocovariance of yt is given by

γy(k) ∼ m2σ2
xCρ(k)k2d−1 +O(k2d−3), as k →∞ (21)
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From this, it is sufficient to show that

γy(k) ∼ C(k)|k|2d−1, as k →∞ (22)

and therefore for 0 < δ < 1/2− d

|bk| = O(|k|δ−1), as k →∞ (23)

Further details about the autocovariance function of yt, the readers are referred to Souza
(2008).

From (17) and (23), it is sufficient to have as n→∞,

|ck| = O(C(k)k2d−1) +O(C(k)k2d−1+δ)β(δ, d) (24)

= O(C(k)k2d−1+δ) (25)

where β(δ, d) is beta function defined as β(δ, d) =
∫ 1

0
yδ−1(1− y)2d−1dy.

Now, the condition<< A1 >> is satisfied and we can define a sequence of Brownian bridges
Bn(t), 0 ≤ t ≤ 1 such that

max
0≤s1,s2≤1

T 1/2s1s2

∣∣∣∣{Q(n1, d)
n1

− Q(n2, d)
n2

}∣∣∣∣ D→ sup
0≤t≤1

σ|B(t)| (26)

and

sup
0≤s1,s2≤1

|T 1/2s1s2{d̂(m1) − d̂(m2)} − σBn(t)| = Op(T−1/2) (27)

with s1 =
n1

n1 + n2
, s2 =

n2

n1 + n2
and T = n1 + n2 and theorem 1 is proved.
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