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Abstract. This paper introduces wealth-dependent time preference into a simple

model of endogenous growth. The model generates adjustment dynamics in line

with the historical facts on savings and economic growth in Europe from the High

Middle Ages to today. Along a virtuous cycle of development more wealth leads to

more patience, which leads to more savings and even higher wealth. Savings rates

and income growth rates are thus jointly increasing during the process of develop-

ment until they converge towards constants along a balanced growth path. During

the transition to modern growth an economy in which the association of wealth and

patience is stronger overtakes an otherwise identical economy and generates tem-

porarily diverging growth rates. It is shown how wealth-dependent time preference

can explain the existence of a locally stable poverty trap as well as the phenomenon

of simultaneously falling interest rates and rising growth rates, and the phenomenon

of overshooting of savings rates during transition towards balanced growth.
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Poverty bears down heavily on all portions of a
man’s expected life. But it increases the want for
immediate income even more than it increases the
want for future income.
(Irving Fisher)

He that can have patience, can have what he will.
(Benjamin Franklin)

1. Introduction

This article proposes a simple preference-driven theory of economic growth. It establishes a

savings channel through which the character trait of patience operates simultaneously as cause

and consequence of economic growth.

Ever since the work of Barro (1991) and of Mankiw, Romer and Weil (1992) empirical studies

have found a strong correlation between savings rates and economic growth rates. While stan-

dard growth theory usually assumes savings as a cause of economic growth, there is now ample

evidence for the reverse causality, i.e. the view of high savings rates as a consequence of high

economic growth (see Edwards, 1996, Loayza et al., 2000, and the discussion of the literature in

Carroll et al., 2000).

Savings rates are higher for richer people across individuals (Dynan et al, 2004) and for richer

countries across countries (Loayza et al., 2000). Within countries, savings rates usually rise

with economic development. In England, for example, investment rates have been estimated as

3-6% in 1688 (Dean and Cole), around 8% in 1761-70, and around 14% for 1791-1800 (Feinstein,

1981). In the year 2000 savings rates were above 25 percent in some of the world’s richest

countries (Heston et al., 2002). Likewise the historical evolution of economic growth rates has

been gradual. From the Maddison (2001) data we compute the annual rate of GDP per capita

growth for England as 0.0% from year 1 to 1000, 0.1% from 1000 to 1500, 0.2% from 1500 to

1700. In the 19th century growth gets momentum. It is computed as 0.3% from 1700 to 1820,

1.3% from 1820 to 1870, 1.0% from 1870 to 1913, 1.2 % from 1913 to 1960, and 2.1% from 1960

to 2000. Standard models of economic growth have problems with getting the gradual evolution

of savings and growth rates right. For reasonable parameterization they predict too high savings

and too high growth at low levels of income (Barro and Sala-i-Martin, 2004).
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In order to take the empirical regularities into account we augment the well-known linear (Ak)

growth model with endogenous, wealth-dependent preferences. The model exactly reverses the

standard mechanism of development as established by neoclassical growth theory. Neoclassical

growth theory assumes a constant rate of time preference rate (ρ) and produces the result that

– starting from below steady-state – capital productivity decreases along the path of economic

development. Consequently, it predicts that the rate of economic growth decreases with the level

of development. With contrast, the theory proposed here assumes that capital productivity (A)

is constant and produces the result that the rate of time preference adjusts from above as the

economy develops, i.e. that people become more patient when they get richer. Consequently,

and in line with the historical evidence, the model implies that the savings rate and the rate of

economic growth increase with the level of development.1

Figure 1. GDP per capita in Europe Year 1000-1820 ( according to Maddison, 2003)
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While the process of gradual take off was roughly the same everywhere in Western Europe

(and the Western offshoots) there are also important differences discernable across countries. In

particular there was a European “reversal of fortune”. Output in Italy, France, and Belgium,

was higher than in England and the Netherlands until the 16th century while the opposite

was true after the 17th century (see Figure 1). The present model explains the overtaking

by cultural differences in the association between wealth and patience. When the development

process gets momentum it is further amplified through increasing savings rates in countries where

1The proposed theory is not the only extension of the linear growth model that produces reasonable adjustment
dynamics. The conclusion compares with the main alternatives, subsistence consumption (Steger, 2000, Strulik,
2009) and habit formation (Carroll et al., 2000).
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the association between wealth and patience is stronger.2 This way, small differences in time

preferences can generate temporarily large cross-country differences in economic performance.

The rate of time preference is not a natural constant. As stated by Obstfeld (1990) “Math-

ematical convenience rather than innate plausibility has always been the main rationale for

assuming time-additive preferences in economic modeling.” While this convenience is certainly

welcome and justified for many research questions, it is particularly limiting when the focus of

investigation is on the evolution of savings rates over time. As a result of this insight there

exists already a literature of endogenous time preference to which the present paper relates.

Starting with Uzawa (1968) important contributions have been made by Epstein and Hynes

(1983), Obstfeld (1990), Drugeon (1996), Palivos et. al. (1997), and Das (2003).

The literature so far focussed mostly on consumption-dependent time preference within the

neoclassical growth framework. A major and somehow counter-intuitive result is that, in general,

stability of a steady-state requires a positive relationship between the time preference rate and

the level of consumption.3 With contrast to the so far available literature the present article

focusses on a negative association between time preference rate and wealth of the representative

consumer and on the implied transitional dynamics towards balanced growth.

Recently, Schumacher (2009) integrated wealth-dependent time preference into the neoclas-

sical growth model and demonstrated the possibility of multiple equilibria of stagnation. His

article shares probably the most with the present one, in particular with respect to extension

of the present model in Section 7. The main difference there is that the model of the present

paper generates multiple equilibria of stagnation and perpetual growth. Moreover, using wealth-

dependent preferences in order to explain the slow transition towards balanced growth, the secu-

lar rise (an possibly, later on, fall) of the savings rate during growth, and the process of catch-up

and overtaking of countries during industrialization are all unique to the present paper.

Becker and Mulligan (1997) have proposed a theory of endogenous time preference according to

which individuals can invest resources in order to make future pleasures less remote by imagining

them today. Their model produces as a result that richer individuals are more patient and may

serve as a micro-foundation for a positive association between wealth and time preference.

2For example, these countries will be more open towards doctrines that reward savings vis a vis current consump-
tion (the Protestant belief system, Weber, 1904).
3Das (2003) has shown that stability of dynamic equilibrium can be obtained if the rate of return to capital falls
faster than the rate of patience.
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Empirically it has been found that the time preference rate decreases with income and wealth

in panel data analysis (Lawrence, 1991, Samwick, 1998, Ventura, 2003) and large-scale exper-

iments (Dohmen et al., 2009). Unfortunately, many empirical studies on intertemporal con-

sumption behavior impose a constant time-preference rate. In that case we expect the fact of a

positive association between wealth and the time preference rate to be reflected in the estimated

intertemporal elasticity of substitution. Studies that control for wealth effects have indeed found

that the intertemporal elasticity of substitution is higher for richer individuals (e.g. Atkeson and

Ogaki, 1996, Guvenen, 2006).

Wealth-dependent time preference may be explained – besides Becker and Mulligan’s ratio-

nal choice approach – as a result of a positive association between wealth and institutions, i.e.

through the risk of expropriation or between wealth and health, i.e. through life expectancy

(Pritchett and Summers, 1996). Both channels, either indirectly or directly, suggest that people

are more patient when they populate countries with lower diversity of disease species, i.e. coun-

tries of high latitude (Masters and McMillan, 2001, Olsson and Hibbs, 2005). While not denying

a direct impact of institutions or health on growth the present paper focusses on the indirect

effect that operates through patience on savings and predicts that, ceteris paribus, countries at

high latitude take off earlier from stagnation to growth (industrialize earlier) than countries in

the tropics. The extended model (Section 6 and 7) can furthermore produce the result that an

economy populated by impatient agents stagnates while an otherwise identical economy of more

patient agents converges towards balanced growth.

In his book on the evolutionary aspects of long-run economic development Clark (2007) ob-

serves that people became substantially more patient before the onset of the industrial revolu-

tion. He discards improvements of institutions and life-expectancy for being not sufficient to

having provoked such a substantial drop of time preference and provides instead an evolution-

ary argument based on Rogers (1994). According to this view the institutionally stable agrarian

societies of the Middle Ages created a selective pressure towards lower time preference. More

patient people were wealthier which allowed them to have more surviving children and to be-

queath more wealth to them, a fact that amplified the genetic transmission of patience.4 Doepke

and Zilibotti (2008) argue in favor of a related yet conceptually different mechanism. There,

patience is transmitted through cultural evolution. Patient and thus economically successful

4Galor and Michalopoulos (2006) have developed an evolutionary model of entrepreneurial spirit based on risk
aversion.
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parents invest more resources into transferring the character trait of patience to their offspring.

Using cultural evolution Doepke and Zilibotti are able to explain why an exogenous change of

production technology (an industrial revolution) induced an endogenous change of fortune of

different social classes.

The theory proposed in the present article is much less involved than the story of Clark

or the model of Doepke and Zilibotti. It can, nevertheless, be related to their work. For

that purpose it is shown in the Appendix that the infinitely living representative agent can be

understood an approximation of altruistically linked generations of finite life. The modeling

of wealth-dependent time-preference then implies that more wealthy parents discount utility of

their offspring less strongly and thus bequeath more. This, in turn, will induce their offspring to

put even less emphasize on own present consumption and further amplify the intergenerational

transmission of wealth. In other words, future generations will be richer and will appreciate

more economic growth, i.e, consumption increases experienced by their descendants.5 This way,

the present theory explains the industrial revolution as an endogenous event that occurred when

the interaction between patience and growth attained its highest momentum. The endogenous

economic transition from stagnation to balanced growth is shared with unified growth theory

(Galor, 2005). However, demographic evolution, a major ingredient of unified growth theory, is

not investigated here, a shortcoming that will be addressed in the Conclusions.

The present work is also related to Friedman (2005) who argues (verbally) that people behave

morally better when they have “a sense of getting ahead”. With respect to one character trait

the present theory is able to prove Friedman’s claim. It will be shown that from the first order

conditions for optimal savings behavior follows an unambiguously positive effect of economic

growth on patience.

2. The Basic Model

Consider an economy populated by a mass one of individuals consuming c and holding wealth

k. For now we assume that production operates a linear technology, y = Ak, where A denotes

productivity (net of depreciation). Later on we introduce a generalized form of the production

function. The constant productivity of k implies that there is potential for accumulation-driven

5Such an intergenerational interpretation is supported by Dynan et al. (2004) who find that richer people save
more when young but do not dissave more in old age. The evidence thus rejects the simple life cycle model and
supports altruistically linked generations, which are here in a simplifying manner modeled as an infinitely living
representative agent.
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growth if A exceeds the time preference rate. As usual the model becomes more realistic when

we interpret k broadly consisting of physical and human capital. In order to be brief we refer

to k in the following as “capital” and to its accumulation as “saving”. The capital stock thus

evolves according to

k̇ = Ak − c. (1)

As usual individuals maximize discounted intertemporal utility from consumption. In devi-

ation from the standard model the discount rate depends positively on wealth. As individuals

get richer they become more patient.

max
c
V0 =

∫ ∞
0

u(c)e−
∫ t
0 ρ(k(v))dvdt (2)

with ρ(k) > 0, ρ′(k) < 0, ρ′′(k) > 0 and limk→∞ ρ(k) = ρ̄ ≥ 0, which is a formal representation of

the idea that individuals become more patient as they get wealthier and that the time preference

rate approaches a constant from above as wealth goes to infinity.

Since we are considering economic dynamics over the very long-run, the appropriate notion

of the setup is as a continuous time approximation of an infinite series of altruistically linked

generations. In order to emphasize this point, the Appendix 1 shows how problem (1) – (2) can

be derived from the expansion of a two-period model of altruistically linked individuals with

finite life. As will become clear below, the setup in continuous time is useful in order to develop

an elegant representation of the economy that facilitates the analysis of stability of equilibria

and transition dynamics.

Instantaneous utility is assumed to be iso-elastic, u(c) = c1−θ/(1 − θ), θ 6= 1. Besides the

positive correlation between wealth and time preference the model is thus identical to the well-

known textbook version of the Ak growth model (see, for example Barro and Sala-i-Martin

(2004). In fact, the textbook version is included here as the limiting case when ρ(k) = ρ̄. In

order to allow for positive long-run growth we assume A > ρ̄.

For comparison it is helpful to recall some characteristic features of the standard model. It

implies a unique long-run equilibrium which is assumed independently from initial endowments

and it predicts a constant savings rate and a constant growth rate gc = (A − ρ̄)/θ at all levels

of development (for all k). With contrast, according to the standard neoclassical growth model

the growth rate gc = [r(k) − ρ̄]/θ is at its highest level initially, when wealth k is smallest.

With ongoing wealth accumulation, the growth rate is continuously falling because of decreasing
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returns on capital, r′(k) < 0. Thus both, the standard Ak model and the neoclassical growth

model cannot explain the historical adjustment dynamics sketched in the Introduction, i.e. the

gradual take off with increasing growth rates over time. It is intuitive to see how the present

modification of the model gets the historical adjustment dynamics right by holding capital

productivity A constant and showing that ρ(k) decreases with increasing wealth accumulation

such that growth increases with ongoing wealth accumulation. Later on, in Section 5, it will

be shown that this result is robust against the introduction of the neoclassical mechanism of

r′(k) < 0. For now we focus on the case of constant capital productivity.

In order to solve the problem of maximizing (2) with respect to (1) we parameterize the time

integral and define q ≡
∫ t
0 ρ(k(v))dv such that dq/dt = ρ(k). The time-transformed problem

reads

max
c

∫ ∞
0

u(c)

ρ(k)
e−qdq s.t.

dk

dq
=
Ak − c
ρ(k)

.

Inserting the isoelastic u(c) form, the current-value Hamiltonian reads H = c1−θ/ [(1− θ)ρ(k)]+

µ (Ak − c) /ρ(k) with costate variable µ. The optimal solution fulfils the first order conditions

∂H

∂c
=
c−θ

ρ
− µ

ρ
= 0 (3a)

∂H

∂k
=

c1−θ

1− θ

(−ρ′
ρ2

)
+ µ

Aρ(k)− ρ′ (Ak − c)
ρ2

= µ− dµ

dq
(3b)

and the transversality condition limq→∞ µke
−q = 0.

In solving for optimal consumption we begin with reintroducing actual time by substituting

dq = ρdt. Multiplying (3b) with ρ, subdividing by µ = c−θ, and inserting µ̇/µ = −θċ/c obtained

from log-differentiating (3a) with respect to time, we derive the growth rate of consumption (4).

ċ

c
=

1

θ

[
A− ρ− ρ′

ρ

c

1− θ −
ρ′

ρ
(Ak − c)

]
. (4)

For k → ∞ and thus ρ → ρ̄ > 0, ρ′ → 0, the result collapses to the familiar Ramsey rule

ċ/c = (A − ρ̄)/θ. Compared with the standard model we get two additional effects of wealth-

dependent time preference on growth: a level effect and a growth effect.

The level effect is reflected by the term (−ρ′/ρ)c/(1−θ) = (−ρ′/ρ)u(c)/u′(c). Since ρ′ < 0 the

term is negative if u(c) < 0. The level effect is reminiscent of the earlier literature on endogenous

time preference where u(c) < 0 is frequently assumed in order to generate stability (see e.g.

Obstfeld, 1990). Here, the level effect is irrelevant for stability and convergence towards balanced
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growth, as will be shown below. For the case of θ > 1 utility is indeed always negative with a

bliss point at zero such that the level effect vanishes with economic growth. If θ < 1 the level

effect is positive and increasing with economic growth through the u(c)/u′(c) term but decreasing

with growth through the = (−ρ′/ρ) term because ρ′ vanishes with wealth accumulation. It will

be shown below that this interaction can generate an interesting overshooting behavior of the

savings rate along the transition towards balanced growth.

To see that the last term in (4) reflects a growth effect on patience recall that k̇ = Ak − c.
The growth effect is unambiguously positive. Living in a world of high growth makes people,

ceteris paribus more patient. As a consequence they choose a steeper profile for consumption

growth (ċ/c is higher) implying that they save more. The growth channel implies that patience

can be simultaneously conceptualized as a cause and consequence of economic growth. The

model thus supports the observation that higher growth causes higher savings. It relates also

to Friedman’s (2005) “Moral consequences of Economic Growth”. When people have a sense of

“getting ahead” they appreciate more potential future gains of foregone consumption and are

inclined to save more today, a behavior that further amplifies economic growth.

The fact that ρ̇ = ρ′k̇ allows to write the partial differential equation (4) as an ordinary

differential equation as in (5).

ċ

c
=

1

θ

[
A− ρ− ρ̇

ρ

c

1− θ
1

Ak − c −
ρ̇

ρ

]
. (5)

In order to get an explicit solution we introduce a simple functional form for the evolution of

time preference.

ρ(k) = ρ̄+ ρ0k
−η ⇒ ρ̇ = (ρ− ρ̄)

k̇

k
. (6)

The parameter η > 0 controls the speed at which time preference converges towards ρ̄ when the

economy is growing. Note that ongoing wealth accumulation has no effect on time preference

once ρ has reached ρ̄. This feature will cause balanced growth. Since there exists a natural lower

bound for time preference at zero, the condition for balanced growth is a natural one.6

For equilibrium analysis let x denote the consumption capital ratio, x ≡ c/k. Behavior of

the economy can then be conveniently discussed in the (ρ, x) space where x is the quasi-control

variable, and ρ is the quasi-state variable because time preference, tied down by the state of the

6Evolutionary economists argue that the natural lower bound of time preference supported by nature is around
0.02, see, for example, Rogers(1994).
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economy k, cannot jump instantaneously. The reduced form of the economy reads

ρ̇ = −η(ρ− ρ̄)(A− x). (7a)

ẋ =
x

θ

[
A− ρ+ (ρ− ρ̄)

η

ρ

(
A− x+

x

1− θ

)]
− (A− x)x. (7b)

In order to derive (7a) insert (1) and the definition of x into (6). In order to derive (7b) note that

the consumption capital ratio grows at rate ẋ/x = ċ/c − k̇/k and insert eqs. (5), (1), and (6).

Given an initial state k(0) and thus ρ(0), the evolution of the economy is completely described

by the trajectory of (7a) and (7b) that fulfills the first order conditions and the transversality

condition.

3. Equilibrium Analysis

Proposition 1. There exists a unique steady-steady-state of stagnation at

x = x∗ = A (8)

ρ = ρ∗ =
A+ φ

2
+

√
(A+ φ)2

4
− φρ̄, φ ≡ ηA/(1− θ).

Proof. Inspect (7a) to see that ρ is constant when x = x∗ = A implying c∗ = Ak∗. Insert x = A

into (7b) and solve for ρ where ẋ = 0 to obtain the roots ρ1 = (A + φ)/2 −
√

(A+ φ)2/4− φρ̄
and ρ1 = (A+ φ)/2 +

√
(A+ φ)2/4− φρ̄. For existence of a real solution (A+ φ)2/4 > φρ̄, i.e.

A2+2Aφ+φ2 > 4φρ̄. Since A > ρ̄ a sufficient condition for this to hold is A2+2Aφ+φ2 > 4φA,

which can be written as (A − φ)2 > 0 and is thus fulfilled. Since the minimum ρ that can be

reached with non-negative k is ρ̄, at least one solution has to be larger than ρ̄. From ρ2 > ρ̄ we

get
√

(A+ φ)2/4− φρ̄ > ρ̄− (A+ φ)/2, which can be written as A− ρ̄ > 0 and is thus fulfilled.

For uniqueness the other root has to be unfeasible, i.e. ρ1 < ρ̄. Proceeding as above this can

be written as A − ρ̄ > 0 and is thus fulfilled. The unique solution is at ρ∗ = ρ2. From x = A

follows c = Ak and thus k̇ = 0, i.e. stagnation. �

Proposition 2. If ρ̄/A > 1− θ, then there exists a unique balanced growth path along which

the economy grows at rate (A− ρ̄)/θ and where

x = x∗∗ =
(θ − 1)

θ
A+

ρ̄

θ
(9)

ρ = ρ∗∗ = ρ̄.
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Proof. Inspect (7a) to see that ρ is constant when ρ = ρ̄. Insert this information into (7b)

and solve for x where ẋ = 0 in order to obtain the unique x∗∗. Verify that x∗∗ is positive for

ρ̄/A > 1− θ. Insert x = x∗∗ into k̇/k = A− x to get the balanced growth rate. �

The condition for balanced growth to exist is the same as for the standard Ak-model. It

requires that utility is bounded such that x∗∗ assumes a constant positive value (cf. Barro

and Sala-i-Martin, 2004). Naturally, since ρ converges towards a constant, the balanced growth

path is identical with the one obtained for the standard Ak growth model. The value added

of the present model does not lie in its steady-state characteristics but in the new transitional

dynamics.

Proposition 3. The equilibrium of stagnation is unstable and the balanced growth path is a

saddlepoint. The optimal solution consists of a unique path along which the economy converges

towards the balanced growth. During the transition the time preference rate decreases and the

savings rate increases.

Figure 2: Phase Diagram

ρ

x ρ̇=0

ρ∗∗=ρ̄

ẋ=0

x∗=A ρ̇=0

•

•

x∗∗

ρ∗

Proof. In order to analyze transitional dynamics and stability of equilibria within a phase dia-

gram infer from (7a) that there are two loci where ρ̇ = 0. In a (ρ, x) – diagram, the equilibrium

of stagnation is found along the horizontal isocline where x = A. The equilibrium of balanced

growth is found along the vertical isocline where ρ = ρ̄. Inspect (7a) to conclude that ρ̇ < 0

in the area to the right of the ρ̄–line and below the A–line. The opposite is true if x is above
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A and when ρ is below ρ̄. Next compare x∗ and x∗∗ and conclude that x∗∗ < x∗. From this

follows that the ẋ = 0-curve has a negative slope. Its intersection with the horizontal ρ̇ = 0-

isocline identifies x∗ and the intersection with the vertical ρ̇ = 0-isocline identifies x∗∗. Compute

∂(ẋ/x)/∂x = 1 + η(ρ − ρ̄)/(1 − θ) from (7b) and conclude that this expression is positive for

θ < 1. In order to obtain the arrows of motion for θ > 1 rewrite (7b) as

θ
ẋ

x
= A(1− θ) + θx− ρ︸ ︷︷ ︸

b

+ [A(1− θ) + θx]︸ ︷︷ ︸
d

· (ρ− ρ̄)η

(1− θ)ρ︸ ︷︷ ︸
<0

.

Observe that b < d. Next note that at x = A, d = A > 0 and thus for θ > 1, b > 0 for ẋ = 0 at

x∗. On the other hand, at x = x∗∗, b = 0 and thus d > 0. Conclude d > b ≥ 0 in the relevant

range of x. Finally note that the derivative ∂(ẋ/x)/∂x obtained along the ẋ = 0 curve can be

written as 1− b/d, which is positive since d > b ≥ 0. Thus the arrows of motion point towards

lower x below the ẋ = 0 curve and towards higher x above.

Inspect the resulting field of arrows of motion in Figure 1 to conclude that the equilibrium

(x∗, ρ∗) is unstable and the equilibrium (x∗∗, ρ∗∗) is a saddlepoint. Suppose we start an economy

at the equilibrium of stagnation and perturb it a little. The only feasible path is then to follow

the stable arm of the saddlepoint towards (x∗∗, ρ∗∗). Any other path leads either to x = 0 and

thus zero consumption in finite time or to ever expanding x and thus zero capital stock in finite

time. The paths leading to k > 0 but c = 0 and thus µ =∞ in finite time entail a violation of

the transversality condition. Intuitively, savings react suboptimally strong on improving wealth.

The paths leading to k = 0 in finite time entail a jump of c to zero, a violation of the first order

condition (requiring µ to be continuous). Intuitively, people save too little in order to sustain

survival in the long-run.

The savings rate is defined as s = 1− c/y, i.e. s = 1− x/A. It is thus rising along the stable

manifold that leads from stagnation towards balanced growth. �

For an intuitive assessment of adjustment dynamics consider an economy that is initially very

close to the steady-state of stagnation. In this situation capital stock and production are small

and the time preference rate is large. Almost all income is consumed implying that c is close to

Ak. This in turn means that there are almost no (net) savings and k̇ is close to zero. Having only

a relatively short time-window of observations at hand one would conclude that the economy

stagnates. At glacier speed, however, capital is accumulated and people become more patient
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with rising wealth. More patience leads to a higher savings rate (lower x) and further rising

capital (wealth). Sooner or later economic growth gets momentum and the economy travels with

rising savings rates towards the balanced growth path. During the transition both the savings

rate and the growth rate are perpetually rising. The feature that produces this realistic outcome

is wealth-dependent time preference. Higher economic growth makes people wealthier and thus

more patient, which in turn triggers more savings and leads to even higher subsequent growth.

4. The Slow Transition Towards Modern Growth: A Calibration Study

We begin with determining the balanced growth path. The savings rate, s = 1 − c/y, along

the balanced growth path is s∗∗ = 1− x∗∗/A and the implied growth rate is (A− ρ̄)/θ. For the

calibration we assume that the balanced growth rate is 2 percent annually and the consumption

share of income is 70 percent, implying a savings rate of 0.3. Imposing θ = 2, a frequently used

value in calibration exercises, provides the estimates A = 0.0667 and ρ̄ = 0.0267. A real rate

of return on capital around 7 percent accords well with the average real return on the stock

market for the last century and has been used in other calibration studies as well (e.g. Jones

and Williams, 2000).

The remaining parameter, η, can be used to control transitional dynamics. Roughly speaking,

η determines how strongly patience reacts on changes of wealth. Here, the value of η is adjusted

such that the dynamic system generates approximately the historical evolution of savings and

income as observed for England, i.e. such that an economy that starts with almost zero growth

in the High Middle Ages reaches its highest acceleration of growth in the 19th century. This

leads to the estimate of η = 0.4.

In order to extract the path from stagnation towards balanced growth we employ the method

of backward integration. The integration starts when the economy is arbitrarily close to the

steady-state of growth (ρ̄, x∗∗) and solves the dynamic system (7a) and (7b) backwards until

it comes close to the steady-state of stagnation (ρ∗, A). The calculation is terminated when

ρ = 0.999ρ∗. A reversion of time finally renders the adjustment trajectories of the actual

economy. The method solves the non-linearized system up to an arbitrarily small error, see

Brunner and Strulik (2002) for details.

Figure 2 shows adjustment dynamics. For better comparison with the real data, time has

been normalized such that t = 1800 when s = 0.14 (according to Feinstein, 1981) and income
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Figure 2. Transitional Dynamics During the 2nd Millennium
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Parameters A = 0.0667, θ = 2, ρ̄ = 0.0267. Solid lines: η = 0.4 (“Model-England”). Dashed
lines: η = 0.38 (“Model-Italy”).

has been normalized such that y = 400 when t = 1200 (according to Maddison, 2001). Let

us first consider the benchmark case reflected by solid lines. The adjustment process towards

modern growth is characterized by little growth in the middle ages. In line with the historical

evidence, growth rates are below 0.005 percent before year 1500 and about 0.2 percent around

the year 1600. Afterwards, the economy visibly takes off.

While the take-off is visible, compared with modern standards the rate of economic growth is

nevertheless small during this period. In line with the empirical observations the model produces
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a growth rate of about 0.5 percent around 1700, of about 1 percent around 1800 and of about 1.3

percent in 1900. In the early 19th century, when historically the industrial revolution takes place,

the model produces the highest momentum, i.e. the the rates of change of growth, patience, and

savings are the highest. In accordance with the Maddison data, by the year 1900 income has

increased to 4492 (log(4492) = 8.41) starting from 400 in the year 1200 (log(400) = 5.99). In

the late 19th century the acceleration of growth begins to lose momentum while the savings rate

continues to rise. At the end of the 20th century the growth rate and savings rate are close to

their long-run steady-state levels.

The duration of the transition and the qualitative behavior of adjustment dynamics depends

sensitively on the assumed strength of the wealth–patience association. This can be demon-

strated exemplarily by an alternative scenario in which η = 0.38 (instead of 0.40). All other

parameters are taken from the basic run, implying that the alternative economy arrives eventu-

ally at the same balanced growth path as Model-England.

The fact that η is smaller for the alternative economy implies that its citizens are a little less

patient not only along the transition path but also, in particular, close to the equilibrium of

stagnation. Formally, ρ∗ is higher at stagnation. This implies that the propensity to consume

is somewhat higher in the less patient economy, i.e. c′(k) is larger at all levels of k. Because

c′′(k) < 0 and c/k = A at the steady-state of stagnation, it then follows that citizens of the

alternative economy have to be somewhat wealthier in the neighborhood of the stagnation. In

order to keep the analogy to the historical development of countries, we call the alternative, less

patient economy “Model-Italy”.

The implied adjustment dynamics are shown by dashed lines in Figure 3. Assuming that both

economies are close to stagnation in the middle ages, Model-Italy, because of the mechanism

just explained, starts out with higher income per capita. However, in the 16th century when

patience begins to rise visibly in Model-England, it stays almost constant for another century

in Model-Italy. The character trait of being more patient and thrifty enables Model-England

to overtake Model-Italy’s income per capita in the late 17th century, in line with the historical

observation (see Figure 1).

In other words, take-off and industrial revolution are delayed in less patient Model-Italy.

Levels of patience, savings, and growth that are reached by Model-England in 1800 are reached

by Model-Italy about a century later. During the 19th century, the period of the industrial
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revolution, the gap of growth rates between Model-England and Model-Italy gets largest and it

closes slowly afterwards. Actually the model underestimates the catching up process of Model-

Italy. Since it has been shown that the model predicts the evolution of income per capita for

England quite precisely, this occurs because the model underestimates growth of Model-Italy

during the 20th century. For the year 2000 it predicts income per capita of about 5000, a

value that was actually reached in 1957 (according to Maddison, 2003), indicating that other,

neglected mechanisms are increasingly at work that limit the predictive power of the simple

model for modern economies (e.g. globalization, international capital flows).

5. Declining Savings Rates in the 20th Century

The compound determination of consumption growth in (4) allows for an alternative, or per-

haps complementing, but certainly new explanation for the secular fall of savings rates observed

over the last decades in some developed countries, notably the U.S. and the U.K. This fact has

puzzled economists for quite a while. So far as explanations have been suggested wealth changes,

the changing age distribution, financial innovations and intergenerational fiscal transfers. Parker

(1999) finds that financial innovation can explain about a third of the decline of savings and

wealth changes about a fifth, implying that there exists so far no encompassing explanation of

the phenomenon.

Inspection of (4) has shown that the standard effect through net interest rates (the first term

A− ρ) and the growth effect (the third term, given by −ρ′/ρ(Ak − c)) are both increasing in a

growing economy and – taken for itself – suggesting that consumption growth is unambiguously

increasing during economic development. For θ > 1 the level effect reflected by the second term

(−ρ′/ρc/(1 − θ)) is negative and in absolute magnitude declining with economic development

(increasing level of consumption). It thus operates in the same direction as the other two effects.

For θ < 1, however, the second term is positive and declining with economic development.

Intuitively, and analogously to the mechanism in the standard model, a low θ implies a high

elasticity of intertemporal substitution. This means that people care relatively little about

current consumption, even when its level is yet low, and are willing to save relatively more for

the future. It implies also that for a growing economy the level effect operates in the reverse

direction compared to the net interest effect and the growth effect. It opens the possibility of

overshooting behavior of the consumption growth rate and the savings rate.
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At first sight the case of θ < 1 might seem to be unrealistic since econometric studies (for

example Atkeson and Ogaki, 1997) as well as macroeconomic considerations (Barro and Sala-i-

Martin, 2004) suggest that the elasticity of intertemporal substitution is quite small, implying

that θ is large and certainly above one. This conclusion, however, has been derived under the

assumption that the time preference rate is constant. As will be shown in this section (and later

on in Section 6 for the neoclassical case of diminishing returns of capita), θ < 1 is compatible

with slow consumption growth in a reasonable order of magnitude if the time preference rate

varies endogenously.

Figure 3 shows the evolution of an economy with savings rate overshooting. For that purpose

we have to assume lower balanced growth rates for s and gc. Otherwise the model would predict

unreasonably high savings and growth along the transition during the overshooting phase. Here

we assume of s∗ = 0.005 and g∗c = 0.005. Keeping η = 0.4 from the basic run, a plausible hump

is generated for θ = 0.85. These values imply A = 0.1 and ρ̄ = 0.096.

The model is now capable to explain a peak of the savings rate during the 1950s. Afterwards

the savings starts to decline. The implied consumption share of income rises by about 4 per-

centage points during the second half of the 20th century (underestimating somewhat the real

increase, which was about 6 percentage points, see Parker, 1999). The third panel shows the

implied growth rates of income (solid lines) and consumption (dashed lines). Both growth rates

approach their maximum in the 1950s. In line with the empirical observation the model thus

produces the result that after the 1950s both the savings rate and the growth rate of consump-

tion decline. In other words, the savings rate declines because the growth rate of income declines

more strongly than the growth rate of consumption.

The fourth panel tries to visualize this fact more precisely by showing the difference between

income growth and consumption growth. It reveals another interesting result. The difference

between income growth and consumption growth was largest around 1850, during the heyday

of the industrial revolution. At that time the absolute size of growth rates was moderate from

today’s perspective. Growth rates of income and consumption reach their maximum about a

century later, in the 1950s. Afterwards income growth declines more strongly than consumption,

a trend that is again reverted in the early 21st century such that the growth rate differential

(gy − gc)approaches its steady-state value of zero from below.
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Figure 3. Overshooting Savings Rate
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Parameters A = 0.1, θ = 0.85, η = 0.4, ρ̄ = 0.096. The third panel shows the income
growth rate gy (solid lines) and the consumption growth rate gc (dashed lines). The
fourth panel shows the difference gy − gc.

6. The General Case

While the model so far manages to generate reasonable paths for savings and growth it fails

to predict the downward trend of interest rates documented by Clark (2007). This shortcoming

is an inevitable yet unwanted side-effect of the linear production function, which provides a

forever constant return to capital. In order to get the interest rate dynamics right we generalize

towards a Jones-Manuelli (1990) type of production function. The notation follows largely the

exposition of this model in Barro and Sala-i-Martin (2004). Production is assumed now to
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consist of a neoclassical part with diminishing returns and – as before – of a linear part with

constant returns, i.e. y = Ak + Bkα`1−α where ` is labor input. The implied interest rate

and wage rate are r = A + αBkα−1`1−α and w = (1 − α)Bkα`−α. The budget constraint for

households is given by k̇ = rk + w`− c.
If we imagine that manufacturing operates with constant returns to scale with respect to the

accumulable factors (physical and human capital) while agriculture is subject to diminishing

returns because of limiting land, then the setup can be interpreted as a toy model of indus-

trialization. In this sense the indicator λ ≡ Bkα/y measures the relative contribution of the

diminishing-returns part (i.e. agriculture) to GDP.7

Assuming that households supply one unit of labor inelastically, maximizing (2) w.r.t. k̇ =

rk+w`−c, and solving the problem as proposed for the benchmark model leads to consumption

growth according to the following Ramsey rule.

ċ

c
=

1

θ

[
r − ρ− ρ′

ρ

c

1− θ −
ρ′

ρ
(rk + w − c)

]
.

Inserting equilibrium factor prices we obtain consumption growth (10), which replaces (4).

ċ

c
=

1

θ

[
A+ αBkα−1 − ρ− ρ′

ρ

c

1− θ −
ρ′

ρ
(Ak +Bkα − c)

]
. (10)

For ρ = ρ̄ this expression collapses to the Ramsey rule derived from the standard Jones-Manuelli

setup (as discussed in Barro and Sala-i-Martin, 2004).

Inserting factor prices into the budget constraint we get the equation of motion (11), which

replaces (1).

k̇ = Ak +Bkα − c. (11)

In order to transform (10) – (11) into a system of ordinary differential equations, we again

consider the particular form (6) for ρ(k) and introduce the auxiliary variable z ≡ kα−1. The

economy can then be represented by the three-dimensional system (12).

ρ̇ = −η(ρ− ρ̄)(A+Bz − x). (12a)

ẋ =
x

θ

[
A+ αBz − ρ+ η(ρ− ρ̄)

(
A+Bz +

θx

1− θ

)]
− (A+Bz − x)x. (12b)

7This toy-model approach is only justified because industrialization in the sense of structural change is not the
focus of the present paper. See, for example, Strulik and Weisdorf (2008) for a proper model on structural change
during the industrial revolution.

18



ż = (α− 1)(A+Bz − x)z. (12c)

The ordinary Jones–Manuelli model is included as the special case of ρ = ρ̄ for all k.

Because of the diminishing influence of the non-linear part of capital productivity, i.e. z → 0

in a growing economy, the long-run growth path is, of course, the same as for the simple Ak

growth model. At the steady-state of stagnation x = A+ Bz. Using this in (12b) evaluated at

a steady-state we get

0 = Aρ+ αBzρ− ρ2 + η(ρ− ρ̄)
A+Bz

1− θ . (13)

Inserting ρ = ρ̄+ρ0k
−η and z = kα−1 the equation can be solved numerically for k∗. From k∗ we

can infer z∗ and ρ∗. Employing once again the method of backward integration the system (12)

is solved by starting it arbitrarily close to the balanced growth path until it arrives at the steady-

state of stagnation. Since both, ρ and z are state variables, adjustment dynamics evolve along

a two-dimensional stable manifold. In order to approximate the unique optimal trajectory on

the manifold the initial deviation from the balanced growth path is adjusted until the trajectory

computed by backward integration ends at (ρ∗, z∗), see Brunner and Strulik (2002) for details.

For the calibration we set α = 1/3 and B = 1. The values of η and ρ0 are chosen such

that the adjustment speed is approximately the same as obtained for the solution of the basic

model (under the Ak technology) and such that the initial interest rate (at the steady-state of

stagnation) equals 10.9 percent as documented by Clark (2007) for England in the 13th century.

This provides the estimates η = 0.35 and ρ0 = 0.1198. The other parameters are kept from

the last section so that the economy, again, converges towards a steady-state growth rate of 2

percent and a savings rate of 30 percent.

Adjustment dynamics for the benchmark case are shown by solid lines in Figure 4. While

adjustment dynamics for ρ, x, and s are very similar to the simpler Ak case we additionally

observe falling interest rates from historically high values to around 7 percent today (r = A

along the balanced growth path). Also, around time when income visibly takes off in the 18th

century the downward trend of λ, our measure for the importance of agriculture, experiences

the greatest momentum.

Dotted lines reflect again an alternative specification of an economy populated by somewhat

less patient agents (η = 0.33 for Model-Italy). As explained above, around the steady-state

of stagnation, capital stock must be (slightly) higher in the less patient economy because of
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Figure 4. Patience and Prosperity Dynamics: The General Case
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Parameters: A = 0.0667, α = 0.33, ρ̄ = 0.0267, θ = 2, ρ0 = 0.1189 and (η = 0.35, B = 1)
for solid lines and (η = 0.33, B = 1.042) for dashed lines.
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the higher propensity consume c′(k). Here, the neoclassical element in production additionally

implies that interest rates are (slightly) lower at the steady-state of stagnation of the less patient

economy. Again, the model predicts that the more patient country takes over (here in the 17th

century) and experiences industrialization, i.e. a visible take off towards balanced growth earlier

(by about three generations). Because of the dampening neoclassical mechanism of falling

interest rates the difference in performance of the two countries is somewhat less pronounced

than for the basic model.8

The numerical solution documents that the model is capable to produce the historical fact

of simultaneously falling interest rates and rising growth rates. This interesting result is far

from self-evident since falling interest rates per se lead to falling growth rates. More patience

(decreasing time-preference), however, is capable to dominate the negative effect of falling capital

productivity on growth.

To see the necessity of endogenous time preference for these results it is instructive to compare

with the standard Jones-Manuelli model. The panel on the left hand side of Figure 5 shows the

policy function s(k) for the benchmark calibration and alternative specifications of the standard

Jones-Manuelli model. The policy function relates the savings rate to the state of the economy

(subsumed in state variable k). The bold line shows the policy function as implied by endogenous

time preference. Since time preference is constant in the standard case, the only parameter that

can be manipulated in order to get the shape of the policy function right is θ, i.e. the degree of

relative risk aversion (the inverse of the intertemporal elasticity of substitution)

One sees, that if the patience channel is closed, there is too little curvature of the policy

function. Poor people are predicted to save too much. For the benchmark setup of θ = 2 (and

lower values) the standard model even produces adjustment from the “wrong side”, i.e. falling

savings rates during economic development. As shown by Barro and Sala-i-Martin (2004) this

shortcoming can be prevented by imposing (unrealistically) high values for θ, i.e. (unrealistically)

low values for the intertemporal elasticity of substitution. But, as the example shows, even if

θ = 200 (or higher) there is still too little curvature of the savings function such that the model,

in general, predicts too fast adjustment from stagnation to balanced growth as compared with

the historical evidence.

8The initial interest rate differential is not causal for the later take off. This has been verified by adjusting B
such that both economy start out with the same initial interest rate (not shown in the Figure). Performance
differences are driven by difference in patience.
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Figure 5. Savings and Growth: Comparison with Standard Model
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lines: standard Jones-Manuelli model, alternative θ’s and otherwise same parameters.

The panel on the right hand side of Figure 2 shows the associated income growth rates gy.

When the patience channel is closed, diminishing capital productivity is the only impact on

growth and the model counter-factually predicts that richer economies grow at lower rates. For

low values of θ, the standard model gets the positive correlation between savings and growth

right but this is by counterfactually predicting that both rates are falling during economic

development. For high values of θ the standard model counterfactually predicts a negative

correlation between savings and growth. Endogenous, wealth-dependent patience is capable to

revert these results and let savings rates rise in accordance with economic growth.

7. The Poverty Trap

In principle, equation (13) may have two positive roots and the possibility of a locally stable

poverty trap arises. In order to investigate this case in more detail in the k− c space, we derive

from (11) the k̇ = 0 isocline as c = Ak +Bkα. The isocline is positively sloped everywhere and

approaches the slope A as k goes to infinity. Above the isocline we observe k̇ < 0 and vice versa

below.

From (10) we get the ċ = 0-isocline

c =
1− θ
θ

[(
A+ αBkα−1 − ρ

) ρ
ρ′
−Ak −Bkα

]
. (14)

As k goes to infinity and ρ′(k) goes to zero the first term in brackets vanishes and c approaches

+∞ if θ > 1 and −∞ if θ < 1.
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Figure 6. Phase Diagram
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A necessary, not sufficient condition for (13) to have two positive roots is θ < 1. This can

be seen by noting that the roots solve 0 = ρ2 − aρ + b with b ≡ ηρ̄(A + Bz)/(1 − θ) and that

two positive roots necessarily require b > 0. If θ < 1, then coming from low k the ċ = 0–curve

intersects the k̇ = 0–curve first from below and then from above as shown in Figure 6. Finally,

inspect (10) to verify that ċ > 0 above the ċ = 0-curve and ċ < 0 below and conclude from

the resulting arrows of motion that the first equilibrium at k∗1 is a saddlepoint and the second

equilibrium at k∗2 is unstable.

If an economy starts with capital stock below k∗2 a movement along any trajectory other

than the stable manifold can again be excluded for violating in finite time either the first order

conditions or the transversality condition. The unstable equilibrium at k∗2 separates convergence

towards the poverty trap from convergence towards balanced growth. In the Appendix it is shown

that as long as there is potential for growth a saddlepoint-stable development trap cannot occur

in the standard Jones-Manuelli model augmented by subsistence consumption. The current

model thus seems to be the minimum setup that allows for both convergence towards subsistence

and convergence towards balanced growth, depending on initial conditions.

Intuitively, if an economy situated at k∗1 experiences a positive shock of capital and the interest

rate falls, consumption decreases and exerts a negative level effect on patience if θ < 1. This,

however, is not sufficient to generate stagnation since the level effect has to be strong enough in

order to overcompensate the positive growth effect on patience as explained in connection with

the Ramsey rule (4).
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Figure 7 shows dynamic behavior of two identical economies, one starting slightly above k∗2,

the other slightly below. In order to create a locally stable poverty trap θ has been set to 0.5.

The balanced growth path is kept such that s = 0.3 and gy = 0.02. For that purpose the long-run

time preference rate has been adjusted to 0.0567, a high yet not completely incomprehensible

value. The low value of θ generates the “right” curvature of the ċ isocline but is not sufficient to

produce two intersections. For that purpose ρ0 has been increased to 0.33, a change that does

not affect balanced growth. All other parameters are kept from the last section.

The time paths generated for the successful developing economy are somewhat less satisfying

than for the earlier case of θ = 2. Adjustment is “too linear”, i.e. there is too little curva-

ture during the time of the historical industrial revolution. Also, income for Model-England is

overestimated in the 19th century. On the other hand, the produced time paths are still compar-

atively good approximation of actual behavior given that standard models of economic growth

get adjustment dynamics completely wrong when θ is below unity (for savings and growth in

the Standard Jones Manuelli setup this has been demonstrated in Figure 5). The power of

endogenous time preferences is obviously sufficient to override the strong tendency for savings

rates and growth rates to fall jointly with interest rates, a result which is usually generated when

θ is below unity.

Qualitatively the paths for the developing economy differ from those obtained earlier for θ > 1.

The time preference rate lies now above the interest rate for most parts of the development

process (until the 20th century). For an assessment recall that any standard model would not

be capable of producing positive growth if the time preference rate exceeds the interest rate.

Intuitively, successful development is possible here, because individuals take into account that

time preference rates will be lower in the future such that their future selves (their offspring) will

appreciate future income more, a fact that triggers already savings today. The fact that high

time preferences rates are compatible with positive growth may help to reconciles the growth

literature with the frequently high estimates of ρ in empirical studies and experiments conducted

in rich and growing economies. For example, in a recent article Andersen et al. (2000) estimate

from field experiments in Denmark that ρ = 0.10 (and θ = 0.74).

It is telling that ρ0 has to be adjusted to a high value in order to get the possibility of

a poverty trap. This means that in addition to the negative level effect of consumption on

patience (stemming from θ below unity) time preference has be to assumed to be particularly
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Figure 7. Convergence Clubs
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Solid lines: economy starting above k∗2 . Dashed lines: economy starting below k∗2 .
Parameters for both cases: A = 0.0667, B = 1, α = 0.33, ρ̄ = 0.0267, θ = 0.5,
ρ0 = 0.33, and η = 0.35.

high at low levels of wealth. In the introduction it has been argued that there are potential

determinants of time preference other than individual wealth. In particular geographic location

may have an influence either directly through longevity or indirectly through institutions and

the risk or expropriation. This lets us expect that for given wealth the rate of time preference is

higher at low geographic latitudes (the tropics). Naturally we would expect this effect to show

up in ρ0 rather than in ρ̄, i.e. we would expect the influence of geography on time preference to

vanish when people become infinitely rich. If one is willing to accept this argument, the current

model provides a rationale for a local poverty trap at low geographic latitudes.
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8. Discussion

The current paper has proposed a theory of endogenous patience that explains the long-run

evolution of savings and growth in the Western world reasonably well. Actually the approxima-

tion of the actual transition is perhaps too good since there is little growth left to be explained

for other important drivers of economic development. A reduction of η, for example, would

slow down the adjustment speed and open room for factors like structural change, demographic

transition, and TFP growth to improve the adjustment dynamics. A reasonable assessment of

the results is thus to view endogenous patience as a complementing channel for the explanation

of long-run economic development, a channel that has been largely overlooked so far.

Some of the results presented here can alternatively be generated by introducing habit for-

mation or subsistence consumption into the linear growth model. It seems thus worthwhile

to compare. A common characteristic of all three approaches is that they produce reasonable

adjustment dynamics in the sense that savings and growth are jointly rising during the process

of development.

The modeling of habit formation is technically more involved than the present approach since

it requires a second state variable, the habit stock. When augmented with endogenous habit

formation already the linear Ak model transforms into a three dimensional dynamic system (Car-

roll et al., 2000). The higher formal complexity possibly explains why some interesting features

obtained here like the savings rate –interest rate dynamics, the poverty trap, or overshooting

savings rates, have not (yet) been explained within the habit formation model. Although ex

post adjustment dynamics look similar, they are conceptually different under habit formation.

Adaptive behavior implies that the model generates serial correlation of current savings and

consumption decisions with those in the past. With contrast, endogenous patience generates

serial correlation of current and future savings and consumption decisions. If an economy travel-

ing along its balanced growth path is hit by a shock we would thus expect current consumption

to be correlated with past consumption under habit formation but not under endogenous time-

preference.9

If the strength of wealth-dependent savings is determined by geographic location (either

through mortality or expropriation risk) then an explanation of temporarily diverging time

9Moreover, in order to generate realistic adjustment dynamics the habit formation model relies on θ > 0. The
present model generates plausible adjustment dynamics irrespective of the size of θ.
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preference rates and savings behavior must not rely on culture. In particular, country-specific

savings behavior would be compatible with the observation that there is no fundamental differ-

ence of savings behavior between natives and immigrants (Carroll et al., 1994). With contrast if

savings are driven by culture (consumption habits) we would expect savings behavior to differ

for immigrants, at least for a while and in particular if habits adjust sluggishly.

The introduction of subsistence consumption in economic models comes in two conceptually

different variants. The first variant tries to understand how human energy consumption affects

economic choices (for example, fertility or effort at work) and how these choices feed back

on macroeconomic behavior and the available diet (Dalgaard and Strulik, 2007). This is, of

course, a totally different research agenda than pursued in the present paper. The second

variant, which appears more often in economic modeling, introduces a constant (c̄) into the

utility function and calls this constant (possibly misleadingly) subsistence consumption. An

exploration of subsistence needs, however, is not the purpose of the modeling. The purpose

is to get adjustment dynamics right, i.e. to generate savings and growth rates that are jointly

increasing with economic development.

Subsistence consumption in form of Stone-Geary utility, u(c) = (c− c̄)1−θ/(1−θ), implies that

the intertemporal elasticity of substitution rises from zero where c = c̄ to 1/θ for infinite c. This

produces trajectories similar to the ones for wealth-dependent time preference and the question

occurs whether the ad hoc modeling of subsistence is acceptable as a shortcut to endogenous

patience. The answer is probably yes on the level of (introductory) macroeconomics textbooks

because the “shortcut”-model is formally much less involved. On the level of a serious research

question the answer is certainly no. This is instructively demonstrated by Kraay and Raddatz’

(2007) attempts to calibrate the neoclassical growth model with “subsistence consumption”

and in particular to find a proper c̄. They conclude: “In summary, the model with subsistence

consumption could be used to rationalize the persistence of low levels of consumption and capital

observed in low income African countries by assuming that they are close to subsistence level,

but this requires either to assume that there is significant variation in the levels of subsistence

consumption across African countries or that half of these countries should exhibit high savings

and growth rates.”

With respect to the Ak growth model with subsistence consumption it can be shown that

adjustment dynamics of the savings rate and the rate of economic growth are independent from

27



the specification of c̄. In fact, adjustment dynamics of these variables are completely determined

by the specification of the balanced growth path (Strulik, 2010). This implies that either all

countries adjust alike toward the same balanced growth path or that countries that lag behind

will never catch up. The model cannot explain temporarily divergent behavior. With contrast,

the current model can explain temporarily different behavior, in particular why originally leading

countries are overtaken before and during industrial revolution and why they later catch up

again. Additionally, it can explain a patience-driven, locally stable poverty trap, independent

from subsistence needs, which might be relevant for some of the African countries discussed by

Kray and Raddatz.

Finally the concept of endogenous time preference is comprehensive. It directly affects all

intertemporal decisions alike whereas the subsistence approach affects other choice variables

only through urgent consumption needs. For example, there is no “subsistence education”

or ”subsistence fertility”. An extension of the present model towards the analysis of other

intertemporal decisions is an interesting subject for future research.
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Appendix

Two-Period Finite-Life Approximation. Consider an economy where people live for two

periods, childhood and adulthood. Suppose for simplicity a family consists of one parent and one

child and that rearing children entails no cost and no (empathically felt) benefits for the parent.

Yet parents care about utility of the offspring when offsprings themselves become parents. It

is easy to imagine that nature has fostered this trait in humans. An adult of generation t

maximizes

Ut =
c1−θt

1− θ +
1

1 + ρ(kt)
Ut+1.

With contrast to the standard model it is here assumed that wealthier parents discount utility

of their offspring by less and are thus inclined to leave larger bequests kt+1. Given a linear

production technology, bequests evolves according to

kt+1 = Akt − ct − kt.

By iteratively substituting Ut+i, i = 1, . . .∞ in the utility function, the objective function can

be written as

max
∞∑
i=0

1

[1 + ρ(kt+i)]
i

c1−θt+i

1− θ .

Solving this with respect to the above equation of motion is the discrete time equivalent to

problem (1)-(2) in the main text.

The Standard Model Cannot Explain A Development Trap.

Proposition 4. If there is potential for long-run growth then there cannot simultaneously

exist a local (saddlepoint-) stable poverty trap in the Jones Manuelli model with constant time

preference and subsistence consumption, i.e. when instantaneous utility is of the Stone-Geary

type, u(c) = (c− c̄)1−θ where c̄ denotes the subsistence level.

Proof. With instantaneous utility of the Stone-Geary type the Ramsey rule in general reads

ċ = (f ′(k)− ρ)(c− c̄)/θ and with production of the Jones Manuelli type it becomes

ċ =
(
A+ αBkα−1 − ρ

)(c− c̄
θ

)
.

The equation of motion for capital remains to be (11). Generally, equilibria of stagnation

could be where c = c̄ or where A − ρ − αBkα−1 = 0. However, under the requirement that

there is potential for long-run, the second option for an equilibrium of stagnation ceases to

exist. For positive growth in the long run we must have A − ρ > 0 which is incompatible with

A− ρ− αBkα−1 = 0 at some positive k.

The elements of the Jacobian evaluated at the equilibrium c = c̄, k = Aα + Bkα−1 are

J11 = (A+αBkα−1−ρ)/θ, J12 = α(α−1)Bkα−2(c− c̄)/θ = 0, J21 = −1, and J22 = A+αBkα−1.

The eigenvalues are a ≡ A + αBkα−2 > 0, and a(a − ρ)θ > 0 for A − ρ > 0, i.e. when there is

potential for long-run. The equilibrium of stagnation is unstable. �
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