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Abstract

We develop a Wald type test to distinguish between long memory and ESTAR

nonlinearity by using a directed-Wald statistic to overcome the problem of restricted pa-

rameters under the alternative. The test is derived from two basic model specifications

where the first is the standard model based on an auxiliary regression and the second

allows the parameter γ to appear as a nuisance parameter in the transition function. A

simulation study indicates that both approaches lead to tests with good size and power

properties to distinguish between stationary long memory and ESTAR. Moreover, the

second approach is shown to have more power.

Keywords: directed-Wald test, ESTAR, long memory

1 Introduction

Long memory and nonlinear time series have both been extensively applied in empirical studies on

the business cycle and other macroeconomic time series leading to different economic implications.

However, several studies provided theoretical evidence that long memory can easily be confused
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with nonlinear regime-switching processes. Granger and Ding (1996) pointed out that a number

of processes can be mistaken as long memory although providing only nonlinear features. Granger

and Teräsvirta (1999) demonstrated that a simple nonlinear time series model can mimic linear

properties whereas Andersson et al. (1999) found that on the other hand linear time series can

mimic nonlinear properties as well. Diebold and Inoue (2001) proved analytically that stochastic

regime switching can easily be confused with long memory. Davidson and Sibbertsen (2005) argued

that the aggregation of processes with structural breaks converge to long memory.

Recently, several approaches to combine the two phenomena long memory and short memory nonlin-

earity appeared. For instance, van Dijk et al. (2002) and Smallwood (2005) developed the FI-STAR

model, a joint model which covers long memory and nonlinear STAR processes. Tsay and Härdle

(2008) propose a new Markov Switching model which allows the switching autoregressive compo-

nent in the regimes to have a certain degree of fractional integration. Another Markov Switching

long memory model was examined by Heildrup and Nielsen (2006). Meanwhile, Goldman and Tsu-

rumi (2006) developed the TARFIMA model, a simultaneous model which contains of threshold

autoregression and long memory.

These aforementioned models are joint models combining long memory and a specific nonlinear

process. Less attention has been addressed to the issue of distinguishing between long memory and

nonlinearities. This is of interest when it is not clear to the practitioner whether a data set under

investigation contains long memory or has a short memory nonlinear structure or whether both is

present. Especially when the underlying nonlinear structure is unknown it is difficult to apply a

specific joint model. Another major drawback is that long memory and nonlinear models are non-

nested, which complicates the analysis. To the best of our knowledge, Kapetanios and Shin (2003)

is the only approach which tries to solve the problem of distinguishing between the two phenomena,

by assuming that the memory parameter is known. Unfortunately, the results of their simulation

study indicated that the test does not have sophisticating power properties.

Baillie and Kapetanios (2007) provide a framework of simultaneously modeling long memory and
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nonlinearity. They, furthermore, suggest tests on neglected nonlinearity in the sense that they test

whether a given long memory process has an additional nonlinear component. The problem is that

a neglected nonlinearity component artificially creates a strongly biased estimate for the memory

parameter and, therefore, falsely indicates long memory. Using this biased estimate in their testing

framework decreases the power of their tests significantly. Therefore, a test barely considering the

problem of distinguishing between these two phenomena is still of interest.

In this paper we suggest a test which is able to distinguish between long memory and a specific

nonlinear time series process, namely ESTAR-processes. By using the basic idea of Kapetanios and

Shin (2003), we propose a new test which is basically developed by using a standard Wald statistic

and provide the adjusted critical values for our testing problem. The hypothesis is defined to be

long memory under the null against ESTAR under the alternative. Since this involves a restricted

parameter under the alternative, using a standard Wald test is inappropriate. Therefore, we suggest

a directed-Wald statistic proposed by Andrews (1998) to overcome this problem. Furthermore,

we consider two different approaches to develop the test statistic. The results indicate that the

supremum statistic of the second approach is more powerful than the standard approach.

The paper is organized as follows. Section 2 introduces the theoretical framework. In section 3 the

test statistics and their asymptotic distributions are derived. A simulation study showing the finite

sample properties of our tests is given in section 4, and section 5 illustrates an empirical application

to exchange rates. Section 6 concludes and all proofs are given in the appendix.

2 The Model

In this section we introduce the considered processes, namely long memory and nonlinear ESTAR

processes. The model specification which is used to construct the test statistic refers to Kapetanios

and Shin (2003) (denoted by KS hereafter). We propose two tests derived from two different

approaches. The first one is similar to KS which uses a Taylor expansion to obtain an auxiliary
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regression on which the test is based. However, our regression differs from that in KS to some

extents. For the second approach, we consider a model with an unidentified parameter in the

transition function and take a supremum statistic.

2.1 Long Memory Process

Fractional integration (FI) models were first introduced by Granger and Joyeux (1980). Our work

is based on the following simple model:

(1− L)dyt = φ(L)−1εt = ut, (1)

where t = 1, . . . , T , L is the lag operator, εt is an iid error term with variance σ2 and finite fourth

moments and ut is a short memory process such as a stationary invertible ARMA (p,q) whose partial

sums converge to a Brownian motion Y (r) (see de Jong and Davidson, 2000). Under (1), yt is a

long memory process with a certain degree of fractional integration d and the fractional difference

operator is defined by

(1− L)d =
∞∑
j=0

dΓ(j + d)
Γ(1 + d)Γ(j + 1) . (2)

The value of d is 0 < d < 1/2 for a stationary long memory process and 1/2 < d < 1 for a

non-stationary long memory process.

Model (1) can be written as an infinite moving average process in terms of ut

yt =
∞∑
j=0

ajut−j , (3)

where aj = Γ(d+1)
Γ(j+1)Γ(d−j+1)(−1)j . Equivalently, it can be written as an infinite autoregressive process

yt −
∞∑
j=1

bjyt−j = ut. (4)
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By defining

zt =
t∑

j=1
bjyt−j , (5)

with bj = − Γ(j−d)
Γ(j+1)Γ(−d) , we can write term (4) as

yt = ut − zt. (6)

Following Kapetanios and Shin (2003), we use (6) to derive the test statistic in the next section.

Consider the scaled partial sum process

S[rT ] =
[rT ]∑
t=1

yt, r ∈ (0, 1],

where ut is defined by (1) with d 6= 1/2, we have that (see Marinucci and Robinson (1999))

c−1/2T−(d+1/2)S[rT ](r)⇒ Yd(r),

where c is a constant such that var(ST ) ∼ cT 2(d+1/2) and Yd(r) is a fractional Brownian motion

with d ∈ (0, 1/2) or d ∈ (1/2, 1) respectively. "⇒" denotes weak convergence in distribution. A

detailed discussion regarding the fractional Brownian motion can be found in Mandelbrot and Van

Ness (1968). Beran (1994) gives an overview over the concept of long memory.

2.2 ESTAR Model

Exponential Smooth Transition Autoregressive (ESTAR) models were introduced by Granger and

Teräsvirta (1993). A survey of recent developments in ESTAR modeling can be found in van Dijk

et al. (2002). A simple ESTAR model can be written as:

yt = α1yt−1{1− exp(−γy2
t−l)}+ α2yt−1 + εt, (7)
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where yt is a stationary process and α1, α2 and γ are unknown parameters. The parameter γ

controls the degree of nonlinearity and determines the speed of transition between the two extreme

regimes, and yt−l in the transition function is the transition variable with lag l ≥ 1. As frequently

applied in the literature, we set the delay parameter l equal to 1, therefore yt−l = yt−1
2.

3 Testing Long Memory Against ESTAR

As we pointed out in the previous section, we apply two different approaches to develop the test

statistic. The first approach applies a first order Taylor expansion to the transition function of the

ESTAR model in order to obtain an auxiliary regression. This approach is standard when consid-

ering tests for ESTAR processes. The second approach allows the parameter γ in the transition

function to be unidentified by applying a supremum statistic. By using this approach, we expect

that the test has a higher power, since we do not use linear approximations for non-linear processes.

Let us write the general model specification as:

ut = α1F (yt−1) + α2yt−1 + α3zt + εt, (8)

t = 1, ..., T with ut and zt are defined as in the previous section. The condition for the error εt is

formalized in the following assumption

Assumption 1 :

Let εt be iid sequence with Eε2t = σ2 for all t and supt ‖εt‖4 <∞.

This assumption is necessary to derive the limit distribution of our test in the next section and to

have a consistent estimator of the error variance, that is σ2
T →p σ

2 with σ2
T = (1/T )

∑T
t=1 ε

2
t . The

test statistic is derived from (8) by using two different approaches which depend on F (yt−1). In

other words, we define the model as follows. For the first approach, applying a first order Taylor
2Taylor, Peel and Sarno (2001) provide an overview about the motivation to choose "l" equal to one related to

empirical applications.
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expansion to the transition function of the ESTAR model given in section 2.2 yields

ut = α1y
3
t−1 + α2yt−1 + α3zt + εt. (9)

In this case, F (yt−1) = y3
t−1. For the second approach, F (yt−1) is originally defined as yt−1{1 −

exp(−γy2
t−1)}, which yields

ut = α1yt−1{1− exp(−γy2
t−1)}+ α2yt−1 + α3zt + εt. (10)

We test whether yt is long memory under the null against the alternative of an ESTAR process

using the models (9) and (10). Our null hypothesis is:

H0 : α1 = α2 = α3 = 0 (11)

and is tested against the alternative of:

H1 : α1 6= 0, α2 6= 0, α3 = 1 (12)

Under the null, we can also write

ut = εt, (13)

which means that yt is long memory with given d. Based on (4) and (6) where ut − zt = yt, then

under the alternative hypothesis we have the ESTAR model

yt = α1F (yt−1) + α2yt−1 + εt (14)

with the corresponding function F (yt−1). We discuss the test statistic and its limit distribution in

the following subsections.
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3.1 Test Statistic and Limit Distribution

We propose a standard Wald test to test the null (11). We know that model (10) with a given γ is

linear in the parameter α = (α1, α2, α3)′ and so is the model (9). Therefore, we can estimate the

parameter α by OLS and obtain the least squares estimator

α̂ = (X′X)−1(X′U) (15)

with U = [u1, u2, ..., ut]′, X =


F (y0) y0 z1

...

F (yt−1) yt−1 zt

. The Wald statistic for the null of α = 0 is

W = α̂′[V ar(α̂)]−1α̂. (16)

The Wald test above is normally used under the condition that the parameter α is unrestricted

under the alternative hypothesis. Since the parameter α3 in (12) is restricted (α3 = 1), the classical

Wald test is no longer an appropriate test. To overcome this problem, we use a directed-Wald

statistic proposed by Andrews (1998). This test is designed for testing hypotheses with one or more

restricted parameters under the alternative.

Let us define that H0 : α3 = 0 and H1 : α3 = A, with A = 1. Then, the directed-Wald statistic,

DW is given by:

DW(c) = (1 + c)(−1/2)exp

(1
2

c

1 + c
W

)
Φ(A, c

1 + c
α̂3,

c

1 + c
V ar(α̂3)) (17)

with c being a scalar relative weight given to alternatives that are close to the null against alter-

natives that are away from the null. Andrews (1998) provides a procedure for choosing the value

of c and presents a simulation study for several values of c. This suggests that the power of the

directed-Wald test does not vary much with c, for c 6= 0, which implies that the choice of c is not
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crucial. Since Andrews (1998) found that c = ∞ is optimal for all cases, we set c = ∞ for our

directed-Wald test and therefore, (17) reduces to:

DW(∞) = W + 2 log[Φ(A, α̂3, V ar(α̂3))]. (18)

Here, Φ(.) is defined as Φ(A,µ, σ2) = P (V ∈ A), where V ∼ N(µ, σ2). For notational simplicity,

we suppress the subscript∞. Note that Φ(.) is not necessary to be zero because of the unrestricted

parameters α1 and α2 under the alternative.

Let us now discuss the asymptotic distribution of both approaches. The asymptotic distribution is

derived from the continuous mapping theorem of Kurtz and Protter (1991), the functional central

limit theorem and weak convergence to stochastic integrals of Davidson and de Jong (2000) and

theorem 30.13 of Davidson (1994).

3.2 First Approach

In this section, we derive the limit distribution of the statistics (16) and (18), which is mainly

characterized by the approximation y3
t−1 of F (yt−1). By using assumption 1, we obtain theorem 1

below (all proofs are given in the appendix):

Theorem 1:

Under the null hypothesis that yt is long memory, α̂OLS is a consistent estimator of α and converges

to its true value with the rate of convergence diag(T 3(1/2+d), T (1/2+d), T (1/2+d)) when 0 < d < 0.5

and diag(T 3(1−d), T (1−d)T (1−d)) when 0.5 < d < 1. Its asymptotic distribution is


T 3(1/2+d) 0 0

0 T (1/2+d) 0

0 0 T (1/2+d)




α̂1

α̂2

α̂3

⇒ Q−1
1 Q2 if 0 ≤ d < 0.5 (19)
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
T 3(1−d) 0 0

0 T (1−d) 0

0 0 T (1−d)




α̂1

α̂2

α̂3

⇒ Q−1
1 Q2 if 0.5 < d < 1 (20)

with Q1 and Q2 defined as

Q1 =



∫ 1

0
Yd(r)6dr

∫ 1

0
Yd(r)4dr

∫ 1

0
Yd(r)3dZd(r)∫ 1

0
Yd(r)4dr

∫ 1

0
Yd(r)2dr

∫ 1

0
Yd(r)dZd(r)∫ 1

0
Yd(r)3dZd(r)

∫ 1

0
Yd(r)dZd(r)

∫ 1

0
Zd(r)2dr

 (21)

Q2 =



∫ 1

0
Yd(r)3dY (r)∫ 1

0
Yd(r)dY (r)∫ 1

0
Zd(r)dY (r)

 , (22)

where Yd(r) and Y (r) are fractional Brownian motion and standard Brownian motion respectively,

and Zd(r) is a function of the fractional Brownian motion as defined in the appendix.

Theorem 1 shows that the OLS estimator has a nonstandard limit distribution. The convergence

rate of the estimator differs between stationary and non-stationary long memory. The asymptotic

distribution of the Wald and directed-Wald statistic follows directly from theorem 1:

Theorem 2:

Under the null that yt is long memory, the limit distribution of the Wald statistic is

W ⇒W ≡ Q′2Q−1
1 Q2 (23)

and the limit distribution of the directed-Wald statistic with α3 = A under the alternative is given
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by

DW ⇒ [W + 2 log Φ(A,B,V)] (24)

with B and V as defined in the appendix. Under the alternative, the statistic diverges implying the

consistency of the test.

3.3 Second Approach

Similar to the procedures applied for the first approach, we need to define F (yt−1) as F (yt−1, γ) =

yt−1{1− exp(−γy2
t−1)}. The test statistic is nonstandard since γ is unidentified under the null. To

overcome this problem, Davies (1987) proposed a supremum statistic, which maximizes the test

with respect to the nuisance parameter. Andrews and Ploberger (1994) showed that the supremum

test is optimal. Other tests using sup-Wald statistics can be found among others in White (1982)

and Carrasco (2002).

For γ in the range of Γ, our directed-Wald test can be written as

DW = sup
γ∈Γ

DWγ = sup
γ∈Γ

{ 1
σ̂ε

2
{
α̂′(X ′X)α̂

}
+ 2 log[Φ(A, α̂3, V ar(α̂3))]

}
, (25)

where σ̂ε2 is the error variance of the OLS estimator and γ = [γ, γ] ∈ R+ is such that 0 < γ < γ < γ.

To derive the limit distribution of the test statistic for model (10), we need an additional assumption:

Assumption 2:

Suppose that F (yt−1, γ) is continuously differentiable with respect to γ and supt ‖ supγ∈Γ |F
′(yt−1, γ)|‖2 <

∞ where F ′(yt−1, γ) = ∂F (yt−1,γ)
∂γ .

Assumption 2 is necessary to assure stochastic equicontinuity implying weak convergence. More

details about this assumption can be found in Park and Shintani (2005). They discuss further con-

ditions for the transition function, including differentiability with respect to γ. By using assumption
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1 and 2, we obtain the following theorem.

Theorem 3:

Under the null that yt is long memory, α̂OLS is a consistent estimator of α and converges to its true

value with the rate diag(T (1/2+d), T (1/2+d), T (1/2+d)) when 0 < d < 0.5 and diag(T (1−d), T (1−d), T (1−d))

when 0.5 < d < 1. Its limit distribution is


T (1/2+d) 0 0

0 T (1/2+d) 0

0 0 T (1/2+d)




α̂1

α̂2

α̂3

⇒ Q1(γ)−1Q2(γ) if 0 ≤ d < 0.5 (26)


T (1−d) 0 0

0 T (1−d) 0

0 0 T (1−d)




α̂1

α̂2

α̂3

⇒ Q1(γ)−1Q2(γ) if 0.5 < d < 1 (27)

with Q1(γ) and Q2(γ) are

Q1(γ) =


(1− 2µγ + ψγ)

∫ 1

0
Yd(r)2dr (1− µγ)

∫ 1

0
Yd(r)2d(r) (1− µγ)

∫ 1

0
Yd(r)dZd(r)

(1− µγ)
∫ 1

0
Yd(r)2dr

∫ 1

0
Yd(r)2dr

∫ 1

0
Yd(r)dZd(r)

(1− µγ)
∫ 1

0
Yd(r)dZd(r)

∫ 1

0
Yd(r)dZd(r)

∫ 1

0
Zd(r)2dr

 (28)

Q2(γ) =


(1− µγ)

∫ 1

0
Yd(r)dY (r)∫ 1

0
Yd(r)dY (r)∫ 1

0
Zd(r)dY (r)

 , (29)

where µγ and ψγ are defined as µγ = E{exp(−γy2
t−1)} and ψγ = E{exp(−2γy2

t−1)} respectively,

Yd(r), Y (r) and Zd(r) are defined as in theorem 1.

12



Theorem 3 differs from theorem 1 regarding to Q1 and Q2 which depend on γ. The limit distribution

of the Wald and directed-Wald statistic are given in theorem 4.

Theorem 4:

Under the null that yt is long memory, we have for the Wald statistic

Wγ ⇒Wγ ≡ Q2(γ)′Q1(γ)−1Q2(γ) (30)

and for the sup-directed-Wald statsitic for α3 = A we have

sup
γ∈Γ

DWγ ⇒ sup
γ∈Γ

[Wγ + 2 log Φ(A,B,V)] (31)

with B and V as defined in the appendix. Under the alternative, the statistic diverges implying the

consistency of the test.

The pointwise convergence derived above is not sufficient for establishing uniform stochastic con-

vergence of the limit distribution of the sup-Wald test. Therefore, we need to prove stochastic

equicontinuity, a condition that ∀ε, there exists a δ > 0 such that

lim sup
T→∞

Pr

[
sup
γ∈Γ

sup
γ′:|γ−γ′|<δ

|W (i)
γ −W

(i)
γ′ | ≥ ε

]
< ε. (32)

The proof of the stochastic equicontinuity condition is obtained under the assumption that γ ∈ Γ.

Theorem 5:

Under assumption 2, the test statistic supWγ is stochastically equicontinuous over Γ.

Since the directed-Wald test contains the Wald test as a special case for a certain weight defined by

the second term in (31), theorem 5 implies the stochastic equicontinuity of the directed-Wald test.
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To apply our test in practice, the parameter d has to be estimated from the series in order to use

the correct critical values. This can be done by using any consistent estimator such as the GPH-

estimator of Geweke and Porter-Hudak (1983). This, however, does not change the size and power

results given in the next section significantly.

4 Monte Carlo

In this section, we carry out a Monte Carlo simulation to study the size and power properties of

the test in finite sample sizes. We showed that the optimal test has a nonstandard distribution,

therefore the critical values have to be simulated, which is done by generating long-memory series

of length 5000 to which the test is applied. The number of replications is 10000.

Particularly for the second approach, the value of γ is set to be in the interval γ ∈ (0.01, 2.5).

The supremum is obtained by a grid search with steps of 0.01. A large γ leads to a flat transition

function.

The critical values of the tests are given in table 1 and 2.

Table 1: Critical values of the test for the first approach

Sign. Level d=0.1 d=0.2 d=0.3 d=0.4
10% 5.0394 5.1238 5.1987 5.2605
5% 6.3948 6.4467 6.4516 6.6240
1% 9.7008 9.8097 10.0080 10.0369

Sign. Level d=0.6 d=0.7 d=0.8 d=0.9
10% 5.4100 6.0787 6.7656 7.2822
5% 6.8649 7.6995 8.3055 8.8008
1% 10.3098 11.3106 12.0454 12.4371
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Table 2: Critical values of the test for the second approach

Sign. Level d=0.1 d=0.2 d=0.3 d=0.4
10% 5.6884 5.7290 6.0615 6.2647
5% 7.3199 7.4107 7.4391 7.6236
1% 10.6943 10.8046 10.9267 11.7017

Sign. Level d=0.6 d=0.7 d=0.8 d=0.9
10% 6.7130 7.0191 7.4604 7.9760
5% 8.0670 8.4256 9.0551 10.1568
1% 12.7475 13.4372 14.1835 14.8061

We first study the size of the test when the data generating process has stationary long memory with

d = 0.1, 0.2, 0.3, 0.4 and non-stationary long memory with d = 0.6, 0.7, 0.8, 0.9. For each experiment,

we do 1000 replications and compute the rejection probability for the 5% and the 10% significance

level. The sample sizes are 100 and 250. Tables 3 and 4 contain the results of the size experiment.

Table 3: Size of the directed-Wald test for the first approach

Sign. level T d=0.1 d=0.2 d=0.3 d=0.4
5% 100 0.076 0.060 0.069 0.060

250 0.059 0.056 0.051 0.056
10% 100 0.134 0.116 0.112 0.113

250 0.108 0.101 0.098 0.092
Sign. level T d=0.6 d=0.7 d=0.8 d=0.9

5% 100 0.049 0.049 0.050 0.047
250 0.047 0.043 0.048 0.041

10% 100 0.094 0.100 0.093 0.096
250 0.088 0.095 0.090 0.094

Note: the data generating process is long memory as in (1)
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Table 4: Size for the directed-Wald test for the second approach

Sign. level T d=0.1 d=0.2 d=0.3 d=0.4
5% 100 0.072 0.070 0.068 0.065

250 0.066 0.062 0.057 0.059
10% 100 0.133 0.129 0.133 0.122

250 0.117 0.119 0.120 0.116
Sign. level T d=0.6 d=0.7 d=0.8 d=0.9

5% 100 0.059 0.053 0.048 0.050
250 0.051 0.048 0.047 0.049

10% 100 0.120 0.124 0.098 0.011
250 0.099 0.0101 0.095 0.098

Note: the data generating process is long memory as in (1)

The rejection rates in table 3 and 4 do not differ significantly and have a similar tendency. For

a higher sample size (T = 250), the rejection rate converges to the nominal size. Stationary long

memory tends to over-rejection, whereas non-stationary long memory tends to under-rejection.

Nevertheless, the values are very close to the nominal size, which indicates that the tests are

correctly sized in general, although there are little size distortions for the smaller sample size.

In the second experiment, we study the power of the test. The data generating process is an ESTAR

process

yt = α1yt−1{1− exp(−γy2
t−1)}+ α2yt−1 + εt (33)

with εt ∼ N(0, 1). The error term follows a standard normal distribution. We discard the first

100 observations to minimize the effect of initial values. We set the parameter α2 = 1 and α1 ∈

{−1.5,−1,−0.5,−0.1} with various γ and γ ∈ {0.01, 0.05, 0.1} 3.

Before we do the power experiment, we have to check whether the aforementioned parameter settings

for the ESTAR process (33) are of interest in the sense that they can be mistaken as long memory.

Therefore, the memory parameter is estimated by means of any consistent estimators. In this

paper, we use the GPH estimator proposed by Geweke and Porter-Hudak (1983). The following
3These parameter setting was extensively examined for example in Rothe and Sibberten (2006), Kapetanios et. al

(2003). Imposing α2 = 1 leads to a globally stationary ESTAR process, which has a unit root process in one regime.
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table provides the estimated long memory parameter for our DGPs.

Table 5: Mean and confidence interval of the estimated d̂ by GPH

parameters T = 100 T = 250
α1 γ mean(d̂) mean(d̂)
-1.5 0.01 0.6586

[0.6022;0.7150]
0.4448

[0.4197;0.4699]
0.05 0.2977

[0.2289;0.3566]
0.1481

[0.1201;0.1760]
0.1 0.1398

[0.0807;0.1990]
0.0684

[0.0427;0.0941]
-1 0.01 0.7069

[0.6518;0.7619]
0.5135

[0.4879;0.5392]
0.05 0.4196

[0.3664;0.4279]
0.2153

[0.1880;0.2426]
0.1 0.2650

[0.2078;0.3221]
0.1163

[0.0896;0.1431]
-0.5 0.01 0.8226

[0.7678;0.8775]
0.6332

[0.6089;0.6576]
0.05 0.5943

[0.5403;0.6483]
0.3637

[0.3374;0.3900]
0.1 0.4494

[0.3925;0.5063]
0.2569

[0.2295;0.2842]
-0.1 0.01 0.9280

[0.8789;0.9851]
0.8708

[0.8452;0.8964]
0.05 0.8543

[0.7974;0.9112]
0.7113

[0.6842;0.7384]
0.1 0.8018

[0.7511;0.8652]
0.6352

[0.6090;0.6615]

Table 5 shows the mean of the estimated fractional integration order as well as the 95% confidence

interval. All values are obtained by 1000 replications. We see from the table that under those

parameter settings ESTAR processes generate spurious long memory, where the order of fractional

integration lies either in the stationary or in the non-stationary region.

The following table presents the power results for the directed-Wald test. As we pointed out in the

previous section the memory parameter is assumed to be known or given. The power experiments

are evaluated under the 5% significant level.
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Table 6: Power experiment for the Wald test for the first approach

parameters d = 0.1 d = 0.2 d = 0.3 d = 0.4
α1 γ T = 100 T = 250 T = 100 T = 250 T = 100 T = 250 T = 100 T = 250
-1.5 0.01 0.908 0.912 0.977 0.967 0.994 0.987 0.949 0.997

0.05 0.960 0.969 0.995 0.998 0.967 0.999 0.733 0.896
0.1 0.985 0.988 0.978 0.999 0.871 0.998 0.714 0.888

-1 0.01 0.897 0.898 0.963 0.967 0.983 0.994 0.979 0.994
0.05 0.944 0.954 0.988 0.992 0.988 0.997 0.818 0.996
0.1 0.970 0.981 0.995 0.995 0.937 0.999 0.614 0.980

-0.5 0.01 0.877 0.881 0.946 0.954 0.978 0.986 0.984 0.989
0.05 0.913 0.920 0.974 0.983 0.990 0.996 0.955 0.998
0.1 0.938 0.941 0.985 0.991 0.993 0.997 0.851 0.999

-0.1 0.01 0.838 0.865 0.922 0.931 0.966 0.976 0.980 0.992
0.05 0.860 0.869 0.942 0.945 0.970 0.985 0.987 0.988
0.1 0.868 0.878 0.950 0.953 0.974 0.989 0.988 0.989

Table 7: Power experiment for the Wald test for the first approach

parameters d = 0.6 d = 0.7 d = 0.8 d = 0.9
α1 γ T = 100 T = 250 T = 100 T = 250 T = 100 T = 250 T = 100 T = 250
-1.5 0.01 0.141 0.467 0.080 0.256 0.159 0.627 0.525 0.994

0.05 0.489 0.915 0.696 0.996 0.916 0.997 0.995 1.000
0.1 0.848 0.999 0.960 0.999 0.995 0.998 0.995 1.000

-1 0.01 0.145 0.544 0.043 0.119 0.078 0.308 0.441 0.928
0.05 0.236 0.628 0.353 0.867 0.659 0.997 0.947 0.995
0.1 0.466 0.920 0.718 0.998 0.945 0.998 0.990 0.995

-0.5 0.01 0.270 0.790 0.036 0.051 0.025 0.070 0.118 0.490
0.05 0.096 0.305 0.078 0.242 0.188 0.739 0.539 0.996
0.1 0.098 0.295 0.151 0.531 0.395 0.979 0.817 0.995

-0.1 0.01 0.556 0.972 0.132 0.192 0.006 0.232 0.039 0.043
0.05 0.364 0.887 0.029 0.043 0.012 0.014 0.058 0.169
0.1 0.255 0.768 0.012 0.025 0.013 0.016 0.071 0.243

The power of the test using the first approach can be seen in table 6 and 7 for a length of T = 100

and T = 250. For stationary long memory, we see that the test has satisfying power properties.

The power tends to decrease by a decreasing sample size.

For non-stationary long memory a tendency can be observed. The power tend to increase with

increasing d. However, several parameter settings lead to a very low power, especially for α1 = −0.1

and high d. This is, however, intuitive, since α1 close to zero means that the process is getting
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more persistent (near unit root) and nonlinear processes are easily confused with highly persistent

processes.

Note that the first approach can be seen as a modified version of the test statistic proposed by

Kapetanios and Shin (2003). The standard Wald type test of KS is denoted as STAR2 in the paper

and will be compared with the directed-Wald statistic. This is done only for non-stationary long

memory.

Table 8: Power for the KS test

parameters d = 0.6 d = 0.7 d = 0.8 d = 0.9
α2 γ T = 100 T = 250 T = 100 T = 250 T = 100 T = 250 T = 100 T = 250
-1.5 0.01 0.002 0.008 0.013 0.019 0.086 0.552 0.440 0.794

0.05 0.253 0.739 0.579 0.944 0.910 0.932 0.903 0.926
0.1 0.780 0.999 0.953 0.987 0.966 0.989 0.967 0.989

-1 0.01 0.004 0.008 0.002 0.006 0.031 0.168 0.241 0.736
0.05 0.041 0.134 0.198 0.688 0.523 0.899 0.841 0.900
0.1 0.262 0.721 0.543 0.897 0.823 0.900 0.896 0.921

-0.5 0.01 0.041 0.109 0.001 0.005 0.008 0.011 0.072 0.476
0.05 0.002 0.007 0.015 0.043 0.115 0.597 0.427 0.897
0.1 0.010 0.063 0.063 0.343 0.344 0.867 0.707 0.900

-0.1 0.01 0.335 0.820 0.025 0.045 0.0006 0.004 0.035 0.143
0.05 0.117 0.423 0.002 0.006 0.001 0.005 0.009 0.023
0.1 0.069 0.244 0.0002 0.003 0.004 0.005 0.051 0.221

Note: the critical values of the test are provided in table 1 of Kapetanios and Shin (2003)

The power in table 8 has a similar tendency as in table 7. However, it is clear that the directed-Wald

test outperforms the KS test. The results in table 8 are consistent to the simulation results of KS,

which also show that the test has low power. Therefore, this suggests, that provided the new critical

values in table 1, the directed-Wald test has a higher power.

Now, let us consider the power of the test when using the second approach. The gamma defined

above (γ ∈ {0.01, 0.05, 0.1}) are the true values of gamma of the data generating process. To apply

our test, we need to define a certain range for gamma and the statistic will be the supremum over

the defined range. We use a grid of γ ∈ (0.01, 2.5) with a step size of 0.01.

Before we proceed, we show a sample plot of the statistic for the respective gammas. The idea of
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this plot is to see whether the defined interval for γ is correctly specified.
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Figure 1: Plot of the test statistic depending on gamma

The plot is the result of the test applied to an ESTAR process with α1 = −1.5, α2 = 1 and γ = 0.1

for several d values. In the figure, there are 500 grid points at the x-axis, which represents the grid

point of γ, meaning that the 1st point corresponds to γ = 0.01 and the 500th point corresponds to

γ = 5. Moreover, we standardize the value of the statistic in order to have a figure which covers

all d. We see from the figure that the supremum is achieved in the interval 0 to 100, and it is very

close to the true value of γ.

Table 9 and 10 give the results of the power experiment for the second approach.
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Table 9: Power experiment for the Wald test for the second approach

parameters d = 0.1 d = 0.2 d = 0.3 d = 0.4
α1 γ T = 100 T = 250 T = 100 T = 250 T = 100 T = 250 T = 100 T = 250
-1.5 0.01 1.000 1.000 1.000 1.000 0.998 1.000 0.964 1.000

0.05 1.000 1.000 1.000 1.000 0.946 0.952 0.863 0.999
0.1 0.999 1.000 0.979 1.000 0.852 0.876 0.818 0.993

-1 0.01 1.000 1.000 1.000 1.000 1.000 1.000 0.978 1.000
0.05 1.000 1.000 1.000 1.000 0.997 1.000 0.838 1.000
0.1 1.000 1.000 0.996 1.000 0.925 1.000 0.754 0.991

-0.5 0.01 1.000 1.000 1.000 1.000 0.998 1.000 0.988 1.000
0.05 1.000 1.000 1.000 1.000 0.996 1.000 0.961 1.000
0.1 1.000 1.000 0.999 1.000 0.993 1.000 0.894 0.999

-0.1 0.01 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.05 1.000 1.000 1.000 1.000 1.000 1.000 0.996 1.000
0.1 1.000 1.000 1.000 0.999 1.000 1.000 0.998 1.000

Table 10: Power experiment for the Wald test for the second approach

parameters d = 0.6 d = 0.7 d = 0.8 d = 0.9
α1 γ T = 100 T = 250 T = 100 T = 250 T = 100 T = 250 T = 100 T = 250
-1.5 0.01 0.208 0.494 0.088 0.325 0.196 0.680 0.465 0.998

0.05 0.528 0.993 0.782 0.999 0.916 1.000 0.997 1.000
0.1 0.909 1.000 0.963 1.000 0.998 1.000 1.000 1.000

-1 0.01 0.216 0.634 0.050 0.206 0.063 0.382 0.330 0.955
0.05 0.289 0.661 0.479 0.894 0.692 0.999 0.946 1.000
0.1 0.517 0.993 0.817 1.000 0.987 1.000 0.991 1.000

-0.5 0.01 0.365 0.852 0.045 0.049 0.035 0.065 0.097 0.470
0.05 0.166 0.401 0.085 0.338 0.180 0.821 0.553 0.998
0.1 0.189 0.391 0.266 0.657 0.477 0.980 0.857 1.000

-0.1 0.01 0.634 1.000 0.246 0.298 0.033 0.040 0.041 0.052
0.05 0.481 0.964 0.050 0.068 0.014 0.016 0.067 0.235
0.1 0.300 0.856 0.029 0.034 0.016 0.019 0.085 0.322

Table 9 shows, that the test has considerable power for stationary long memory process and is

more powerful compared to the results for the first approach. The power reaches almost 1 for all

parameter settings. In line with the results of the first approach, the power tends to decrease by

decreasing the sample size. However, we can see that for all cases, the power of the second approach

is much higher than the first one and of course, higher than using the standard Wald type test.

This result is due to the fact that the first approach uses a linearization of the nonlinear transition
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function. The price for such linearizations is a power loss. In general, the results of the power

experiments tend to suggest that the power depends on the setting of parameters. In other words,

it depends on the degree of the persistency of the process.

5 Empirical Application

In this section we apply the directed-Wald test to real exchange rate data. Many studies found

evidence of mean reversion in real exchange rates which can be either due to long memory (see

Diebold et al. (1991), Cheung (1993)) or a nonlinear ESTAR behavior (see Taylor et al. (2001)

and references therein). We examine real exchange rates of several countries against the Japanese

YEN. The choice of this case is motivated by a previous study of Cheung and Lai (2001). They

investigated the Japanese YEN based real exchange rates of several developed countries and found

a confusion between long memory and nonlinear processes. Another study about JPY bilateral real

exchange rates is Chortareas and Kapetanios (2004).

We consider the bilateral real exchange rates of 22 countries against the Japanese YEN. We use

quarterly data spanning from 1970Q1 to 1998Q4, which is the same period as considered in Baillie

and Kapetanios (2007). Our data is taken from Datastream. These countries are: Austria, Canada,

Belgium, Denmark, France, Italy, Malaysia, Korea, New Zealand, Netherland, Portugal, Spain,

Sweden, Switzerland, UK, Indonesia, Thailand, the Philippines, Sri Lanka, Germany, Australia and

the US.

Initially we have to show that long memory as well as nonlinear ESTAR can be detected in the

considered rates. To do this, we apply two tests which are frequently used in empirical studies. We

use the HML test proposed by Harris et al. (2008) for testing long memory. Moreover, we apply

the nonlinear unit root test proposed by Kapetanios et al. (2003) to identify the nonlinearity, which

is basically an ESTAR process. Furthermore, we need to estimate the memory parameter prior to

applying the directed-Wald test. To do this, we estimate the memory parameter by means of the
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GPH estimator. Our initial study shows that there are only 14 cases for which our test is needed4.

These 14 cases are given in table 11, which contains also the results of our test.

Table 11: Empirical application: real exchange rates

Directed-Wald test Neglected nonlin. test
RER d̂ 1st approach 2nd approach ANN TLG

Australia 0.851 3.8824 8.3904** 11.4680* 11.6677*
Austria 0.850 2.8133 4.3439 2.3579 2.3553
Denmark 0.903 5.6021 5.6064 0.4437 0.4392
France 0.862 3.2222 4.7931 2.1239 2.1157

Germany 0.942 5.9584 7.1791 1.5767 1.6088
New Zealand 0.892 3.1336 5.9906 2.9766 2.9590
Netherland 0.900 2.9566 3.2666 3.1358 3.0728

US 0.931 5.5059 7.6043 0.5734 1.0531
Korea 0.524 24.1029* 33.8087* 10.6546* 10.5552*

Malaysia 0.856 7.4334** 13.4931* 8.6063* 8.6649*
Indonesia 0.628 28.0787* 39.5530* 11.2909* 11.0694*
Thailand 0.760 10.1556* 9.9240* 11.6930* 11.8100*
Philipina 0.821 1.7232 1.6681 5.4058 5.4071
Srilanka 0.940 11.8133* 11.9054* 4.9319 5.2819

No of rejection 5 6 5 5
Note: The (*) and (**) represent significance under the 5% and 10% level respectively.
The critical values for the corresponding d can be obtained by interpolation
from table 1 and 2 .

From this table we see that both directed-Wald tests give consistent results, with an exception for

Australia where the second approximation can reject the null with 10% level of significance. Under

5% level of significance, the tests reject the null in 4 cases and 5 cases for first and second approach

respectively . It suggests that the real exchange rates of the corresponding countries can better

be explained as ESTAR than as long-memory processes. We also note the interesting finding that

long memory appears more likely in the real exchange rates of developed countries. Meanwhile,

ESTAR is mostly found in developing countries, such as Malaysia, Korea, Thailand, Sri Lanka and

Indonesia with the exception Australia. This finding is consistent with previous studies about real

exchange rate behavior. Those found that nonlinear adjustments towards PPP hold more likely in
4This means that only 14 real exchange rates show a long memory behavior regarding the HML test and a nonlinear

ESTAR behavior regarding the KSS test. The others have either long memory or they are ESTAR or none of them.
We omit the results of the tests for reasons of space. They are available from the authors upon request
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developing countries, due transportation costs and trade barriers. More details about the sources

of nonlinearities in real exchange rates of developing countries can be found in Bahmani-Oskooee

et al. (2008), Sarno and Taylor (2001a), Sarno and Taylor (2001b) and Taylor (2003). Another

empirical evidence about the existence of nonlinear ESTAR in developing countries can be found

in Ceratto and Sarantis (2006). Therefore, our results provide an alternative solution to the puzzle

of Cheung and Lai (2001).

In addition to the results from our test, we also apply the test of Baillie and Kapetanios (2007),

denoted BK hereafter, to the real exchange rates to show the consistency of our results. The

test is intended to detect any neglected nonlinearity in long memory time series by suggesting a

simultaneous model such as FI-STAR, FI-GARCH or TARFIMA. Although our test is not directly

comparable to the BK test, it is interesting to have the results for comparison. For this test, the

nonlinear ANN test of Lee et al. (1993) or TLG test of Teräsvirta et al. (1993) is applied to the

short memory component ŷt after filtering the long memory ut by using the estimated d̂, such that

ût = (1− L)d̂yt.

Following BK, the third order Taylor expansion is used for the TLG and ANN model and the delay

parameter is set to be one. The long memory parameter is estimated by maximum likelihood. The

results of the test can be seen in the two last columns of table 11. We see that both the ANN and

TGL approach give a consistent result to our findings.

From the table, we see also that the results of the directed-Wald test and the BK test are almost

the same. Both are able to detect nonlinearities in the developing countries. However, given the

fact that nonlinear adjustments toward PPP are the case for most developing countries, the BK test

fails to detect the nonlinearity for Sri Lanka at the 5% significance level. Moreover, the neglected

nonlinearities detected by the BK test do not imply an ESTAR specification since the basic model

used is a neural network model. As we pointed out above, this test suggests to model long memory

and nonlinear structures in a simultaneous model and do not consider the problem of distinguishing

24



between the two phenomena.

6 Conclusions

In this paper we derive Wald-type tests to distinguish between long memory and ESTAR-type

nonlinearities. We test the null hypothesis of a either stationary or non-stationary long-memory

process against the alternative of an ESTAR process. Tests in the ESTAR framework have so far

been based on two ideas. The first is linearizing the transition function of the ESTAR process by

means of a Taylor expansion and the second is to overcome the problem of unidentified parameters

by using a supremum statistics. Therefore, we derive the limit distribution for our Wald-type test

under both situations showing that the supremum statistics has better power properties than the

test based on the Taylor expansion. This is in line with previous findings in the literature. As our

testing problem has a restricted parameter under the alternative we cannot use a standard Wald test

but have to apply a directed-Wald test to overcome this problem. We derive the limit distribution

of this test and show that it has fine size and satisfying power properties.

We apply our test to real exchange rates of several countries and find that mainly developing

countries show an ESTAR behavior. This finding is also in line with the results of Baillie and

Kapetanios (2007).
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Appendix

In this part, we first describe the general outline of the proof of the theorems for both approaches.

Define the model:

ut = α1F (yt−1) + α2yt−1 + α3zt + εt (34)
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with F (yt−1) = y3
t−1 for the first approach and F (yt−1) = F (yt−1, γ) = yt−1{1 − exp(−γy2

t−1)} for

the second. In matrix form, the model can be written as

U = X′α+ ε (35)

with U =


u1
...

ut

 , X =


F (y0) y0 z1

...

F (yt−1) yt−1 zt

 , α = (α1, α2, α3)′ and ε =


ε1
...

εt

 .

We show pointwise convergence in distribution of the test statistic by first examining the asymptotic

distribution of the OLS estimator.

Let us revisit the standard result of Kurtz and Protter (1991) about the continuous mapping theo-

rem, that for processes Xt
T ≡ XT and YtT ≡ YT the following holds:

1. XTYT are Ft− adapted to some σ field Ft

2. (XT , YT )⇒ (X,Y )

3. If YT is a semi martingale then
∫
XTdYT ⇒

∫
XdY .

Also, from the fractional functional central limit theorem and standard functional central limit

theorem, since yt is a long memory process, we have that

σ−1
T y[Tr] ⇒ Yd(r), (36)

where Yd(r) is a fractional Brownian motion, [rT ] is the largest integer less than or equal to rT and

σ2
T = E(

T∑
t=1

yt)2. For iid εt we define that

YT (r) = T−1/2σ−1
[Tr]∑
t=1

εt, for 0 ≤ r ≤ 1, (37)

where YT (r) in (37) converges to a Brownian motion Y (r), σ2 = Eε2t .
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From (35), the OLS estimate of α is

α̂ = (X′X)−1(X′U). (38)

Under the null and with F (yt−1) = xt,

α̂− α = (X′X)−1(X′ε) (39)


α̂1

α̂2

α̂3

 =



T∑
t=1

xtxt

T∑
t=1

xtyt−1

T∑
t=1

xtzt

T∑
t=1

xtyt−1

T∑
t=1

y2
t−1

T∑
t=1

ztyt−1

T∑
t=1

xtzt

T∑
t=1

yt−1zt

T∑
t=1

z2
t



−1 

T∑
t=1

xtεt

T∑
t=1

yt−1εt

T∑
t=1

ztεt


. (40)

We begin with examining the asymptotic behavior of the terms in (40) which contain zt. The other

terms will be considered later. In this case, the proof is similar to KS. Let us summarize it in brief.

zt is defined by

zt =
t∑

j=1
bjyt−j (41)

Define the function b(r) = b[Tr] for r ∈ (0, 1), and its cumulative sum as β(r) =
∫ r

0
b(s)ds. The β

can be expressed also as βt =
∑t
i=0 βi, then

σ−1
T z[Tr] =

T∑
i=1

σ−1
T yt−i(βt−i − βt−i−1) (42)

Zd(r) =
∫ r

0
Yd(s)dβ(s− r). (43)
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Therefore, for stationary long memory with 0 < d < 0.5, we have

T−(1+2d)
T∑
t=1

z2
t ⇒ σ2

∫ 1

0
Zd(r)2dr (44)

T−(1+2d)
T∑
t=1

yt−1zt ⇒ σ2
∫ 1

0
Yd(r)dZd(r) (45)

T−(1/2+d)
T∑
t=1

ztεt ⇒ σ2
∫ 1

0
Zd(r)dY (r) (46)

and for non-stationary long memory, the rates of convergence are

T−2(1−d)
T∑
t=1

z2
t ⇒ σ2

∫ 1

0
Zd(r)2dr (47)

T−2(1−d)
T∑
t=1

yt−1zt ⇒ σ2
∫ 1

0
Yd(r)dZd(r) (48)

T−(1−d)
T∑
t=1

ztεt ⇒ σ2
∫ 1

0
Zd(r)dY (r). (49)

Proof of Theorem 1

In this section, we derive the asymptotic distributions of the other terms in (40). We consider first

the case of stationary long memory. By using the continuous mapping theorem, we have

T−3(1/2+d)
T∑
t=1

y3
t−1εt ⇒ σ4

∫ 1

0
Yd(r)3dY (r) (50)

T−6(1/2+d)
T∑
t=1

y6
t−1 ⇒ σ6

∫ 1

0
Yd(r)6dr (51)

T−4(1/2+d)
T∑
t=1

y3
t−1zt ⇒ σ4

∫ 1

0
Yd(r)3dZd(r). (52)
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By combining these results, the asymptotic distribution can be written as



T−6(1/2+d)
T∑
t=1

xtxt T−4(1/2+d)
T∑
t=1

xtyt−1 T−4(1/2+d)
T∑
t=1

xtzt

T−4(1/2+d)
T∑
t=1

xtzt T−2(1/2+d)
T∑
t=1

y2
t−1 T−2(1/2+d)

T∑
t=1

yt−1zt

T−4(1/2+d)
T∑
t=1

xtzt
−2(1/2+d)

T∑
t=1

yt−1zt T−(1+2d)
T∑
t=1

ztzt


⇒ A1Q1A1 (53)



T−3(1/2+d)
T∑
t=1

xtεt

T (−(1/2+d))
T∑
t=1

yt−1εt

T (−(1/2+d))
T∑
t=1

ztεt


⇒ A2Q2 (54)

with Q1 and Q2 are defined as

Q1 =



∫ 1

0
Yd(r)6dr

∫ 1

0
Yd(r)4dr

∫ 1

0
Yd(r)3dZd(r)∫ 1

0
Yd(r)4dr

∫ 1

0
Yd(r)2dr

∫ 1

0
Yd(r)dZd(r)∫ 1

0
Yd(r)3dZd(r)

∫ 1

0
Yd(r)dZd(r)

∫ 1

0
Zd(r)2dr

 (55)

Q2 =



∫ 1

0
Yd(r)3dY (r)∫ 1

0
Yd(r)dY (r)∫ 1

0
Zd(r)dY (r)

 , (56)
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A1 and A2 are the corresponding variance-covariance matrices defined as

A1 =


σ3 0 0

0 σ 0

0 0 σ

 (57)

and

A2 =


σ4 0 0

0 σ2 0

0 0 σ2

 . (58)

Then, from (51) and (52), for 0 < d < 0.5, the rate of convergence of the OLS parameter is


T 3(1/2+d) 0 0

0 T (1/2+d) 0

0 0 T (1/2+d)




α̂1

α̂2

α̂3

⇒ Q−1
1 Q2 if 0 ≤ d < 0.5 (59)

By similar arguments, it is straightforward to show that for 0.5 < d < 1


T 3(1−d) 0 0

0 T (1−d) 0

0 0 T (1−d)




α̂1

α̂2

α̂3

⇒ Q−1
1 Q2 if 0.5 < d < 1 (60)

Proof of Theorem 2

The Wald test for the null hypothesis α1 = α2 = α3 = 0 is

W = 1
σ̂2 (ε′X)(X′X)−1(X′ε), (61)
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where σ̂2 is the variance of the OLS estimator of α and σ̂2 →p σ
2. The asymptotic distribution of

the Wald statistic (61) follows directly from the results of theorem 1

W ⇒W ≡
{
Q′2Q−1

1 Q2
}
. (62)

Let rewrite (34) as

U = x′β + z′α3 + εt (63)

where z = [z1, ..., zt], x = [(y3
0, y0), ..., (y3

t−1, yt−1)]′ and β = (α1, α2). The directed-Wald statistic

with c =∞ is

DW ⇒ {W + 2 log[Φ(A, α̂3, V ar(α̂3))]} . (64)

The information matrix of α = (α1, α2, α3)′ is defined as (see Andrews (1998))

I =

 I1 I2

I′2 I3

 =

 x′x x′z

z′x z′z

 /σ2. (65)

For Mx = IT − x(x′x)−1x′, the estimate of α̂3 in (40) can be written as

α̂3 = (z′Mxz)−1z′Mxε (66)

and the variance of α̂3 is

V ar(α̂2) = z′Mxz/σ2 (67)

= I3 − I2I−1
1 I′2. (68)
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From Q1 and Q2, the asymptotic distributions of α̂3 is

B ≡
(∫ 1

0
Zd(r)2dr

)−1 (∫ 1

0
Zd(r)dY (r)

)
(69)

Therefore, the limit distribution of the directed Wald test can be written as

DW ⇒ {W + 2 log Φ(A,B,V)} . (70)

where V is the asymptotic variance of var(α̂3). To prove the consistency of the test under the

alternative, it is sufficient to examine only the first term of the directed Wald statistic, which is

the standard Wald statistic, since the factor Φ is a weight which convergence to a constant. Let us

write

W = 1
σ̂2 (U′X)(X′X)−1(X′U). (71)

Note that α̂1 is dominant in (23), and T−3(X ′X) = Op(1). For yt is a short-memory process under

alternative, then (U ′X) diverges to infinity at rate Op(T 3/2). Thereby, it is sufficient to show that

the test statistic diverges to infinity with a rate of Op(T 1/2) and the test is consistent.

Proof of Theorem 3

The second approach was originally applied by Kilic (2003) for testing of a unit root against ESTAR.

The limit distribution of the exponential term is mainly derived from theorem 4.17 of White (1984).

In line with the asymptotics of the first approach, we consider the asymptotics for the case of a

stationary long memory. In this part, we continue to derive the asymptotic distribution of the

remaining terms in (40).
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1. First term:
T∑
t=1

xtεt =
T∑
t=1

εtyt−1{1− exp(−γy2
t−1)}

This term can be written as

T−(1/2+d)
T∑
t=1

εtyt−1{1− exp(−γy2
t−1)}

= T−(1/2+d)
{

T∑
t=1

εtyt−1 −
T∑
t=1

εtyt−1{exp(−γy2
t−1)}

}
.

By application of the continuous mapping theorem and weak convergence of stochastic inte-

grals (see also Chan and Wei (1988), Caceres and Nielsen (2007)), the asymptotics of each

element is

T−(1/2+d)
T∑
t=1

εtyt−1 ⇒ σ2
∫ 1

0
Yd(r)dY (r) (72)

T−(1/2+d)
T∑
t=1

εtyt−1{exp(−γy2
t−1)} ⇒ σ2µγ

∫ 1

0
Yd(r)dY (r). (73)

Then we have

T−(1/2+d)
T∑
t=1

εtyt−1{1− exp(−γy2
t−1)} ⇒ σ2(1− µγ)

∫ 1

0
Yd(r)dY (r) (74)

with µγ = E{exp(−γy2
t−1)}.

2. Second term:
T∑
t=1

xtxt =
T∑
t=1

y2
t−1{1− exp(−γy2

t−1)}2

By employing a similar procedure as for the first term, let us write

T−2(1/2+d)
T∑
t=1

y2
t−1{1− exp(−γy2

t−1)}2

= T−2(1/2+d)
{

T∑
t=1

y2
t−1 − 2

T∑
t=1

y2
t−1{exp(−γy2

t−1)}
}

+ T−2(1/2+d)
{

T∑
t=1

y2
t−1{exp(−2γy2

t−1)}
}
,
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where

T−2(1/2+d)
T∑
t=1

y2
t−1 ⇒ σ2

∫ 1

0
Yd(r)2dr (75)

T−2(1/2+d)
T∑
t=1

y2
t−1{exp(−γy2

t−1)} ⇒ σ2µγ

∫ 1

0
Yd(r)2dr (76)

T−2(1/2+d){
T∑
t=1

y2
t−1{exp(−2γy2

t−1)} ⇒ σ2ψγ

∫ 1

0
Yd(r)2dr (77)

T−2(1/2+d)
T∑
t=1

y2
t−1{1− exp(−γy2

t−1)} ⇒ σ2(1− 2µγ + ψγ)
∫ 1

0
Yd(r)2dr (78)

with ψγ = E{exp(−2γy2
t−1)}.

3. Third term:
T∑
t=1

xtzt =
T∑
t=1

ztyt−1{1− exp(−γy2
t−1)}

Again, this term can be written as

T−2(1/2+d)
T∑
t=1

ztyt−1{1− exp(−γy2
t−1)}

= T−2(1/2+d)
{

T∑
t=1

ztyt−1 −
T∑
t=1

ztyt−1{exp(−γy2
t−1)}

}
.

Then, the asymptotics of each element is

T−2(1/2+d)
T∑
t=1

ztyt−1 ⇒ σ2
∫ 1

0
Yd(r)dZd(r) (79)

T−2(1/2+d)
T∑
t=1

ztyt−1{exp(−γy2
t−1)} ⇒ σ2µγ

∫ 1

0
Yd(r)dZd(r) (80)

and therefore,

T−2(1/2+d)
T∑
t=1

ztyt−1{1− exp(−γy2
t−1)} ⇒ σ2(1− µγ)

∫ 1

0
Yd(r)dZd(r). (81)
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similarly, we can show that

T−2(1/2+d)
T∑
t=1

yt−1yt−1{1− exp(−γy2
t−1)} ⇒ σ2(1− µγ)

∫ 1

0
Yd(r)2d(r). (82)

Combining these results, we obtain the following limit distribution



T−2(1/2+d)
T∑
t=1

xtxt T−2(1/2+d)
T∑
t=1

xtyt−1 T−2(1/2+d)
T∑
t=1

xtzt

T−2(1/2+d)
T∑
t=1

xtzt T−2(1/2+d)
T∑
t=1

y2
t−1 T−2(1/2+d)

T∑
t=1

yt−1zt

T−2(1/2+d)
T∑
t=1

xtzt
−2(1/2+d)

T∑
t=1

yt−1zt T−2(1/2+d)
T∑
t=1

ztzt


⇒ A1Q1(γ)A1 (83)



T−(1/2+d)
T∑
t=1

xtεt

T (−(1/2+d))
T∑
t=1

yt−1εt

T (−(1/2+d))
T∑
t=1

ztεt


⇒ A2Q2(γ) (84)

with Q1(γ) and Q2(γ) are defined as

Q1(γ) =


(1− 2µγ + ψγ)

∫ 1

0
Yd(r)2dr (1− µγ)

∫ 1

0
Yd(r)2d(r) (1− µγ)

∫ 1

0
Yd(r)dZd(r)

(1− µγ)
∫ 1

0
Yd(r)2dr

∫ 1

0
Yd(r)2dr

∫ 1

0
Yd(r)dZd(r)

(1− µγ)
∫ 1

0
Yd(r)dZd(r)

∫ 1

0
Yd(r)dZd(r)

∫ 1

0
Zd(r)2dr

 (85)

Q2(γ) =


(1− µγ)

∫ 1

0
Yd(r)dY (r)∫ 1

0
Yd(r)dY (r)∫ 1

0
Zd(r)dY (r)

 , (86)
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with A1 is a matric variance covariance with diagonal of σ, and A2 has diagonal element of σ2.

Furthermore, for 0 < d < 0.5, the rate of convergence of the OLS parameter is


T (1/2+d) 0 0

0 T (1/2+d) 0

0 0 T (1/2+d)




α̂1

α̂2

α̂3

⇒ Q1(γ)−1Q2(γ) if 0 ≤ d < 0.5 (87)

and for 0.5 < d < 1


T (1−d) 0 0

0 T (1−d) 0

0 0 T (1−d)




α̂1

α̂2

α̂3

⇒ Q1(γ)−1Q2(γ) if 0.5 < d < 1 (88)

Proof of Theorem 4

The proof of theorem 4 is similar to the proof of theorem 2. The only difference is that the Wald

statistic depends on the nuisance parameter γ. The Wald test for the null hypothesis α1 = α2 =

α3 = 0 is

Wγ = 1
σ̂2 (ε′X)(X′X)−1(X′ε), (89)

where σ̂2 is the variance of the OLS estimator of α and σ̂2 →p σ
2. The limit distribution of the

Wald test follows directly from the results of theorem 3:

Wγ ⇒Wγ ≡
{
Q2(γ)′Q1(γ)−1Q2(γ)

}
. (90)

Under c =∞, the directed-Wald statistic is

sup
γ∈Γ

DWγ ⇒ sup
γ∈Γ
{Wγ + 2 log[Φ(A, α̂2, V ar(α̂2))]} . (91)
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Now, let rewrite (34) as

U = x′β + z′α3 + εt (92)

where z = [z1, ..., zt], x = [(y0{1−exp(−γy2
0)}, y0), ..., (yt−1{1−exp(γy2

t−1)}, yt−1)]′ and β = (α1, α2).

The directed-Wald statistic with c =∞ is

DWγ ⇒ {Wγ + 2 log[Φ(A, α̂3, V ar(α̂3))]} . (93)

Similar to the procedures applied for theorem 2, it is straightforward to show that the limit distri-

bution of the sup-directed Wald is

sup
γ∈Γ

DWγ ⇒ sup
γ∈Γ
{Wγ + 2 log Φ(A,B,V)} . (94)

In line with the proof of theorem 2, we need to examine the Wald statistic

Wγ = 1
σ̂2 (U′X)(X′X)−1(X′U). (95)

α̂1, α̂2 and α̂3 have the same convergence rate. Under alternative hypothesis that yt is short memory,

(U ′X) diverges to infinity at rate Op(T ). Therefore, it is easy to show that the test statistic diverges

to infinity with rate Op(T 1/2), and it builds the consistency of the test.

Proof of Theorem 5

This section proves the stochastic equicontinuity of the supremum Wald test. This condition is

necessary to ensure the weak convergence GT (γ) ⇒ G(γ). We defined that γ ∈ Γ ∈ R+. We

examine only one fraction of the statistic which contains γ and the stochastic equicontinuity will
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be proved for the following term. Similar arguments can be applied for the others. Let us define

GT (γ) = 1√
T

T∑
t=1

εtF (yt−1, γ),

with F (yt−1, γ) = yt−1{1− exp(−γy2
t−1)}. The term GT (γ) above is similar to Un(v) of Soe (2004).

Therefore, we follow Soe (2004) in proving the stochastic equicontinuity. Let us define F (γ) =

F (yt−1, γ). By using assumption 1 and 2, we have

P ( sup
|γ−γ′|≤δ

|GT (γ)−GT (γ′)| > ε) ≤ 1
ε
E sup
|γ−γ′|≤δ

|GT (γ)−GT (γ′)|

= 1
ε
E sup
|γ−γ′|≤δ

| 1√
T

T∑
t=1

εt(F (γ)− F (γ′))|

= 1
ε
E sup
|γ−γ′|≤δ

| 1√
T

T∑
t=1

εtF
′(γ∗)(γ − γ′)|

≤ δ

ε
E sup
γ∈Γ

1√
T

T∑
t=1
|εt||F

′(γ)|

≤ δ

ε
sup
t
‖ sup
γ∈Γ
|F ′(γ)|‖2

1√
T

T∑
t=1
‖εt‖2,

where γ∗ ∈ [γ, γ′]. Now, we assume that εt is martingale difference sequence and thus, by using

Burkholder’s inequality it can be shown that 1√
T

∑T
t=1 ‖εt‖2 ≤ c1 supt ‖εt‖2, where c1 = 36

√
2. For

T →∞ and small δ, P (sup|γ−γ′|≤δ |GT (γ)−GT (γ′)| > ε)→ 0.
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