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1. Introduction

In recent years, several unified growth theories have been forwarded to try to motivate the historical

shift from economic stagnation to modern growth. Following the seminal work by Galor and Weil

(2000), the contributions include Boucekkine et al. (2002), Doepke (2004), Galor and Moav (2002),

Galor and Mountford (2008), Jones (2001), Kögel and Prskawetz (2001), Lucas (2002), Strulik

and Weisdorf (2008), Cervellati and Sunde (2005, 2007) and Tamura (2002). A part of this exercise

consists of providing a micro foundation to motivate the fundamental relationships between economic

and demographic variables, from pre-industrial times to the present day. One particular issue that

scholars have been struggling with for a long time (although not only in the context of unified

growth theory) is the impact of lower child mortality on fertility and net reproduction.1 Most

macroeconomic models are able to replicate the fact that a lower death risk of children leads to

fewer births. However, since falling child mortality reduces the cost (price) of obtaining surviving

offspring, the net rate of reproduction in these models ends up increasing in response to lower child

mortality. That feature, however, is in contrast to the experience of most industrialized countries

in the later part of their demographic transitions where the net rate of reproduction usually falls

(Doepke 2005).

This study provides a model where the relationship between child mortality and net reproduction

is positive during the early stages of development, but then turns negative during the later, more

advanced, stages. This notion, which builds on the fact that fertility, and thus net reproduction,

is affected not only by child mortality itself, but also by the cost of raising children, arises from

combining two existing contributions: Strulik (2008) and Weisdorf (2008). First, inspired by Strulik

(2008) we assume that parents care about surviving offspring as well as their nutritional status.

For a given level of nutritional input, a drop in the child mortality rate brings parents to reduce

their fertility, as more children now survive. At the same time, a higher survival probability causes

parents to nourish their children better (a quantity-quality substitution effect). That, in turn, further

improves the offsprings’ survival probability, which again lowers fertility, and so on and so forth.2

Second, inspired by Weisdorf (2008) we employ the fact that, in a closed economy, the cost of food

goods (and thus of children) relative to other consumption goods, such as manufactured goods, is

1Net reproduction measures the number of offspring (normally women) living through to the end of their fertile age.
2This is consistent with empirical evidence which suggests that nutrition played a key role in Britain’s mortality
transition (Harris 2004), and that malnutrition has severe effects on child mortality (see Rice et al., 2000, Pelletier et
al., 2003, and Caulfield et al., 2004).
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affected by the growth of productivity in agriculture relative to that of industry. The effect from

industry works though the labor market equilibrium condition. That is, when productivity in the

industrial sector grows, industrial workers receive a higher wage rate. In a closed economy with free

labor mobility, this means that agricultural terms of trade—i.e., the cost of food goods relative to

manufactured goods—will have to adjust to insure that workers remain in agriculture. Therefore, if

parents derive utility from children as well as manufactured goods, then a shift in the relative price

of the two types of commodities (i.e. in the agricultural terms of trade), caused by a change in the

productivity of industry relative to that of agriculture, will affect the parental decision regarding

how many children to give birth to.

The key to understanding why the relationship between mortality and net reproduction changes

over time, therefore, comes in the fact that fertility is influenced both by changes in mortality and

by technological advancements in industry relative to agriculture. Below, we use these features to

construct a unified growth theory that correctly predicts the relationship between child mortality

and net reproduction over the course of a demographic transition. The theory accounts for the

intricate interplay between technology, mortality, fertility and income per capita in the process from

stagnation to growth. The theory is also in line with Engel’s law, replicating the stylized fact that, as

income rises, total food expenditures increase but the share of food expenditures to income falls. We

show that the model is robust to different specifications regarding the type of preferences assigned

to parents; to various assumptions concerning the sign of partial derivatives; and to the introduction

of a cost of rearing children. When calibrated, the model points to several non-linearities in the

relationship between variables, such as fertility and population growth, as well as population growth

and TFP growth. This may explain why scholars studying the empirical relationships between

economic and demographic variables in the long term have a hard time identifying their correlation.

The paper continues as follows. Section 2 provides a brief introduction to the stylized facts

for Western Europe (particularly England) regarding the evolution of mortality, fertility and net

reproduction over the long run. It also offers a summary of the theoretical literature related to the

present work. Section 3 details the theoretical framework, and Section 4 explores its balanced growth

dynamics. Section 5 calibrates the model and analyzes adjustment dynamics. Section 6 discusses

extensions of the simple model towards a generalized utility function and the consideration of time

costs of children. Section 7 concludes.
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2. The empirical evidence and the related literature

In most Western European countries, the demographic transition occurred in the later half of

the 19th century.3 After a peak in the 19th or early 20th century, the birth rate in most countries

dropped by roughly one-third over the subsequent 50 years. In England, the total fertility rate

declined by close to 50 percent, from nearly five children per women in 1820 to 2.4 children by

1920. The crude birth rate followed a similar pattern, declining by 44 percent, from 36 per thousand

inhabitants in 1820 to 20 in 1920 (see Figure 1).

With the exception of France and the US, a substantial mortality decline preceded the fall in

fertility. In England, the mortality rate began to fall roughly one and a half century prior to the

decline in fertility. During the early phases of England’s so-called mortality revolution, the fall in

mortality was primarily driven by lower child mortality. Since the fall in the child mortality rate

occurred prior to the fall in fertility, falling mortality initially caused an increase in the net rate

of reproduction. After the onset of the fertility decline, however, the nature of the relationship

between mortality and net reproduction gradually changed. Falling child mortality was eventually

outpaced by the decline in fertility, after which falling mortality was accompanied by falling rates of

net reproduction.

Figure 1: Crude Birth Rates, Crude Death rates,
and Net Reproduction Rates for England, 1721-1931

Sources: Wrigley and Schofield (1984), Wrigley (1969) and Reher
(2004).

A unified growth theory that wants to explain the long-run evolution of mortality, fertility and

net reproduction, therefore, has to account not only for the increase of net reproduction and the

spike in birth rates observed prior to the fertility decline. It also needs to be able to motivate the

subsequent decline in rates of fertility and net reproduction after the fertility transition sets in.

Economic studies on the relationship between child mortality and fertility go back at least to

Becker and Barro (1988, 1989). In the Barro-Becker model, parents derive utility from surviving

offspring. Their fertility decision is affected by the costs of producing surviving offspring. Lower

child mortality reduces the costs of surviving offspring, so when the child mortality rate falls it

induces parents to give birth to more children. In combination, the falling rate of child mortality

and the rising rate of fertility lead to a higher rate of net reproduction. But since the net rate of

reproduction was falling in the later stages of the demographic transition, the Barro-Becker type

models are forced to come up with other explanations for the fertility decline in addition to falling

child mortality in order to motivate falling net reproduction (Doepke, 2005).

3 For a more detailed description of the Western Europe’s economic and demographic patterns, see Galor (2005).
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Among the recent studies, in which mortality plays a role in the process of development, a falling

net rate of reproduction is motivated by a shift from child quality to child quantity, generated

through parental investments in their children’s education (Azarnert 2006; Ehrlich and Kim 2005;

Kalemli-Ozcan, Ryder, and Weil 2000; Kalemli-Ozcan 2008, Soares 2005). Later refinements invoke

a shift from exogenous to endogenous mortality in order to capture the long-run trends in economic

and demographic variables. (Doepke 2005; Jones 2001; Hazan and Zoabi, 2006; Kalemli-Ozcan 2002,

2008; Lagerlöf 2003; Weisdorf, 2004). Jones (2001), Lagerlöf (2003) and Weisdorf (2004) compare

directly to our work in that they analyze the effect of child mortality on fertility in the context of

unified growth theory. Remarkably, they all share the feature that falling death rates have no impact

on the parental decision regarding the number of births. In Jones (2001), the preferences of parents

imply that the elasticity of substitution between consumption goods and children is always greater

than one, an assumption that ultimately generates a drop in fertility as income grows. In Lagerlöf

(2003) and Weisdorf (2004), the decline in fertility is a result of human capital accumulation, i.e. a

parental trade-off effect from child quantity and quality.

Here, we set out to explore the direct influence of child mortality on the parental fertility decision.

We do so by extending the unified growth theory proposed by Strulik and Weisdorf (2008). While

our previous work neglects the role of death in development, the mortality rate in the current set-up

is made endogenous—that is, the child mortalty rate is influenced partly by the level of nutrition

that parents decide to provide for their offspring, and partly by general health factors (such as the

availability of medicine, the provision of sewage etc), all of which are assumed to be exogenous to

parents. When the general health factors improve, captured in the model by technological progress

taking place in the manufacturing sector, parents find it advantageous to allocate more resources to

nurish their children. This induced child quantity-quality trade-off provides a link from economic to

demographic factors. This makes our work comparable to a study by Cervellati and Sunde (2007),

who also investigate the linkage between mortality and fertility over the very long run. They focus

on the interaction between education and adult longevity as a driving force behind economic growth,

emphasizing the skill premium as a key factor in the transition from stagnation to growth. Their

work is particularly comparable to ours in the sense that they, too, highlight the role of relative

prices in development.
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3. The Model

3.1. Fertility, mortality, and net reproduction. We consider a two-period overlapping gener-

ations economy with children and adults. Let Lt denote the number of adults in period t, and nt

the number of births per adult.4 The birth rate (referred to also as the fertility rate) is determined

endogenously below. The variable πt ∈ [0, 1] measures the survival probability of offspring. By the

application of the law of large numbers, the variable πt also measures the fraction of children who

are born in period t and are still alive in period t+ 1. The net rate of reproduction, i.e. the number

of offspring reaching the fertile age, is thus πtnt. The changes in the size of the labor force (identical

to the size of the adult population) between any two periods can thus be expressed as

Lt+1 = πtntLt. (1)

We consider two types of child survival probabilities: an extrinsic and an intrinsic survival rate.

The extrinsic rate, denoted π̄t ∈ [0, 1], is exogenous to parents. Potentially, it could be affected by

the geographic location of the family (its disease environment), the medical knowledge available,

and the degree of urbanization. By contrast, the intrinsic survival rate can be influenced by parents

through the amount of nutrition that they decide to invest in their offspring. Let ht denote food

expenditure per child. If we ignore the modern-day problem of obesity, which seems relevant in

the present long-term context, then it seems reasonable to assume that food expenditures have a

positive effect on the survival rate of offspring, but with diminishing returns.

Whether better nutrition is more effective when extrinsic survival is high or low, however, is an

unsettled issue in the literature. Standard evolutionary arguments based, for example, on antagonist

pleiotropy or disposable soma theory suggest that somatic investment (nutrition) is less effective in

increasing survival when extrinsic survival rates are low (see e.g. Williams, 1957, Stearns 1992).

That would suggest a positive cross derivative, i.e. ∂2πt/(∂h∂π̄t) > 0. On the other hand, recent

empirical evidence in biology (Williams and Day 2003) indicates that somatic investment does indeed

become more effective as the extrinsic survival rates decrease, which would suggest a negative cross

derivative, i.e. ∂2πt/(∂h∂π̄t) < 0. The latter assumption has been introduced into the nutrition-

based, long-run growth theory by Strulik (2008), and into evolutionary growth theory by Galor and

Moav (2005). In light of these conflicting views, we leave the sign of the cross derivative generally

undetermined and discuss its impact on comparative dynamics later on. A functional form, which

4 To keep the model tractable, we assume that nt is continuous, and that reproduction is asexual.
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is simple enough to derive straightforward explicit solutions, is given by (2).

πt = g(ht, π̄t) =
λhtπ̄t

ht + π̄t + ν
. (2)

The symbols λ and ν are parameters measuring the influence of nutrition on survival probability,

as well as the curvature of the survival function. We assume that λ > 0 and that ν > −π̄t for all t.

The important derivatives are:

gh ≡
∂πt
∂ht

=
λπ̄t(ν + π̄t)

(ht + π̄t + ν)2
> 0, ghh ≡

∂2πt
∂π̄2

t

= − 2λπ̄t(ν + π̄t)

(ht + π̄t + ν)3
< 0,

ghπ̄ ≡
∂2πt
∂ht∂π̄t

=
λ [2π̄tht + ν(ht + π̄t + ν)]

(ht + π̄t + ν)3
.

It follows that nutritional input has a positive effect on the survival probability of children, but

with diminishing returns. Since π̄t enters g(ht, π̄t) in a symmetric way, we also conclude positive

and diminishing returns of improving extrinsic survival. The sign of the cross-derivative, however, is

undetermined. In particular, we have ghπ̄ < 0 for −π̄ < ν < −2π̄β/γ and ghπ̄ > 0 for ν > −2π̄β/γ.

In the calibration section this will allow us to investigate the impact of different cross-derivatives

on the adjustment dynamics predicted by the model concerning the demographic transition and the

process of industrialization.

3.2. Preferences and optimization. Adult individuals maximize utility, which is derived from

three sources: surviving offspring, πtnt, the nutritional status of their offspring, ht, and number of

manufactured goods consumed, mt. We assume that preferences are described by a utility function,

in which the elasticity of marginal utility is higher for ht and nt than formt. This serves to capture the

fact that parents, in times of crisis, will try to smoothen out their fertility, as well as the nutritional

status of their offsprings, more than their consumption of other less vital (i.e. manufactured) goods

(Livi-Bacci, 2006). The simplest utility function that captures such a ‘hierarchy of needs’ is of

quasi-linear form as given by (3).

ut = mt + β log(ht) + γ log(πtnt), γ > β > 0. (3)

A quasi-linear function allows us to obtain an explicit and analytically simple solution to the opti-

mization problem of parents. In Section 6, we will generalize the utility function with the purpose

of investigating numerically the robustness of the model in this regard. Furthermore, similar to An-

dreoni (1989) and Becker (1960) the parameter β measures the extent to which parents care about
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the nutritional status of their offspring. We will make the assumption that γ > β, which implies

that parents without any children do not allocate income to child nutrition. In order to make the

model tractable, we assume that nutritional goods are demanded only during childhood, and some

of it is then stored for adulthood.5 The price of manufactured goods is set to one, so that pt denotes

the price of one unit of nutrition (food), measured in terms of manufactured goods. We will let

children who suffer child mortality perish at the end of the childhood period. This means that every

child born consumes ht units of nutrition, and that the total costs of raising nt children, measured

in terms of manufactured goods, is pthtnt. The budget constraint of an individual adult thus reads

wt = pthtnt +mt, (4)

where wt is parental income (also measured in terms of manufactured goods). In Section 6, we

expand the model to also include a cost of child rearing and then investigate numerically how such

a construction affects the results.

Inserting (2) and (4) into (3) leads to the following optimization problem:

max
nt,ht

ut = wt − ptntht − β log ht + γ log nt + γ log g(πt, ht).

The first-order conditions for a maximum are:

∂ut
∂nt

= −ptht +
γ

nt
= 0 (5)

∂ut
∂ht

= −ptnt +
β

ht
+ γ

gh
g

= 0. (6)

In Appendix A, we show, using the second-order conditions, that the solution of (5) and (6) is in

fact a maximum. Multiplying (6) by ht and subtracting it from (5) multiplied by nt gives us (7).

γ
gh
g
· ht = γ − β ⇒ ht =

(γ − β)

γ

g

gh
. (7)

It thus follows that, regardless of the specification of the survival function, the optimal amount of

food expenditure per child, ht, is independent of the relative price of food, pt. This result builds on

the fact that prices multiplied by quantities make up total food expenditure, pthtnt, and that the

quantities nt and ht enter expenditures symmetrically. The price of food, however, has a negative

effect on the number of children demanded. This can be seen from inserting (7) into (5), which

5 It will not affect the qualitative nature of the results if, instead, the individual’s nutritional demand were to be
divided over two periods.
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gives us that nt = γ/(ptht). That captures the well-known child quantity-quality trade-off; a high

child quality (or, in the Beckerian sense, a higher expenditure ptht per child) implies a lower child

quantity.

By inserting (2) into (5) and (6) and solving for fertility and food expenditure, it follows that:

nt =
γ(γ − β)

ptβ(π̄t + ν)
(8)

ht =
β(π̄t + ν)

γ − β
. (9)

Note that the optimal expenditure per child, ht, is a positive function of the extrinsic child survival

rate π̄t regardless of the sign of the cross-derivative. The key feature generating this result is that

the survival elasticity of food expenditure is a positive function of the extrinsic survival rate, and a

negative function of the food expenditures. This, in turn, follows from the facts that (i) the survival

rate πt is a positive function of the extrinsic survival rate π̄; and that (ii) there are diminishing

returns of food expenditure. To see this more clearly, note from (7) that parents prefer a constant

survival elasticity of food expenditure, εh ≡ gh · h/g, that is εh = (γ − β)/γ. By inserting (2), we

obtain that εh = (π̄ + ν)/(π̄ + h+ ν) with ∂εh/∂π > 0 and ∂εh/∂h < 0. Thus, the optimal response

to an improving extrinsic survival rate is to increase food expenditure. It should be noted that the

parental preference for a constant survival elasticity is not driven by a particular specification of the

survival function. Rather, it stems from the fact that child quality and quantity enter the utility

function in a symmetric way (with the weights of β and γ).

From the demand function for offspring (8) we conclude that children are normal goods: the

demand for children falls when the price of children rises. Due to the specific preference function,

there is no direct income-effect on the demand for children. We will introduce a direct income-

effect later on (in Section 7) by including time costs of child rearing. Note that an improvement

in the extrinsic survival rate triggers a higher food expenditure, which improves the nutritional

status of offsprings. This follows from the child quality-quantity trade-off effect which implies that

an improvement in the extrinsic survival rate (π̄t) reduces the fertility rate (nt) and increases the

survival rate (πt). It implies that there is a positive correlation between child mortality and fertility,

a conclusion consistent with the empirical evidence (Galloway et al., 1998, Eckstein et al., 1999,

Herzer et al., 2011).
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The impact of the extrinsic survival rate on the net rate of fertility, i.e. on population growth,

however, is a priori undetermined. By combining (8) and (9) with (2), we have that the net fertility

rate is given by (10).

πtnt =
(γ − β)π̄λ

pt(π̄ + ν)
,

∂(πtnt)

∂π̄t
=

(γ − β)λν

pt(π̄t + ν)2
. (10)

It follows that the net rate of fertility is an increasing function of the influence of nutrition in reducing

mortality, captured by the parameter λ.

The curvature parameter ν governs how the extrinsic survival rate affects the net fertility rate.

Generally, higher π̄ leads to higher net fertility directly and, indirectly, through the induced higher

food expenditure and improved intrinsic survival (the survival effect) and it leads to lower net fertility

through the induced reduction of births (the fertility effect). For the special case in which ν = 0 the

survival effect and the fertility effect balance each other and the model predicts that the net fertility

rate is independent from the extrinsic survival rate. This is a standard result in Malthusian models

with exogenous child mortality (see Galor, 2011, Ch. 4).

For ν > 0 the model predicts – in line with recent evidence (Herzer et al. 2011) – that a lower child

mortality rate leads to a lower birth rate and a higher net fertility rate. The survival effect dominates

the fertility effect. While this prediction is shared with many other economic models of endogenous

fertility (see Doepke, 2005), it appears to contradict the common view of demographers (see e.g.

Cleland, 2001). Demographers normally emphasize that the demographic transition is triggered by

falling mortality. Along the transition, the net rate of fertility eventually falls below its initial level

(with a delay). The view of demographers suggests that the fertility effect dominates the survival

effect. In the present model, we can capture this view by setting ν < 0.

3.3. Production. We consider a dual-sector economy with agriculture and industry. In both sec-

tors, new technology arises from learning-by-doing. More specifically, output, as well as new knowl-

edge, occurs according to the following production functions:

Y A
t = µAεt (L

A
t )α = At+1 −At, 0 < α, ε < 1 (11)

YM
t = δMφ

t L
M
t = Mt+1 −Mt, 0 < φ < 1. (12)

The variable At measures TFP in agriculture, whereas Mt measures TFP in industry (manufac-

turing). The evolution of A and M arises from learning-by-doing, following Arrow (1962), Romer

(1986), and – in a setup with endogenous fertility – Kremer (1993).
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The learning-by-doing approach seems appropriate when investigating the technological and eco-

nomic development throughout most of human history, simply because the bulk of technological

improvements in history were not generated by scientists, at least not until after the mid 19th cen-

tury (Mokyr, 2002). Since then, however, knowledge production has increasingly become a market

activity, rendering the Arrow-Romer approach less appropriate. For this reason, we expect that the

model loses some of it predictive power from the 20th century on.

Following Arrow (1962), we assume that there are diminishing returns to new knowledge in both

sectors by demanding that 0 < ε, φ < 1. Agricultural production is subject to constant returns to

labor and land. Land is assumed to be in fixed supply, and the total amount is normalized to one.

With 0 < α < 1, there is thus diminishing returns to labor in agriculture. Industrial production, by

contrast, is subject to constant returns to labor, implying that land is not an important factor in

industrial production. As is standard in the related literature, we abstract throughout from the use

of physical capital in production.

3.4. Equilibrium. The variables LAt and LMt measure the total amounts of labor input into agri-

culture and industry, respectively. Together, they make up the entire labor force, i.e.

LAt + LMt = Lt. (13)

The share of workers devoted to agriculture, LAt /Lt, is determined by the market equilibrium

condition for nutritional (i.e. food or agricultural) goods. The equilibrium condition says that the

total supply of nutrition, Y A
t , must be equal to the total demand, which—given that each child

demands ht units of food—is htntLt. Using (11), the market equilibrium condition for nutrition

thus implies that the fraction of workers necessary in agriculture to satisfy demand is given by (14).

θt ≡
LAt
Lt

=

(
htntL

1−α
t

µAεt

) 1
α

. (14)

Note that agricultural TFP growth is able to release labor from agriculture, while population growth

and a higher level of nutrition per child have the opposite effect.

Suppose that there are no property rights over land, meaning that the land rent is zero, and

thus that a representative adult individual receives the average product of the sector in which it is

employed, wAt = pY A
t /L

A
t , wMt = YM

t /LMt . The labor market equilibrium condition then implies

that the real price of nutrition adjusts, so that agricultural and industrial workers are able to earn
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the same income, implying wages wAt = wMt = wt = ptY
A
t /L

A
t = YM

t /LMt . By the use of (8)-(9)

and (10)-(14) this means that the price of one unit of nutrition, measured in terms of manufactured

goods, is

pt =

(
δMφ

t

)α
(γLt)

1−α

µAεt
. (15)

It follows that the price of nutrition increases with TFP growth in industry, as well as with the size

of the population, whereas TFP growth in agriculture has the opposite effect.

Inserting (15) into (10) gives us the net rate of reproduction in a general equilibrium, which is

πtnt =
µAεt(

δMφ
t

)α
(γLt)

1−α
· (γ − β)π̄tλ

π̄t + ν
. (16)

The two main forces affecting the net rate of reproduction are clearly visible in (16). The first term

captures the negative effect from a higher price of nutrition. The second term contains the effect of

a lower extrinsic child mortality rate, which may be positive or negative depending on the sign of ν.

Finally, it seems instructive to have a look at the determinants of the extrinsic mortality rate.

Since nutritional expenditures influence only the intrinsic mortality rate, the determinants of π̄t will

include geography (i.e. the disease environment) as well as technical knowledge. As regards the

influence of technical knowledge on mortality, we are inspired by Cutler et al. (2006, p. 116), who

in their survey on the determinants of mortality conclude that “[k]nowledge, science and technology

are the keys to any coherent explanation. Mortality in England began to decline in the wake of

the Enlightenment, directly through application to health of new ideas about personal health and

public administration, and indirectly through increased productivity”. We capture this fact by

assuming that advances in industrial knowledge, measured by Mt, are a good indicator of health-

improving ideas including, for example, sewerage, water toilets, central heating, clinical devices,

vaccines, pharmaceuticals, and medical knowledge in general. The role of geography works best if

we treat it as a constant.

The process of industrialization may have affected child survival probabilities also through increas-

ing rates of urbanization. For England and Wales, for example, Wrigley et al. (1997) document that

falling child mortality occurred primarily in rural areas around the time of the industrial revolution.

By contrast, in cities such as London child mortality initially increased as a result of the crowded

living conditions that urban life entailed such that urban areas experienced a mortality revolution

later than it was the case in the English countryside. We capture this effect by taking the share
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of manufacturing, i.e. the share of workers not occupied with agriculture, measured by 1 − θt, as

a proxy for the rate of urbanization, and include a negative impact of 1 − θ on the extrinsic child

survival rate. Specifically, we assume that π̄t evolves according to (17):

π̄t = a ·
[
1− e−bMt+d(θ0−θt)

]
. (17)

Here, the parameter a reflects the impact of geography (and other relevant constants) on the survival

rate; b captures the power of knowledge in reducing number of deaths; and d captures the negative

impact of urbanization (1 − θt), relative to the initial degree of urbanization (at time 0), i.e. (1 −

θt)− (1− θ0). Note that, by construction, the share 1− θt is limited from above, whereas knowledge

grows forever. Hence, we expect to have only a temporary effect on mortality of increasing rates of

urbanization and that this effect eventually becomes dominated by the positive impact on mortality

of an increasing level of technical knowledge. In the limit, therefore, it follows that limMt→∞ π̄t =

a < 1.

4. Balanced and Unbalanced Growth in the Long Run

In the following, we explore the balanced-growth dynamics of the model. Along a balanced growth

path, all the variables are constant or grow at constant rates. Let a balanced growth rate of a variable

x be denoted by gx (to be identified by a missing time index). According to (11), the gross rate of

growth of TFP in agriculture is given by gAt = (At+1 − At)/At = µ(LAt)
α/A1−ε

t . Along a balanced

growth path, the left hand side is constant by definition, so that the right hand side must be constant

as well. Furthermore, the share of labor in agriculture must be constant, implying that LA grows at

the same rate as L. Thus, a constant rate of growth of TFP in agriculture requires that

1 + gA = (1 + gL)α/(1−ε). (18)

Similarly, we get from (12) that a constant rate of growth of TFP in industry requires that

1 + gM = (1 + gL)1/(1−φ). (19)

Taking first differences of (16) the rate of population growth can be written as

1 + gLt+1 =
π̄t+1(π̄t + ν)

π̄t(π̄t+1 + ν)
· (1 + gAt )ε(1 + gLt )α

(1 + gMt )αφ
. (20)
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Along a balanced growth path, the level of TFP in industry is either constant or is growing at

a constant rate. In either case, π̄ will eventually assume a constant value, meaning that, along

a balanced growth path, the first term on the right-hand side will be equal to one. Using this

information, and inserting (18) and (19) into (20), we find that the equilibrium law of motion for

the growth of population is given by

1 + gLt+1 = (1 + gLt )η, η ≡ α+
αε

1− ε
− φα

1− φ
. (21)

Along a balanced growth path, the population grows at constant rate, meaning that gLt+1 = gLt =

gL. This leaves two possibilities for balanced growth. Either there is no population growth (gL = 0)

or – assuming the knife-edge condition that η = 1 – the population is growing or shrinking at a

constant rate. However, it follows from (18) that |η| < 1 is required for stability reasons. Therefore,

the growth-on-the-knife-edge case not only demands a very specific parameter constellation; it also

requires that the economy starts off on a balanced growth path (with suitable initial values) and

remains on this path forever (which is impossible in the event of shocks). This essentially eliminates

the possibility of having balanced growth in combination with population growth. The implication—

that there is no population growth on a balanced growth path—means that there is also no TFP

growth in the steady state (as can be verified by looking at (18) and (19)). This conclusion is

summarized in the following proposition.

Proposition 1. There exists a unique balanced growth path with zero population growth and zero

(exponential) economic growth. A sufficiently small knowledge-elasticity in agriculture, i.e.

ε <
1− φ− α+ 2αφ

1− φ+ αφ
, (22)

prevents the case of unbalanced growth in the long-run.

The proof is found in the Appendix.6

5. Long-Run Adjustment Dynamics

5.1. Intuition. The aim of this section is to test if the model is capable of replicating the stylized

development pattern of an industrialized economy, from its pre-industrial era up to the present-day

6 Note that the term ‘unbalanced growth’ refers to an equilibrium growth path along which growth rates are exploding
or imploding (and should not be confused with ‘unstable’, i.e. off-equilibrium growth.
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and beyond.7 Before turning to explore the model’s adjustment dynamics towards the balanced-

growth path, we will briefly go over the intuition behind the development path leading to the steady

state.

Suppose we start off with an economy in which the population level is relatively small; the share of

labor employed in agriculture is relatively high; and the level of income per capita is relatively close

to subsistence. Furthermore, suppose that birth rates as well as child mortality, are both relatively

high, meaning that the net rate of reproduction is close to that of replacement. Roughly speaking,

these are the characteristics of a pre-industrial, agricultural society.

As explained in the model section, there are economies-of-scale to population size. Since the initial

population level is low, learning-by-doing effects, to begin with, are relatively modest. Hence, TFP

growth in agriculture is rather slow, yet faster than in industry where labor resources, and thus

learning-by-doing effects, are even smaller.

Growing TFP in agriculture has two effects on development. On the one hand, because it releases

labor from agriculture, it increases the share of labor allocated to industrial activities. On the other

hand, higher TFP growth in agriculture relative to industry makes nutrition, and therefore children,

relatively less expensive. According to (8) this raises fertility, which tends to increase the net rate

of reproduction.

At the same time, with economies-of-scale at work, both in agriculture and industry, the transfer

of labor out of agriculture gradually speeds up TFP growth in industry. As the expansion of

industrial knowledge gains momentum, the extrinsic child survival probability begins to increase.

This leads parents to allocate more resources to nutrition per child, which further improves the

survival probability of the offspring through a reduction in intrinsic child mortality.

It is clear that falling mortality increases the net rate of reproduction through the survival effect.

Yet, at the same time falling mortality reduces fertility, which, in isolation, diminishes the net rate

of reproduction, as follows from (16). However, as long as advances in industrial knowledge and

thus in child mortality reduction are relatively slow, the ’cheaper nutrition’ effect on the net rate

of reproduction dominates the ’mortality decline’ effect. Hence, during early stages of development,

the net rate of reproduction rate will go up. In this period, therefore, declining child mortality is

accompanied by rising rates of birth and net reproduction.

7 For a detailed description of the development course of industrialized countries, see Galor (2005).
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Since the transfer of labor out of agriculture gradually accelerates TFP growth in industry, in-

dustrial sector’s TFP growth rate eventually surpasses that of agriculture. Henceforth, the price

of nutrition gradually increases, and children become increasingly more expensive. All else equal,

this leads to a lower rate of birth, and, therefore, a fall in the net rate of reproduction. At the

same time, advances in industrial knowledge create a further decline of extrinsic mortality, leading

to more investment in the children’s nutritional status and, therefore, to a lower intrinsic mortality.

Hence, by contrast to the previous periods, declining child mortality is now accompanied by falling

rates of birth and net reproduction.

Eventually, the child survival rate reaches its maximum. Due to the rising prices of nutrition,

however, the birth rate continues to fall. Sooner or later, therefore, the net rate of reproduction

reaches that of replacement, and population growth ultimately (and endogenously) comes to a halt.

5.2. Calibration. In order to investigate adjustment dynamics we continue by calibrating the

model. The parameter values are chosen so that the peak of the demographic transition matches

that of 19th-century England and so that the maximum rate of industrial TFP growth (and sub-

sequent slowdown) appears in the late 20th century. For comparative purposes, we use as many

parameter values as possible from the benchmark case in Strulik and Weisdorf (2008). The following

parameters produce a peak of population growth, at a annual rate of 1.5 percent, in the year 1875,

as well as a peak of industrial TFP growth, at a rate of 2 percent, in the late 20th century: α = 0.8,

ε = φ = 0.3, µ = 0.22, δ = 2.5, and γ = 3.4. The parameters a, b, λ and β are chosen, so that

the child survival probability is about two thirds in the high middle ages (Wrigley et al., 1997), and

then reaches a maximum of just below 100 percent in the 20th century.

In the benchmark case we set ν = 0. This textbook-case of neutralizing effects of mortality change

and fertility response on net fertility (Galor, 2011, Chapter 4) is helpful here because any changes

in the net rate of reproduction are now explained by the relative price of nutrition. For illustrative

purposes we begin with the case where there are no negative feedback-effects from urbanization on

extrinsic mortality (d = 0). The remaining parameter values are thus set to a = 0.5, b = 0.2, β = 0.5,

and λ = 35. For better readability of the results, one generation is set to 25 years, approximately

the length of the fecundity period. We set θ0 = LA0 /L0 = 0.85 and start values A0 and L0, so that

the peak in the growth rate of population is reached in 1875 for an economy starting in the year 1

C.E. The value for M0 is obtained endogenously, and is given by (γ/(δθ0)1/φ.
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Figure 2: Long-Run Dynamics: Benchmark Case
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Benchmark case, neutralizing effects of mortality on net fertility (ν = 0). Blue (solid lines):
no feedback from urbanization to mortality (d = 0). Red (dashed) lines: negative feedback
from urbanization (d = 5).
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5.3. The Benchmark Case. Figure 2 illustrates the calibrated adjustment path. The period shown

runs from the year 1200 to the year 2200. The solid lines show the path for the benchmark economy

with d = 0. Initially, the labor force is predominately employed to agriculture. In line with the

numbers provided by Galor (2005), industrial TFP growth is almost absent during the early stages

of development. Productivity growth in agriculture is around 0.4 percent per year during the high

middle ages, supporting a population growth rate of 0.5 percent per year.

Increasing knowledge in agriculture, initially, manifests itself in a slowly decreasing price of nu-

trition, translates almost entirely into population growth, meaning that the standards of living are

hardly affected by technological progress. The slowly but steadily growing population gradually in-

creases knowledge in agriculture and agricultural TFP growth builds up, little by little, to eventually

reach a 1.4 percentage growth rate in the early 20th century. By then, agricultural TFP growth

makes possible a substantial transfer of labor into manufacturing, causing an upsurge in industrial

TFP growth. This substantiates a significant decline in the extrinsic child mortality rate, leading

parents to increase their spending on child nutrition. With decreasing rates of extrinsic and intrinsic

mortality, the child survival probability is on a fast rise.

In the late 19th century, TFP growth in manufacturing surpasses TFP growth in agriculture,

and the rate of growth of food prices begins to increase and the relative price of food begins to

increase, inducing people to spend more resources on industrial goods while reducing their fertility.

By the end of the 20th century the demographic transition is almost complete: the child survival

probability has reached its maximum value close to 100 percent and the net rate of reproduction is

close to replacement level. TFP growth in industry reaches its peak in the late 20th century and

then begins to slow down. This decline, however, is a gradual process, leaving enough momentum

for the rate of growth of industrial TFP to exceed one percent per year far into the 22nd century.8

The first calibration exercise, with d = 0, fails to take into account the “urban penalty”, i.e. the

negative feedback from urbanization on the survival probability of offspring. This drawback of the

model implies that mortality and fertility both start to decline ’too soon’. The red (dashed) lines in

Figure 2 show a simulation, which corrects for this shortcoming, obtained by setting d = 5. In this

case, the onset of the fertility decline is delayed until the early 19th century. One can think of the

8 Since GDP per worker grows at the rate of wages, which grow at the rate φgM , growth of GDP per worker can be
inferred as a scaled version of growth of TFP in manufacturing. For the scaling factor φ = 0.3, the model predicts too
little growth of GDP per worker. This shortcoming can only be corrected at the expense of less accurate predictions
elsewhere. It is a natural implication of the fact that our simple model neglects other important drivers of growth like,
for example, the accumulation of physical and human capital.
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gap between the solid line and the dashed line for child survival as capturing the gap between rural

and urban child mortality.

5.4. The Response of Net Fertility to Extrinsic Mortality and the Shape of Transitional

Dynamics. We now turn to discuss the impact of the sign of cross derivative gπ̄h, as well as

the association between the extrinsic child mortality rate and the net rate of reproduction on the

transitional adjustment path. The blue (solid) lines in Figure 3 re-iterate the benchmark case

with the curvature parameter ν set to 0. The green (dash-dotted) lines show trajectories for ν =

0.15. In this case, we have that ∂(πn)/∂π̄ > 0 (and the cross derivative gπ̄h is larger than in the

benchmark case). As a consequence, parents in the model reduce their fertility, and increase their

food expenditure. To see why, one needs to recall that parents prefer to keep the survival elasticity

of health expenditure εh constant at the level of (γ − β)/γ. The partial effect of an increase of the

curvature parameter ν is an increase of the survival elasticity, ∂εh/∂ν = h/(π̄+h+ ν). The optimal

response by parents is to increase the level of food expenditures up to the point at which decreasing

returns of nutritional input bring the elasticity back to its desired value.

The main effect of the reduction in net fertility, and hence the lower growth of population, is that

the demographic transition is now delayed. Since the population level is now smaller at every stage

of development than it was in the benchmark run, the scale-effect of the learning-by-doing is smaller,

causing a postponement in the transfer of labor out of agriculture and the demographic transition.

In Figure 3, we eliminate this effect by re-adjusting the initial values for the size of knowledge and

population, so that every set of trajectories displays a peak of net fertility in 1875. This way the

shape of the trajectories is comparable across illustrations. Relative to the onset of the decline net

fertility, the survival rate begins to improve earlier for η > 0 because of the induced shift from child

quantity to quality.

Red (dashed) lines in Figure 3 show a scenario for which η is equal to −0.15, implying a negative

association between the extrinsic survival rate and the net fertility rate as well as a negative cross

derivative gp̄ih (since 2βπ + γν < 0). Keeping in mind the intuition developed above, parents now

react to improving mortality by spending less on nutrition and by demanding more children instead.

As a consequence, the population growth rate follows a ’higher’ path relative to the benchmark case

and it peaks at a higher rate. The survival probability starts to improve at a later point in time,

which is caused by the fact that parents are now spending less resources on food.
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Figure 3: The Extrinsic Survival – Net Fertility Association and Long-Run Dynamics
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Blue (solid lines): benchmark case, neutralizing effects of mortality on net fertility (ν = 0).
Green (dash-dotted lines): positive association between survival and net fertility (ν = 0.15).
Red (dashed) lines: negative association between survival and net fertility (ν = −0.15).
Other parameters as for Figure 2.
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Figure 4: The Extrinsic Survival – Net Fertility Association: Scale Adjusted Dynamics
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Blue (solid lines): benchmark case, neutralizing effects of mortality on net fertility (ν = 0).
Green (dash-dotted lines): positive association between survival and net fertility (ν = 0.15,
µ = 0.27). Red (dashed) lines: negative association between survival and net fertility (ν =
−0.15, µ = 0.155). Other parameters as for Figure 2.

It is instructive to eliminate the scale in these adjustment dynamics. For that, we adjust the level

of agricultural productivity µ, so that every set of trajectories displays a peak of population growth

at a rate of 1.5 percent in the year 1875. Some of the results of this adjustment are illustrated in

Figure 4. Controlling for the scale reveals that the association between extrinsic child mortality and

fertility (governed by the parameter ν) is indeed helpful in explaining the observable gap between

the onset of improving child survival and the onset of the fertility decline. The larger ν is, the larger

is the predicted gap between mortality and fertility decline. The overall impression, however, is that

the results are largely independent of assumptions made about the cross derivative and the partial

response of net fertility to changes in the extrinsic child mortality rate. In fact, only details of the

predicted shapes of adjustment paths are modified.

5.5. Timing and Correlations Along the Adjustment Path. The introduction of an endoge-

nous child mortality rate leads us to qualify the conclusions reached in Strulik and Weisdorf (2008)

regarding the timing of the demographic transition. In the latter study, the peak of the population

growth rate coincides with that of fertility, both of which, in turn, take place after the growth of

industrial TFP has surpassed that of agriculture. Here, by contrast, the break-up of the population

growth rate into a fertility and a mortality component permits us to track down separately the

occurrence of significant economic and demographic events. For example, in the benchmark case,

the fertility rate peaks around 1800, whereas the population growth rate reaches its maximum in
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1875. The rate of agricultural TFP growth peaks around 1920, while the rate of industrial TFP

growth reaches its maximum in the late 20th century. Moreover, consistent with empirical evidence

of most western-world countries (France is an exception), the falling child mortality rate in the

present framework precedes the drop in fertility. Hence, the current model correctly predicts the

positive relationship between child mortality and net reproduction observed during the early phases

of most western-world countries’ demographic transitions, a feature missing in previous work on this

topic.

The model also predicts that the demographic transition and the economic take-off are accom-

panied by a structural change, i.e. θ → 0 for t → ∞. The speed of this structural change during

industrialization, however, is underestimated for the set of basic parameters. Since everything is fully

endogenous in the present model (i.e. none of the time series are imputed, as in some of the related

literature), it is impossible to correct this shortcoming without resorting to less acceptable approxi-

mations. By highlighting the interplay between demographic and economic variables, the model is

capable of replicating the stylized facts of long-term economic development without resorting other

sources of structural changes, such as capital accumulation, international trade (globalization) and

R&D-based growth.

Our model also generates some interesting non-linearities along the adjustment path. Based

on Figure 5, which shows some of the relevant non-monotonous relationships (for the benchmark

economy), the following observations can be made. First, during early stages of development, the

model predicts a positive relationship between the child survival probability rate and that of fertility,

while, during later stages, the sign of the correlation is reversed (panel 1). Specifically, the lower

mortality rate goes together with a rising rate of fertility when the effect of falling food prices on

fertility dominates the quantity-quality substitution effect. Oppositely, the lower mortality rate goes

together with a lower fertility rate when quantity-quality substitution effect dominates that of falling

food prices.

Second, due to a strong preventive-check mechanism during the early phases of development,

there is almost no correlation between wages and population growth in the beginning of the period

analyzed. At later stages, however, such as during the time of the demographic transition, there is

a strong, negative relationship between the two, followed by a weak, negative correlation after the

ending of the transition (panel 2).
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Figure 5: Correlations Along the Transition: 1200 to 2200
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A circle marks the starting point in the year 1200.

Third, the general relationship between the birth rate (total fertility) and the net rate of repro-

duction is a slightly positive one (panel 3). That is, during the early stages of development, the birth

rate and net rate of reproduction are both rising, while both rates are falling during the late stages.

For a short period in between, however, the birth rate is declining while the net rate of reproduction

still grows.

Finally, the relationship between the net rate of reproduction and industrial TFP growth forms

an almost perfect orbit (panel 4). In the early stages of development, there is a positive relationship

between TFP growth and population growth. However, during the ’industrial revolution’, i.e. the

sharp rise in the rate of growth of industrial TFP, the sign of the correlation turns negative. In
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the post-industrial period, i.e. after the peak in the growth rate of industrial TFP, the sign turns

positive once again, as the rates of growth of productivity and population both decreases.

Figure 6: Engel’s Law and Expenditure per Child
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5.6. Engel’s Law. A final observation concerns the model’s consistency with Engel’s Law. Engel’s

Law states that the share of nutrition expenditure in income, measured by (ptntht)/wt, will decline

over the course of development (i.e. with economic growth). This is illustrated in Figure 6, which

also shows that nutritional expenditure per child, measured by ptht, gradually drops until the mid-

19th century; then increase steeply throughout the 20th century; after which it continues to increase,

but at a somewhat slower pace than earlier (for comparison, the results are shown relative to initial

expenditure, i.e. the level of expenditures in 1200 is normalized to one). These results reveal another

important insight from endogenizing child mortality: because more children survive at high levels of

M , parents are more inclined to increase their spending on child nutrition, irrespective of a rising

relative price for food.

6. Extensions

In this section we generalize the utility function and include time of costs of child-rearing. Specif-

ically we assume that parents solve the following problem.

max
mt,nt,ht

ut =
m1−σ
t

1− σ
+ β log ht + γ log(πtnt) (23)

s.t. wt(1− τnt) = pthtnt +mt. (24)
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Child survival continues to be given by (2). With 0 < σ < 1 the utility function is now strictly

concave but it also preserves the “hierarchy of needs” assumption introduced in Section 3. Manufac-

tured goods are more easily substituted across time than are births and nutrition. The parameter τ

controls for the time intensity of child bearing and rearing.

The associated Lagrangian now reads

L =
m1−σ
t

1− σ
+ β log ht + γnt + γg(π̄t, ht) + ω [wt(1− τnt)− pthtnt −mt] .

And the first order conditions are

0 = m−σt − ω (25)

0 =
γ

g
gh +

β

ht
+ ωptnt (26)

0 =
γ

nt
− ωptht − ωτwt. (27)

Combining (26) and (27) we get food demand per child determined by (28):

γ
gh
g
· h = γ − β −m−σt τwtnt. (28)

Note that (28) collapses into (7) when τ = 0. Thus, as long as τ = 0, optimal food expenditure

per child is the same regardless of the specification of the utility function. Inspection of (25)-

(27) furthermore reveals two opposing effects on fertility: one from higher wages, and thus higher

opportunity costs of child rearing, which lowers fertility; and one coming from a higher expenditure

on manufactured goods through decreasing marginal utility of goods consumption, which increases

fertility. In order to obtain the general-equilibrium effect, we solve (24)–(27) together with the

equilibrium condition for the goods market,

pαt (htnt)
α−1µAεt = (δMφ

t )αL1−α
t ,

and the wage equation wt = δMφ
t to obtain the equilibrium set {ht,mt, nt, pt} at any point in time,

that is for any given set of state variables {At,Mt, Lt}. The model is no longer able to generate an

explicit analytical solution, so we solve the problem numerically.

Figure 7 shows an extract of the adjustment paths for the benchmark case (σ = 0, solid lines),

as well as for σ = 0.2 (dashed lines) and σ = 0.4 (dash-dotted lines). One effect of iso-elastic

utility from manufactured goods is that marginal utility is high when the consumption level is low
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Figure 7: Iso-Elastic Utility: Long-run Dynamics
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Blue (solid) lines: benchmark run. Red (dashed) lines: σ = 0.2. Green (dash-dotted) lines:
σ = 0.4.

(before the onset of industrialization). Ceteris paribus, this means that households demand more

manufactured goods and fewer children (with food expenditure per child remaining fixed, for reasons

explained above). In turn, the fall in fertility causes a slower growth of population, a smaller scale

effects through learning-by-doing, and thus a later onset of the demographic transition. In order to

eliminate this scale effect and to compare the shape of the adjustment paths we have re-adjusted

the initial values for population and knowledge in 1200, so that both sets of trajectories display a

peak of population growth in 1875.

Figure 7 illustrates that iso-elastic utility causes a larger gap between the mortality decline and

the net fertility decline, as well as an earlier and faster process of industrialization. In the case

of England, therefore, the assumption of iso-elastic utility is more realistic in that the predicted

trajectories fit better with historical evidence. These effects increase with the size of σ, as the

dashed-dotted lines illustrates when σ = 0.4 . At the same time, however, a higher σ causes the

model to underperform: the predicted decline of population growth in the 20th century is too small

compared to the actual time series. The reason is that diminishing marginal utility generates a

low demand for manufactured goods when the level of consumption becomes relatively large. By
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comparison to the case of linear utility, households thus demand relatively few manufactured goods

and relatively many children and react less strongly to falling prices of manufactured goods.

Figure 8: Time Cost of Child Rearing: Long-run Dynamics
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Blue (solid) lines: benchmark run. Red (dashed) lines: τ = 0.05 (and a = 0.29, µ = 0.26).
Green (dash-dotted) lines: τ = 0.05 and σ = 0.2 (and a = 0.29, µ = 0.25). Other parameters
as for Figure 2.
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As a final extension we include a cost of rearing children. Figure 8 considers an example where

τ = 0.05. Ceteris paribus, the presence of the child-rearing costs reduces the demand for child, and

thus delays the demographic transition compared to the benchmark case. Again, initial values are

adjusted so that any set of trajectories displays a peak in net fertility in 1875 (in order to better

compare the shape of adjustment paths). An additional effect of introducing the child time costs

is that it increases child expenditures and consequently child survival rates. In order to match the

child mortality statistics of the middle ages—that about one third of children born do not make it

to adulthood—we recalibrate the extrinsic survival prospects by setting a = 0.29. Furthermore we

also set agricultural productivity µ to 0.26 in order to reach a peak rate of population growth at 1.5

percent.

Solid lines of Figure 8 shows the benchmark case, while dashed lines illustrate the re-calibrated

case in which a time costs of child rearing is added to the model. The main consequence of including

the cost of child rearing is a growing gap between the mortality and the fertility transitions, coming

about through an earlier mortality decline. Another visible implication is a very large undershooting

of fertility, falling far below the replacement rate in the 21st century. This is caused by the rise in

income, which increases the opportunity costs of raising children, causing parents to reduce fertility.

The ideal setting, of course, is to combine the two adjustment paths derived above—that based

on the assumption about iso-elastic utility (which rendered fertilty ’too high’) and that from the

introduction of a cost to raising children (which rendered fertility ’too low’). The dash-dotted lines

of Figure 8 take up this idea to the graph, showing the adjustment paths for τ = 0.05 and σ = 0.2

(and by re-calibrating µ in order to match the peak of net fertility in 1875).

The combined case shows that the model and its predictions are robust to the inclusion of a

time cost of child rearing as well as the introduction of an assumption about an iso-elastic utility

for manufactured goods. While the times series for fertility, population growth and agricultural

productivity virtually coincide, the extended model predicts an earlier onset of the mortality decline;

a stronger and steeper fall of agricultural employment during the 19th century; and a higher growth

rate of productivity, and thus income per worker, in the 20th century. Taken together, the two

extension thus add more realism to the model vis-a-vis the historical evidence.
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7. Conclusion

This study provides the first unified growth model to endogenize mortality, fertility and growth,

while not relying on human capital accumulation to generate a demographic transition. The result

is based on the notion that parents care not only about surviving offspring but also about the

nutritional status of the offspring, and that the price of nutritional goods, which thus influences the

fertility decision, responds to structural transformations in the productive sectors of the economy.

The model provides an economic rationale for the demographic observation that fertility rates decline

in response to higher child survival probability and that they do so with a delay. Another major

implication of the study, demonstrated by the use of calibrations, is the non-monotonic nature of

the relationships between various economic and demographic variables—an important insight for

scholars trying to make sense of these relationships empirically. The study also shows that the basic

structure of long-run adjustment dynamics is independent of (i) the specific assumptions concerning

cross-derivatives; (ii) the direction of impact of extrinsic mortality on net fertility; (iii) more general

specifications of the utility function; as well as (iv) consideration of the time costs of child rearing.

Alternative specifications will lead to modifications concerning the shape of adjustment paths, which

allows a fine-tuning of the peaks and gaps observed during the process of industrialization and the

demographic transition.

The robustness tests done in Strulik and Weisdorf (2008) make us confident that the current

model is also robust to other modifications. First, the assumption about a constant returns-to-labor

production technology in industry can be replaced by one which relies on diminishing returns to

labour without affecting the model’s qualitative conclusions. Second, the long-run predictions of the

model, i.e. the lack of economic growth in steady state, can be modified without changes to the

qualitative nature of the results as long as we permit a positive rate of growth of the population on

the balanced growth path. Both modifications, however, come at a cost to simplicity.
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Appendix A

Sufficient Conditions for Maximum. For the solution (8) and (9) to be a maximum the Hessian

evaluated at the extremum has to be negative definite. For that the Hessian determinant has to be

positive. Proceeding from (5) and (6) and keeping the survival function for now in its general form

g(π̄t, ht) the second-order derivatives are

∂2ut
∂n2

t

= − γ

n2
t

,
∂2ut
∂h2

t

= − β

h2
t

+ γ
ghhg − g2

h

g2
,

∂2ut
∂ntht

=
∂2ut
∂htnt

= −pt.

Recall that the solution (5) and (6) fulfils ntht = γ/pt, implying that ∂2ut/∂(ntht) = −γ/(ntht).
The Hessian determinant is thus obtained as

detH =
γ2
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It is positive if (
−ghh

g
+
g2
h
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)
h2
t >

γ − β
γ

.

In words, the survival function has to be sufficiently concave. Inserting (2) the condition becomes

2(π̄ + ν)ht + (π̄ + ν)2

(π̄ + ht + ν)2
>
γ − β
γ

.

Inserting the solution ht from (9) the condition simplifies to

1− β2

γ2
> 1− β

γ
⇒ 1 >

β

γ
.

It is fulfilled for γ > β, that is always when a positive (interior) solution for nt and ht exists. The

extremum (8) and (9) is a maximum.

Proof of Proposition 1. While a balanced growth path involves stagnant levels of population

and income, an unbalanced growth path, characterized by imploding or exploding growth, may in

principle exist. In the following, we explore the two cases of unbalanced growth, starting with the

case of imploding growth. Imploding growth implies perpetually negative population growth, i.e. nt

is smaller than one and Lt is decreasing. It is easy to see that imploding growth is not an option since

gAt and gMt are bound to be non-negative. There is no forgetting-by-doing. With limL→0 g
A = 0

and limL→0 g
M = 0, we have limL→0 n = const./L1−α from (14). As Lt converges to zero, nt goes

to infinity. A contradiction to the initial assumption of nt being smaller than one. There is no

imploding growth. Intuitively, decreasing marginal returns of labor in agriculture (α < 1) prevent

implosion. As population size decreases agricultural productivity goes up and prices go down so

that fertility and thus next period’s population increases.

Explosive growth, on the other hand, cannot be ruled out if η > 1, In this case the relative

price of food ultimately goes to zero and fertility to infinity. With growing population growth,

productivity growth in both sectors grows hyper-exponentially until the economy reaches infinite

fertility in finite time. We can solve the stability condition η < 1 for the critical ε. A sufficient

condition for stability of balanced growth is (22). Thus, the learning elasticity in agriculture must

not be too large. Otherwise agricultural productivity rises so steeply with population growth that
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it can sustain further falling food and triggers further population growth. Inspection of (18) shows

that the critical ε is decreasing in α and increasing in φ. Intuitively, the larger the counterbalancing

forces of limited land (i.e. the lower α) and of learning in the manufacturing sector (the larger φ)

are, the higher can learning in the agricultural sector be without leading to explosion. The following

proposition summarizes the considerations made above about balanced and unbalanced growth.

Note that ε < εcrit is a sufficient condition of stability since it holds for any path along which

there is constant population growth. It could be relaxed for the only existing balanced growth path

according to which, as shown, population growth is not only constant but also zero. For an intuition

of the result inspect (20) again and imagine adjustment dynamics along which an “agricultural

revolution” occurs before an “industrial revolution”, i.e. a path along which gA is – because of

decreasing returns – already declining whereas gM is still on the rise. The fact that gA and thus

gL are faster approaching to zero than gM relaxes the stability condition obtained from analytical

considerations, which implicitly assume that all growth rates are in the neighborhood of a balanced

growth path.
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