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Abstract

We consider a recently proposed class of nonlinear time series models and focus mainly on

misspecification testing for models of such type. Followingthe modeling cycle for nonlinear

time series models of specification, estimation and evaluation we first treat how to choose

an adequate transition function and then contribute to the evaluation stage by proposing tests

against serial correlation, no remaining nonlinearity andparameter constancy. We also con-

sider evaluation by generalized impulse response functions. The finite sample properties of

the proposed tests are studied via simulation.

We illustrate the use of these methods by an application to real exchange rate data.
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1 Introduction

Over the last decade and a half the interest in nonlinear timeseries models has been grown

steadily. Especially the class of smooth transition autoregressive (STAR) models, initiated by

the work ofBacon and Watts(1971) and popularized byTeräsvirta(1994), has enjoyed great

success. A lot of work in this area has been devoted to estimation, specification, testing and
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applications such as forecasting. For a recent review of this field see e.g.Potter(1999) and

van Dijk et al.(2002b).

Within the class of STAR models the two most notable are the logistic STAR (LSTAR) and

the exponential STAR (ESTAR) model. The ESTAR model in particular has been very popu-

lar with empirical investigations of economic theories such as purchasing power parity (PPP)

or the Fisher hypothesis (see e.g.Taylor et al.(2001) andRose(1988)). It is by now well

known that the estimation of the parameters in ESTAR models is notoriously hard as no-

ticed early byHaggan and Ozaki(1981), Tong(1990) or Teräsvirta(1994). In fact, as shown

by Donauer et al.(2010) some crucial parameters in ESTAR models are unidentified ifthe

variance of the innovation term becomes very small. This is especially important within the

context of real exchange rates as estimated innovation variances are usually extremely small

(see e.g.Gatti et al.(1998), Öcal (2000), Taylor et al.(2001) or Rapach and Wohar(2006)

among others). In order to remedy this problemDonauer et al.(2010) propose a new type of

nonlinear model formulation called T-STAR that maintains the desirable properties of ESTAR

but reduces the estimation problem for the most part. In addition the authors propose a linear-

ity test and an unit root test for the new model.

A complete account of this new model however would require torun through all steps of

the empirical modeling cycle devised byTeräsvirta(1994). This paper is mainly devoted to

the evaluation stage of the modeling cycle and proposes a suite of Lagrange multiplier (LM)

tests designed for this newly developed model. The development of specialized parametric

tests for nonlinear models is important since standard misspecification tests such as the well

known Ljung-Box test have been shown to be badly sized when the true data generating pro-

cess is nonlinear (seeEitrheim and Teräsvirta(1996)). However, before considering residual

based tests we treat the problem of how to choose between two different nonlinear models by

proposing a direct test based on the encompassing principle.

The paper is organized as follows: In section2 we review the class of models under study

and the empirical modeling cycle for nonlinear models. A method to discriminate between

competing nonlinear model formulations is described in section 3. In section4 we propose

different tests against serial dependency of the residuals, no remaining nonlinearity of the
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residuals as well as parameter constancy of the estimated model. In addition we cover eval-

uation via impulse response analysis. In section5 we study the finite sample performance of

the afore mentioned tests. In section6 we run through the whole modeling cycle to model

real exchange rates before section7 concludes. Some additional results are collected in the

appendixA.

2 The modeling cycle

A general STAR model is given by two autoregressive regimes connected by a smooth transi-

tion function. Smoothness means that the transition function changes continuously from zero

to one and therefore governs the transition between the two regimes in a smooth way. Alter-

natively, a STAR model can also be interpreted as a continuumof regimes which is passed

through by the process.

In general, univariate STAR(p) models,p≥ 1 andd≤ p, are given by

yt = [Ψwt] × [1−G(yt−d;γ,c)] + [Θwt] ×G(yt−d;γ,c)+εt (1)

= [Ψwt] + [Φwt] ×G(yt−d;γ,c)+εt, t ≥ 1, (2)

with εt
iid
∼ (0,σ2).

The parameter vectorsΨ andΘ as well aswt are given byΨ= (ψ0,ψ1, . . . ,ψp),Θ= (ϑ0,ϑ1, . . . ,ϑp),

andwt = (1,yt−1, . . . ,yt−p)′. For the alternative parametrization in (2) we haveΦ= (ϕ0,ϕ1, . . . ,ϕp)=

(ψ0−ϑ0,ψ1−ϑ1, . . . ,ψp−ϑp), i.e. the second regime realizes as sum ofΨ andΦ.

Different choices of the transition functionG( · ;γ,c) : IR → [0,1] lead to different STAR

models. A popular choice is the exponential form leading to the ESTAR model

G(·;γ,c) = 1−exp
{

−γ(yt−d−c)2
}

; γ > 0 . (3)

This functional form for the transition function is popularfor modeling real exchange rates or

real interest rates (see e.g.Kapetanios et al.(2003)). However the estimation of the parameter

γ that governs the functional form and thereby the transitionspeed is notoriously hard. Indeed

it is shown byDonauer et al.(2010) in Theorem 2.4 that

lim
σεt↓0

Var(γ̂)→∞ . (4)
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As the parameterγ is absolutely crucial in STAR models (seeTong(1990)) this result makes

it almost impossible to obtain reliable estimation resultsfor reasonable small innovation vari-

ances.

To remedy this problemDonauer et al.(2010) propose to reformulate the well known transi-

tion function in (3) as

G(·;γ,c) = 1−
{

1+ (yt−d−c)2
}−γ

; γ > 0 . (5)

The resulting model is called T-STAR model and reduces the identification problem for the

most part. Both transition functions in (3) and (5) share the same properties which make them

applicable in the same situations. For further details we refer to Donauer et al.(2010).

The modeling cycle for nonlinear models as proposed inTeräsvirta(1994) consists of three

main steps:

Step 1: Specification

• Specifying a linear autoregressive model via an information criterion such as AIC (see

Akaike (1974)) or BIC (seeSchwarz(1978)).

• Testing linearity for different values ofd and if it is rejected specifyd by minimizing the

p-value of the linearity test via a grid search over possible values ofd (seeTsay(1986)

or Teräsvirta(1994)).

• Choosing an adequate transition function by testing a series of nested hypotheses (see

Teräsvirta and Anderson(1992), Teräsvirta(1994) andEscribano and Jordá(2001)).

Step 2: Estimation

• Estimate the specified model using either nonlinear least squares or conditional (quasi)

maximum likelihood. Consistency for these techniques has been established byKlimko and Nelson

(1978) andTjøstheim(1986) respectively.
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Step 3: Evaluation

• Perform residual based tests against serial dependence, noremaining nonlinearity and

parameter constancy as proposed inEitrheim and Teräsvirta(1996). Evaluate the dy-

namic behavior via generalized impulse response function developed byKoop et al.

(1996). Modify the model if necessary.

After an adequate model is identified it can be used either fordescriptive purposes or for

computing forecasts. Forecasting techniques for nonlinear models are studied extensively by

Clements and Smith(1997) (see alsoGranger and Teräsvirta(1993) andClements and Hendry

(1998)).

Specification testing on the first stage, i.e. linearity testing and selecting the transition func-

tion, is partially considered inDonauer et al.(2010) by developing a linearity test for the new

model. This test will be only briefly reviewed here for the sake of completeness. Starting with

the model formulation in (2) with transition function in (5) Donauer et al.(2010) proceed in

the spirit ofLuukkonen et al.(1988) and approximate the nonlinearity by expandingG(·;γ,c)

as a Binomial series which they truncate at a suitable lengthk. This yields the following

general auxiliary regression for a fixedd≤ p andk:

yt =

p
∑

i=1

φiyt−i +

p
∑

j=1

δ
(0)
j yt− j +

p
∑

j=1

δ
(1)
j yt− jyt−d+

p
∑

j=1

δ
(2)
j yt− jy

2
t−d+ . . .+

p
∑

j=1

δ
(2k)
j yt− jy

2k
t−d+ut . (6)

The null in this auxiliary model reads:

H0 : δ(ℓ)
j = 0 vs. H1 : at least oneδ(ℓ)

j , 0; j = 1, . . . , p and ℓ = 0, . . . ,2k .

This null can be tested by using a standardF-test for a subvector of parameters.

3 Choosing the transition function

Selecting an adequate transition function is crucial to capture the in-sample dynamic of the

data generating process properly. A first approach has been made byTeräsvirta and Anderson

(1992) andTeräsvirta(1994). These methods concentrate on discriminating between thetwo
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most popular STAR models, namely ESTAR and LSTAR. Their proposed technique exploits

the properties of the Taylor series expansion of the two nonlinear alternatives and is based on

testing a sequence of nested hypotheses. Using such a procedure involves some problems:

First the size is not under control anymore because of sequential testing. A second problem

is that the classical approach only considers a first order expansion. AsEscribano and Jordá

(2001) point out this approximation is only adequate if the location parameterc is restricted

to zero a priori. To circumvent this and related problems they propose to always include cubic

and fourth power terms in the auxiliary regression. This improves the discriminatory power

of the test but as this procedure is still based on sequentialtesting the size is not under control

in neither of these approaches.

A rather different approach is proposed byChen(2003). Based on an encompassing principle

for non-nested models fromChen and Kuan(2002) andChen and Kuan(2007) he directly test

whether an ESTAR or LSTAR formulation is more adequate. In simulations he shows that his

approach is more powerful in detecting the correct specification.

The T-STAR model was proposed as an alternative to the ESTAR model and therefore we

concentrate on distinguishing between T-STAR and LSTAR model formulations.

Our approach is related toChen(2003) in the sense that we also aim to directly test whether

T-STAR or LSTAR is more appropriate. The approach we take is an encompassing approach

to conditional mean testing for non-nested hypotheses as proposed byWooldridge(1990a).

The idea is that the residuals of the model under the null estimated by nonlinear least squares

should be orthogonal to the gradient of the null model and theresiduals should also be inde-

pendent of the gradient of the model under the alternative. More formally, let

{mt(wt,α) : α ∈ A, t = 1,2, . . .} , A⊂ IRP (7)

be the model under the null. In our case this is the T-STAR model in (2) together with the

transition function in (5). The model under the alternative reads

{µt(wt,β) : β ∈ B, t = 1,2, . . .} , B⊂ IRQ . (8)

In our case this is an LSTAR model defined as in (2) with the transition function

G(·;γ,c) = {1+exp(−γ(yt−d−c))}−1 . (9)
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Define the residuals under the null as

êt = yt − m̂t(wt, α̂) .

The test considers to test forδ = 0 in

yt =mt(wt,α)+δ∇βµ(β̂)+errort, (10)

where∇βµ(β̂) = ∇βµ(wt, β̂) is theQ× 1 gradient ofµt(wt,β) evaluated at the nonlinear least

squares estimatêβ of β. Denote by∇αm(α̂) the sameP× 1 quantity for the null model

mt(wt,α). The test can be carried out by computing

LM = TR2, (11)

whereT is the sample size andR2 is the coefficient of determination from the regression of ˆet

on∇βµ(β̂) and∇αm(α̂). Asymptotically this test statistic follows aχ2(Q) distribution.

If no homoscedasticity is assumed the test can be robustifiedby using results fromWooldridge

(1990b) and run through the steps described inProcedure 3.1in Wooldridge(1990a, p. 336).

4 Residual based misspecification tests

4.1 Test of serial independence

In deriving the evaluation tests for the T-STAR model we roughly follow the steps taken in

Eitrheim and Teräsvirta(1996). However, there are some crucial differences between their

tests and the ones developed during the course of this section.

Consider the following general T-STAR model of orderp

yt = [Ψwt] + [Φwt] ×
[

1−
{

1+ (yt−d−c)2
}−γ

]

+ut , (12)

with Ψ = (ψ0,ψ1, . . . ,ψp), Φ = (ϕ0,ϕ1, . . . ,ϕp) andwt = (1,yt−1, . . . ,yt−p)′. The innovation pro-

cessut is autocorrelated and follows an invertible moving-average process of orderq (MA(q))2

ut = [1+α(L)] εt; εt
iid
∼ (0,σ2) , (13)

2This is not restrictive as this is also the test against innovations following an AR(q) process since they are

asymptotically local equivalent alternatives of each other (seeGodfrey(1988, p. 114)).
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whereL denotes the lag operator andα(L) = (α1L+α2L2+ . . .+αqLq).

Under the null of no serial correlation the innovationsut in (12) areiid and under the alterna-

tive they follow (13). The testable pair of hypotheses thus reads

H0 : αi = 0 vs. H1 : at least oneαi , 0; i = 1, . . . ,q .

Based on results given inGodfrey(1988), we can proceed to develop a Lagrange multiplier

(LM) test against serially correlated innovations.

To keep the notation simple define the so-called skeleton (seeFranses and van Dijk(2000))

f (wt;Γ)≔ [Ψwt] + [Φwt] ×
[

1−
{

1+ (yt−d−c)2
}−γ

]

, (14)

with Γ = (Ψ,Φ,γ,c) and the model becomes

yt = f (wt;Γ)+ut .

Further define

ût ≔ yt − f (wt; Γ̂) ,

whereΓ̂ = (Ψ̂, Φ̂, γ̂, ĉ) is the minimizer of

Q =

T
∑

t=1

[

yt − f (wt;Γ)
]2
.

The test statistic for the null of no serial correlation can now be obtained as

LM(1) = TR2 , (15)

whereT is the sample size andR2 is the coefficient of determination from the regression of

ût on lagged residuals ˆut−1, . . . , ût−q andẑt =
∂ f (wt;Γ)
∂Γ

∣

∣

∣

∣

Γ̂
. This ’TR2’ variant of the LM test has

been proposed for detecting misspecifications byBreusch(1978) andGodfrey (1978) (see

alsoGodfrey(1988)).

Eitrheim and Teräsvirta(1996) provide the components needed for computing (15) for the
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ESTAR and LSTAR case. The respective components for the T-STAR case are as follows:

∂ f (wt;Γ)
∂Ψ

= wt (16)

∂ f (wt;Γ)
∂Φ

= wt ×

[

1−
{

1+ (yt−d−c)2
}−γ

]

(17)

∂ f (wt;Γ)
∂γ

= [Φwt] ×
{

[

1+ (yt−d−c)2
]−γ

ln
(

1+ (yt−d−c)2
)

}

(18)

∂ f (wt;Γ)
∂c

= [Φwt] ×



















[

1+ (yt−d−c)2
]−γ

γ (−2γ+2c)

1+ (yt−d−c)2



















. (19)

Eitrheim and Teräsvirta(1996) point out that such a test can suffer from size distortions in

finite samples because the estimation procedure in the first step may result in a solution in

which the residuals are not perfectly orthogonal to the gradient ẑt. We adopt their proposed

remedy for this situation and take an extra orthogonalization step after estimating the model

in (12) and obtaining the residuals. The test can now be performed in three stages:

(i) Estimate the T-STAR model using either nonlinear least squares or conditional (quasi)

maximum likelihood under the null and obtain the residuals ˆut.

(ii) Regress ˆut on the gradient ˆzt and obtain the residuals ˇut.

(iii) Regress ˇut on ǔt−1, . . . , ǔt−q and the partial derivatives off (wt;Γ) evaluated at̂Γ as de-

tailed in (16) - (19) and compute the respectiveR2.

Under the null of no serial correlation the test statistic follows

LM(1) ∼ χ
2(q) .

4.2 Test of no remaining nonlinearity

Since there a numerous ways in which a nonlinear model can be misspecified we restrict

ourselves to the case of additive nonlinearity. Therefore consider the model

yt = [Ψwt] + [Φwt] ×G1(yt−d;γ1,c1)+ [Ξwt] ×G2(yt−e;γ2,c2)+εt , (20)
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whereG1(·) andG2(·) are transition functions of the form in (5). As the null model we consider

(20) but without the second nonlinear component. The respective null can be formulated as

H0 : γ2 = 0 vs. H1 : γ2 > 0 .

This situation can also be interpreted as testing a two regime T-STAR model against a three

regime T-STAR model. In this interpretation the test is readily extendable to more general

models containing more than two or three regimes.3

If we want to test the pair of hypotheses in (21) we face a similar problem asLuukkonen et al.

(1988) andDonauer et al.(2010) when constructing linearity tests, i.e. that under the null the

model in (20) is not fully identified. We circumvent this problem similarly and approximate

the second nonlinearity by using an adequate linear series expansion aroundγ2 = 0. As a

Taylorian expansion is impractical here we followDonauer et al.(2010) and use a Binomial

series expansion which we truncate afterk= 3 summands.

The linear approximation toG2(·) reads

G
(3)
2 = γ2(yt−e−c2)2−

1
2
γ2(γ2+1)(yt−e−c2)4+

1
6
γ2(γ2+1)(γ2+2)(yt−e−c2)6 . (21)

After substituting the transition function and combining terms we obtain the auxiliary model

yt = [Ψwt] + [Φwt] ×G1(yt−d;γ1,c1)+ (22)

δ0wt +δ1wtyt−e+δ2wty
2
t−e+δ3wty

3
t−e+δ4wty

4
t−e+δ5wty

5
t−e+δ6wty

6
t−e+ rt ,

whereδi , i = 0, . . . ,6, are functions of the parametersΞ,γ2 andc2 given in the appendixA.

This reformulation solves the identification problem as theparametersγ2,c2 andΞ are now

multiplicatively connected. The innovation term is now denoted byrt as it not only contains

εt but also the approximation error from truncating the infinite Binomial series. Notice that

underH0, rt = εt.

The pair of hypotheses for the auxiliary model reads

H0 : δi = 0 vs. H1 : at least oneδi , 0 ;i = 0, . . . ,6 .

3To test against a very general form of remaining nonlinearity in the residuals, artificial neural network tests as

studied byLee et al.(1993) could be used. See alsoTeräsvirta et al.(2008).
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This most general case simplifies if the location parameterc2 is set to zero a priori which is

frequently done in empirical applications. Then only the odd powers remain in the auxiliary

model.

The test can be carried out using the test statistic in (15). The correspondingR2 is obtained

from regressing the residuals obtained under the null, i.e.model (20) without the second

nonlinearity, on the partial derivatives of the regressionfunction evaluated under the null,

i.e. ẑt given in (16) - (19) and the auxiliary regressorswt andwtyi
t−e, i = 1, . . . ,6 . After the

estimation of the null model the additional orthogonalization step(ii) as for the test against

serially correlated innovations can be performed to avoid numerical problems as described at

the end of section4.1.

The resulting test statistic follows

LM(2) ∼ χ
2 (7(p+1)) .

Note that in the model formulation (20) the delay parameter of the second nonlinear compo-

nent is assumed to beewith e, d bute≤ p. Similar to determine the delayd described in step

1 of the modeling cycle the test can be carried out for variousvalues ofeand the test yielding

the minimalp-value is chosen as the decisive test decision.

4.3 Test of parameter constancy

Testing for the constancy of estimated parameters a well established way of checking the

adequacy of linear models (see e.g.Chow (1960), Quandt(1960) or Andrews(1993)). In

the context of nonlinear time series this maintains its importance but the assumption of an

abrupt break in the parameters is questionable. Therefore,we propose a parametric test of the

null of parameter constancy against the alternative that the autoregressive parameters change

smoothly over time. Assuming the parameters of the transition function fixed the model under

the alternative reads

yt = [Ψ(t)wt] + [Φ(t)wt] ×G(yt−d;γ,c)+εt , (23)
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with εt
iid
∼ N(0,1). The parameter vectorsΨ(t) andΦ(t) are now functions of time and can be

represented as

Ψ(t) = Ψ+λ1K(t;γ1,c1) (24)

Φ(t) = Φ+λ2K(t;γ1,c1) , (25)

whereλi , i = 1,2 , are vectors conformable to the dimension ofΨ andΦ andK(·) has the

functional form

K(t;γ1,c1) = 1−
{

1+ (t−c1)2
}−γ1

; γ1 > 0 . (26)

This function induces a nonmonotonic change which is symmetric aroundt = c1. If K(·) takes

on the limiting caseγ1→∞ thenK(·)→ 1−1c1 which corresponds to a single abrupt break

only att = c1. 1c1 denotes the indicator function atc1. The null of parameter constancy against

the alternative of smoothly changing parameters over time can now be expressed as

H0 : γ1 = 0 vs. H1 : γ1 > 0 .

Again we face an identification problem under the null asγ1 is not identified. We expandK(·)

as Binomial series and truncate afterk= 3 summands. This yields

K (3) = γ1(t−c1)2−
1
2
γ1(γ1+1)(t−c1)4+

1
6
γ1(γ1+1)(γ1+2)(t−c1)6 . (27)

Upon substitution of the approximation in (27) into the model in (23) we obtain after combin-

ing terms the auxiliary regression

yt =
[

Ψwt +δ0wt +δ1twt +δ2t2wt +δ3t3wt +δ4t4wt +δ5t5wt +δ6t6wt

]

+ (28)
[

Φwt +β0wt +β1twt +β2t2wt +β3t3wt +β4t4wt +β5t5wt +β6t6wt

]

×G(yt−d;γ,c)+ rt ,

where under the nullrt = εt. The coefficientsδi , i = 0, . . . ,6, andβi, i = 0, . . . ,6, are functions

of γ1,c1 andλi , i = 1,2 and given in the appendixA.

The pair of hypotheses for the auxiliary model reads

H0 : δi = βi = 0 vs. H1 : at least oneδi or βi , 0 ;i = 0, . . . ,6 .

The test against smoothly changing parameters can now be computed using (15) where the

R2 is obtained from the regression of the residuals under the null on the gradient ˆzt and the
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auxiliary regressors. The additional orthogonalization step (ii) is again recommended. The

additional regressors in (28) are trending but using Theorem 1 inLin and Teräsvirta(1994)

the OLS estimates are still normally distributed and the usual asymptotic holds.

The test statistic follows

LM(3) ∼ χ
2 (14(1+ p)) .

As with the test against remaining nonlinearity the auxiliary regression simplifies whenc1 = 0

is assumed a priori. Then only the even powers of the trend remain.

4.4 Generalized impulse response function

Impulse response functions (IRF) are a well established wayto analyze the effect of a shock on

the behavior of a time series model. Traditional impulse response analysis therefore considers

the question: ’What is the effect of a shock of sizeδ hitting the system at timet on the state

of the system at timet+n, if no other shock hits the system in the meantime?’. Denote with

δ the size of a shock hitting the system at timet and withωt−1 a particular realization of the

information setΩt−1 then we can define the impulse response function more formally as

IRF(n, δ,ωt−1) = E[yt+n|εt = δ,εt+1 = . . . = εt+n = 0,ωt−1] − (29)

E[yt+n|εt = εt+1 = . . . = εt+n = 0,ωt−1] .

The second conditional expectation is often called the ’baseline’ which acts as a reference

point. For linear modelsKoop et al.(1996) point out three properties of the impulse response

functions:Symmetry, i.e. a shock of -1 has exactly the opposite effect of a shock of+1, shock

linearity, i.e. a shock of size 2 has exactly twice the effect as a shock of 1, and the IRF is

history independent, i.e. the past does not effect the response in any way. The authors also

provide various examples to show that these properties do not carry over to the nonlinear case.

To remedy this drawbacksKoop et al.(1996) propose a generalized impulse response function

(GIRF) which is itself a random variable and is defined as

GIRF(n, δ,ωt−1) = E[yt+n|εt = δ,ωt−1] −E[yt+n|ωt−1] . (30)

Here, the conditional expectation is conditioned only on the shockδ and the pastωt−1. The

shocks occurring in the meantime are handled by averaging them out. For computing the
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GIRF obviously we need the conditional expectation of a nonlinear model which is cumber-

some as the dimension of the integral defining the conditional expectation grows withn (see

Granger and Teräsvirta(1993)). To ease implementationKoop et al.(1996) propose a numer-

ical technique to compute the conditional expectation by means of Monte Carlo integration

(for further details seeKoop et al.(1996, p. 135)).

The history on which we condition the GIRF can also be only a subset of the entire history

such asωt−1 ∈ A. WhereA could be the subset containing only the observations coming

from one regime. Such an approach is useful in determining whether the dynamic behavior is

different in periods of recession compared with expansionary periods (see e.g.van Dijk et al.

(2002a) andKapetanios(2003)).

The GIRF can also be used to analyze whether the model under consideration produces asym-

metric effects over time. This could be done as inPotter(1995) by defining

AS YM(n, δ,ωt−1) =GIRF(n, δ,ωt−1)+GIRF(n,−δ,ωt−1) . (31)

Another use of the GIRF is to examine the persistence of shocks (seeKoop et al.(1996)). If a

time series model is stationary, at least globally, then theeffect of a shock should eventually

fade away to zero if the horizonn goes to infinity. As a consequence the density of the

GIRF defined by (30) should collapse to a single spike at zero. Therefore, the dispersion of

the densities of the GIRF at different horizonsn can be used as a pragmatic measure of the

persistence of shocks.

5 Finite sample properties

To study the behavior of the tests in finite samples we conducta small scale simulation study.

We report size results from simulating the following T-STARprocess

yt = 0.7yt−1−0.5yt−1

[

1−
{

1+y2
t−1

}−1
]

+εt , (32)

whereεt
iid
∼ N(0,1). The location parameter is set toc= 0 only to reduce computational burden

in the estimation process and it does not effect the results reported here.

We study different sample sizes ofT = 300,500,1000. For all time series generated we discard
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the first 500 observations in order to be independent of the initial values. The first step in each

simulation is to compute the linearity test against T-STAR proposed byDonauer et al.(2010).

If the null cannot be rejected at the 5% level of significance the series is discarded and a new

one is simulated. If the null is rejected the size or power experiment is conducted. This is

done until the number of replicationM = 50000 is reached. Applying the linearity test in the

first step is done to avoid the estimation of a series in which there is not much evidence of

nonlinearity.

The results of the size experiment for the test against LSTARmodels from section3 are shown

in Table1.

α T = 300 T = 500 T = 1000

1% 0.950 0.912 0.922

5% 4.822 4.844 4.750

10% 9.900 9.890 9.956

Table 1: Empirical size of the test against LSTAR [in %].

The size of the test procedure to choose between competing STAR formulations shows

virtually no distortions in the considered sample sizes. This is especially notable as the en-

compassing test to discriminate between ESTAR and LSTAR proposed byChen(2003) is

generally undersized.

The power of the test against LSTAR was simulated using the following LSTAR specification

as alternative:

yt = 0.7yt−1−0.5yt−1
[

1+exp(−2yt−1)
]−1
+εt .

The results are given in Table2.

α T = 300 T = 500 T = 1000

1% 21.050 39.078 67.472

5% 39.838 57.910 78.750

10% 50.675 66.920 83.512

Table 2: Empirical power of the test against LSTAR [in %].
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The power of the testing procedure shows reasonable discriminatory power of the test.

In particular it yields better results than the selection procedures ofTeräsvirta and Anderson

(1992) andTeräsvirta(1994), relying on the simulation results inChen(2003). Compared to

the test procedure for the ESTAR–LSTAR case of the latter author the power is comparable in

most settings. In some cases the power of the test ofChen(2003) is clearly higher but given

the serious size distortions4 the power of his test is not readily interpretable.

When studying the empirical power of the test against serially correlated innovations de-

scribed in section4.1 we simulate from (32) but assume that the innovation process follows

an AR(1) processut = ρut−1+εt, with εt
iid
∼ N(0,1) andρ = 0.2,0.4,0.6.

The results for the size and power experiment are summarizedin Table3 and Table4 respec-

tively.

T = 300 T = 500 T = 1000

α q= 1 q= 2 q= 5 q= 1 q= 2 q= 5 q= 1 q= 2 q= 5

1% 1.066 1.044 0.990 0.982 1.072 0.910 1.074 0.982 1.014

5% 5.254 5.208 5.022 5.074 5.186 4.892 5.362 5.028 5.100

10% 10.302 10.506 10.104 10.234 10.438 10.032 10.164 10.24010.100

Table 3: Empirical size of the test of no innovation correlation [in %].

The results in Table3 show that the empirical size is always very close to its nominal

level. Although some minor distortions are visible the overall result confirms a satisfactorily

behavior of the test in finite samples.

4In some settings he obtains a size of only 0.5% at a nominalα = 5% level.
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ρ = 0.2 T = 300 T = 500 T = 1000

α q= 1 q= 2 q= 5 q= 1 q= 2 q= 5 q= 1 q= 2 q= 5

1% 4.030 7.210 4.112 18.004 12.424 7.038 38.910 29.094 17.606

5% 10.036 20.176 13.880 38.422 30.090 20.644 62.968 52.822 37.888

10% 14.276 30.718 23.064 50.936 42.136 31.470 74.304 65.22650.902

ρ = 0.4 T = 300 T = 500 T = 1000

α q= 1 q= 2 q= 5 q= 1 q= 2 q= 5 q= 1 q= 2 q= 5

1% 43.138 32.416 19.384 68.482 57.274 40.060 95.498 91.406 81.562

5% 67.250 56.998 41.046 86.474 78.716 64.146 98.962 97.478 93.382

10% 77.660 68.994 54.452 92.132 86.608 75.366 99.568 98.82896.610

ρ = 0.6 T = 300 T = 500 T = 1000

α q= 1 q= 2 q= 5 q= 1 q= 2 q= 5 q= 1 q= 2 q= 5

1% 75.702 65.084 46.986 94.442 89.720 77.784 99.950 99.814 99.100

5% 90.392 84.140 70.484 98.626 97.014 91.434 99.994 99.986 99.846

10% 94.778 90.658 80.636 99.398 98.576 95.508 99.996 99.99299.946

Table 4: Empirical power of the test of no innovation correlation [in %].

The results for the empirical power displayed in Table4 show a similar behavior to the

test for the ESTAR case described inEitrheim and Teräsvirta(1996). The power slightly

decreases if the tested order of autocorrelationq increases. This might be expected asq= 1

is the true data generating process. Another factor that influences the power is the degree of

autocorrelationρ. In finite samples and a low degree of serial correlation the power is quite

low but increases steeply if the sample size and/or theρ becomes larger. Such a behavior

is somewhat expected as theχ2 distribution holds only asymptotically and ifρ increases the

serial correlation becomes easier to detect. In general thetest yields good results for most

situations encountered in practice and helps to reveal severe misspecifications.

For the assessment of the test of no remaining nonlinearity from section4.2we simulate data

from (32) to perform the size experiment. The results for the size andpower experiments are
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displayed in Tables5 and6 respectively.

α T = 300 T = 500 T = 1000

1% 0.806 0.834 0.852

5% 4.552 4.728 4.640

10% 9.540 9.600 9.566

Table 5: Empirical size of the test of no remaining nonlinearity [in %].

The results of the size experiment show that the empirical size is close to its nominal level.

If anything, the test is slightly conservative.

For the power experiment we simulate data from

yt = 0.3yt−1−0.1yt−1

[

1−
{

1+y2
t−1

}−1
]

+0.75yt−1

[

1−
{

1+y2
t−1

}−3.5
]

+εt ,

whereεt
iid
∼ N(0,1). Additionally to this data generating process we simulate from an LSTAR(1)

and ESTAR(1) process and induce remaining nonlinearity by fitting the wrong model, namely

an T-STAR(1). The respective processes read

yt = 0.7yt−1−0.5yt−1
[

1+exp(−2yt−1)
]−1
+εt

yt = 0.7yt−1−0.5yt−1

[

1−exp(−2y2
t−1)

]

+εt ,

with εt
iid
∼ N(0,1). The results for these simulations are presented in Table6.

Another variant of the power simulation inspired byEitrheim and Teräsvirta(1996) is also

explored: The data is generated by (32) but misspecification is assumed by fitting a STAR

model of the wrong kind to the data, namely a LSTAR(1). These results are presented in

Table7.
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H1 : T-STAR

α T = 300 T = 500 T = 1000

1% 3.120 2.986 3.772

5% 12.224 11.424 12.184

10% 21.474 20.076 20.676

H1 : LSTAR

α T = 300 T = 500 T = 1000

1% 4.430 5.522 8.274

5% 13.924 16.898 27.044

10% 24.070 28.614 43.822

H1 : ESTAR

α T = 300 T = 500 T = 1000

1% 1.348 1.292 1.276

5% 6.848 6.480 6.210

10% 13.440 12.716 11.990

Table 6: Empirical power of the test of no remaining nonlinearity [in %].

For this test the empirical power results reveal a comparable performance for this test as

for the test in the ESTAR case reported inEitrheim and Teräsvirta(1996). The test appears

to have reasonably good power against LSTAR models especially in larger samples where the

power increases quite steeply.

Interestingly the test appears to have some nontrivial power also against ESTAR at least in

small samples. This is surprising given that T-STAR has beendesigned to resemble the desir-

able properties of ESTAR. This power vanishes asT increases underlining that the T-STAR

model can very well serve as an alternative to ESTAR as they can hardly be distinguished for

reasonable sample sizes.
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α T = 300 T = 500 T = 1000

1% 31.512 34.200 41.434

5% 49.670 52.924 60.868

10% 61.682 64.914 71.762

Remark: An LSTAR(1) model was fitted to data generated from (32).

Table 7: Empirical power of the test of no remaining nonlinearity [in %].

Analyzing the power experiment set up as inEitrheim and Teräsvirta(1996) we obtain

rather good results for the test against no remaining nonlinearity even in finite samples. In

particular we obtain higher power as in the ESTAR case.

Turning to the results for the test of parameter constancy wereport size and power results in

Tables8 and9 respectively.

α T = 300 T = 500 T = 1000

1% 0.778 0.850 0.940

5% 4.490 4.504 4.784

10% 9.278 9.354 9.522

Table 8: Empirical size of the test of parameter constancy [in %].

The test shows only minor size distortions in finite samples and approaches its nominal

level as the sample size increases. Overall the test seems tobe conservative, if anything.

For the power simulations we generate data from (23) of order one and setψ0(t)= 2K(·), ψ1(t)=

−0.2, ϑ0(t) = 0 andϑ1(t) = (1.1−0.9K(·)) whereK(·) =K(t/T;3,0) as in (26).

α T = 300 T = 500 T = 1000

1% 3.008 22.110 99.248

5% 11.458 44.252 99.746

10% 19.528 57.336 99.824

Table 9: Empirical power of the test of parameter constancy [in %].
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The test shows reasonable power to detect parameter changesin finite samples. If the

sample size increases the power of the test increases very steeply. Thus the test is a useful tool

to detect parameter changes in most sample sizes.

6 Modeling real exchange rates

To demonstrate the application of the test developed in thispaper we run through the whole

modeling cycle described in section2 to model real exchange rates.

We use the same data that has been analyzed byTaylor et al.(2001) and byRapach and Wohar

(2006). Namely, we analyze monthly real exchange data for Germanyagainst the US from

1980:01 - 1994:12 (T = 288).5 The series is depicted in Figure1.
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Figure 1: Monthly log real exchange rate for Germany.

Determining the lag length using the consistent BIC we obtain p = 1. The linearity test

rejects the null of linearity on theα = 5% level of significance. The test against LSTAR yields

a test decision in favor of the null model, i.e. T-STAR.

5The data set is available from David Rapach’s website at:http://pages.slu.edu/faculty/rapachde/Nlfit.zip.
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As the data set has also been analyzed byTaylor et al.(2001) and byRapach and Wohar

(2006) we report also their estimates for an ESTAR model. The estimated model has been

theoretically justified by the assumption that real exchange rates follow a nonlinear STAR

model with one unit root regime and one stationary regime that pulls the real exchange rate

back into its stable equilibrium once it wanders too far off. The model reads

yt = yt−1+πyt−1G(·)+εt , (33)

where−2 < π < 0 to ensure global stationarity of the model. The transitionfunctionG(·)

is either as in (3) for the ESTAR model or as in (5) for the T-STAR model. Additionally

Taylor et al.(2001) andRapach and Wohar(2006) setπ≔ −1.

The estimation results are in table10.

ESTAR T-STAR

π̂ -1 -0.023

γ̂ 0.264 275.284

σ̂ε 0.035 0.032

Table 10: Estimation of STAR models.

Albeit the estimates for the T-STAR model might look puzzling at first Donauer et al.

(2010) show that these estimates are much more reasonable than thecorresponding ESTAR

estimates as the ESTAR model actually degenerates to a random walk as opposed to the T-

STAR model which maintains the regime switching behavior. Further support of the PPP can

be seen in Figure2.
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Figure 2: Monthly log real exchange rate for Germany and transition function.

The figure shows the time series, rescaled to be in the closed interval [0,1], and one minus

the estimated transition function over time. The gray shaded area are the time periods in which

the process behaves like a random walk. This is always the case when the process is close

to its equilibrium near zero (note that the dotted line at 0.5is the zero line of the unscaled

series). Thus we have a stationary but nonlinear process most of the time which behaves like a

random walk near the equilibrium as predicted by the PPP.Donauer et al.(2010) further show

that the data is globally stationary although one unit root regime is present. Global stationarity

is important for the asymptotic distributions of the misspecification tests to hold. Performing

the misspecification tests yields the results in table11.
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Test Statistic Critical Value

Test against LSTAR LM = 5.779 χ2
0.99;ν=2 = 9.210

Test of serial independence LM(1) = 0.501 χ2
0.99;ν=1 = 6.635

Test of no remaining nonlinearityLM(2) = 8.935 χ2
0.99;ν=3 = 11.345

Test of parameter constancy LM(3) = 1.283 χ2
0.99;ν=6 = 16.812

Table 11: Results of the misspecification tests.

The respective null hypotheses of the tests cannot be rejected at theα = 0.01 level of sig-

nificance hinting at a well specified model.

To gain further insights about the dynamic properties of thefitted model we estimate gener-

alized impulse response functions. As the test against ARCHeffects as described inEngle

(1982) provides no evidence of conditional heteroscedasticity we randomly sample the inno-

vations with replacement from the estimated model. The shocks we use areδt = δσ̂ε, with

δ = ±2,±1. We compute the GIRF for a horizon ofn= 150 and estimate the conditional ex-

pectations in (30) as means over 5000 Monte Carlo repetitions. Figure3 shows the estimated

impulse response functions.
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Figure 3: Generalized impulse response functions.

Obviously the shocks hitting the system are very persistentover time but eventually vanish.

This supports the parameter estimates that show a highly persistent model. Additionally a

high persistence of shocks in the model can also be induced bynonlinearities which in turn

leads to such highly persistent impulse response functions(see e.g.van Dijk et al.(2002a)

andKuswanto and Sibbertsen(2008)). Another interesting aspect is whether the response to

shocks is asymmetric depending on the sign of the shock. A measure for asymmetry is defined

in (31). Figure4 shows the estimated quantities.
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Figure 4: Measure of asymmetry.

For both shocks the behavior is asymmetric depending on the sign of the shock. If the

shock is negative but relatively small the response to it is larger compared to a positive shock

of the same size. This difference vanishes quite fast as the horizon increases. If however the

shock is negative and relatively large (δt = |2σ̂ε|) the response to a negative shock is heavier

and decreases much slower. Indeed the asymmetry first increases before it decreases.

7 Conclusion

In this paper we extend the treatment of the newly developed nonlinear time series model

named T-STAR developed byDonauer et al.(2010). We consider the modeling cycle for non-

linear time series models and contribute to the evaluation stage by proposing LM tests against

serially correlated innovations, no remaining nonlinearity and parameter constancy. We also

consider evaluation by generalized impulse response functions as proposed byKoop et al.

(1996). In simulations we show that all the tests have reasonable power against their respec-

tive alternatives and are therefore an useful addition to the evaluation toolbox for nonlinear
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T-STAR models.

In an empirical application to real exchange data we put the evaluation techniques to the test

and verify that a proposed T-STAR formulation adequately captures the nonlinear behavior

of the data. Impulse response analysis is used to further evaluate the dynamic propagation

behavior of the estimated model.
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A Appendix

A.1 Regression coefficients in (22)

Expanding the expressions containingc2 as

(yt−e−c2)2 = y2
t−e−2yt−ec2+c2

2,

(yt−e−c2)4 = y4
t−e−4y3

t−ec2+6y2
t−ec

2
2−4yt−ec

3
2+c4

2,

(yt−e−c2)6 = y6
t−e−6y5

t−ec2+15y4
t−ec

2
2−20y3

t−ec
3
2+15y2

t−ec
4
2−6yt−ec

5
2+c6

2,

we obtain after some algebra

δ0 =

[(

γ2c2−
1
2
γ2(γ2+1)+

1
6
γ2(γ2+1)(γ2+2)c6

2

)

Ξ

]

δ1 =
[(

−2γ2c2+2γ2(γ2+1)c3
2−γ2(γ2+1)(γ2+2)c5

2

)

Ξ
]

δ2 =

[(

−3γ2(γ2+1)c2
2+2

1
2
γ2(γ2+1)(γ2+2)c4

2

)

Ξ

]

δ3 =

[(

2γ2(γ2+1)c2−3
1
3
γ2(γ2+1)(γ2+2)c3

2

)

Ξ

]

δ4 =

[(

−
1
2
γ2(γ2+1)+2

1
2
γ2(γ2+1)(γ2+2)c2

2

)

Ξ

]

δ5 =
[

(−γ2(γ2+1)(γ2+2)c2)Ξ
]

δ6 =

[(

1
6
γ2(γ2+1)(γ2+2)

)

Ξ

]

.

A.2 Regression coefficients in (28)

Expanding the expressions containingc1 as

(t−c1)2 = t2−2tc1+c2
1,

(t−c1)4 = t4−4t3c1+6t2c2
1−4tc3

1+c4
1,

(t−c1)6 = t6−6t5c1+15t4c2
1−20t3c3

1+15t2c4
1−6tc5

1+c6
1 .
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we obtain after some algebra forλ1

δ0 =

[(

γ1c1−
1
2
γ1(γ1+1)+

1
6
γ1(γ1+1)(γ1+2)c6

1

)

λ1

]

δ1 =
[(

−2γ1c1+2γ1(γ1+1)c3
1−γ1(γ1+1)(γ1+2)c5

1

)

λ1

]

δ2 =

[(

−3γ1(γ1+1)c2
1+2

1
2
γ1(γ1+1)(γ1+2)c4

1

)

λ1

]

δ3 =

[(

2γ1(γ1+1)c1−3
1
3
γ1(γ1+1)(γ1+2)c3

1

)

λ1

]

δ4 =

[(

−
1
2
γ1(γ1+1)+2

1
2
γ1(γ1+1)(γ1+2)c2

1

)

λ1

]

δ5 =
[

(−γ1(γ1+1)(γ1+2)c1)λ1
]

δ6 =

[(

1
6
γ1(γ1+1)(γ1+2)

)

λ1

]

and forλ2 respectively

β0 =

[(

γ1c1−
1
2
γ1(γ1+1)+

1
6
γ1(γ1+1)(γ1+2)c6

1

)

λ2

]

β1 =
[(

−2γ1c1+2γ1(γ1+1)c3
1−γ1(γ1+1)(γ1+2)c5

1

)

λ2

]

β2 =

[(

−3γ1(γ1+1)c2
1+2

1
2
γ1(γ1+1)(γ1+2)c4

1

)

λ2

]

β3 =

[(

2γ1(γ1+1)c1−3
1
3
γ1(γ1+1)(γ1+2)c3

1

)

λ2

]

β4 =

[(

−
1
2
γ1(γ1+1)+2

1
2
γ1(γ1+1)(γ1+2)c2

1

)

λ2

]

β5 =
[

(−γ1(γ1+1)(γ1+2)c1)λ2
]

β6 =

[(

1
6
γ1(γ1+1)(γ1+2)

)

λ2

]

.
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