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Abstract

We consider a recently proposed class of nonlinear timeseniodels and focus mainly on
misspecification testing for models of such type. Followtimg modeling cycle for nonlinear
time series models of specification, estimation and evalnatve first treat how to choose
an adequate transition function and then contribute tovhkiation stage by proposing tests
against serial correlation, no remaining nonlinearity padameter constancy. We also con-
sider evaluation by generalized impulse response furgtidime finite sample properties of
the proposed tests are studied via simulation.

We illustrate the use of these methods by an applicatiordaicesechange rate data.
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1 Introduction

Over the last decade and a half the interest in nonlinear sienes models has been grown
steadily. Especially the class of smooth transition aghassive (STAR) models, initiated by
the work ofBacon and Watt§1971) and popularized byerasvirta(1994, has enjoyed great

success. A lot of work in this area has been devoted to estimapecification, testing and
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applications such as forecasting. For a recent review efftbid see e.gPotter(1999 and
van Dijk et al.(20028.

Within the class of STAR models the two most notable are thestw STAR (LSTAR) and
the exponential STAR (ESTAR) model. The ESTAR model in gattr has been very popu-
lar with empirical investigations of economic theoriesisas purchasing power parity (PPP)
or the Fisher hypothesis (see e.faylor et al.(200]) and Rose(1989). It is by now well
known that the estimation of the parameters in ESTAR modelsotoriously hard as no-
ticed early byHaggan and OzaKiL981), Tong (1990 or Terasvirta(1994). In fact, as shown
by Donauer et al(2010 some crucial parameters in ESTAR models are unidentifi¢ieif
variance of the innovation term becomes very small. Thispeeeially important within the
context of real exchange rates as estimated innovatioan@as are usually extremely small
(see e.g.Gatti et al.(1998, Ocal (2000, Taylor et al.(2001) or Rapach and Wohg2006
among others). In order to remedy this problBanauer et al(2010 propose a new type of
nonlinear model formulation called T-STAR that maintaims tlesirable properties of ESTAR
but reduces the estimation problem for the most part. Intexidihe authors propose a linear-
ity test and an unit root test for the new model.

A complete account of this new model however would requireuto through all steps of
the empirical modeling cycle devised bBgrasvirta(1994). This paper is mainly devoted to
the evaluation stage of the modeling cycle and proposedaaiuLagrange multiplier (LM)
tests designed for this newly developed model. The devetopmf specialized parametric
tests for nonlinear models is important since standardpaigication tests such as the well
known Ljung-Box test have been shown to be badly sized whettrtie data generating pro-
cess is nonlinear (sd&trheim and Terasvirtél996). However, before considering residual
based tests we treat the problem of how to choose betweenifig@cetht nonlinear models by
proposing a direct test based on the encompassing principle

The paper is organized as follows: In sectmwe review the class of models under study
and the empirical modeling cycle for nonlinear models. Amoetto discriminate between
competing nonlinear model formulations is described iniea@. In section4 we propose

different tests against serial dependency of the residualsgmaiming nonlinearity of the
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residuals as well as parameter constancy of the estimatdeéImion addition we cover eval-
uation via impulse response analysis. In seciave study the finite sample performance of
the afore mentioned tests. In secti®nve run through the whole modeling cycle to model
real exchange rates before sectibnoncludes. Some additional results are collected in the

appendixA.

2 The modeling cycle

A general STAR model is given by two autoregressive reginoesiected by a smooth transi-
tion function. Smoothness means that the transition fonathanges continuously from zero
to one and therefore governs the transition between thedgiomes in a smooth way. Alter-
natively, a STAR model can also be interpreted as a continofuragimes which is passed
through by the process.

In general, univariate STAR] models,p > 1 andd < p, are given by

[Yw] X[1 -G (W-d:7.0)] + [OW] X G(Wt-d7.C) + &t (1)

Yt

[PwW] +[DPW] X G(Ye-d;v.C) +&, t>1, (2)
with & '© (0,02).

The parameter vectosand® as well asv are given by = (yo,¥1,...,¢p), © = (do,71,..., ),
andw; = (1,¥t-1,...,Yt-p)’. Forthe alternative parametrization ) (ve haved = (¢o,¢1,...,¢p) =
(Yo—"D0,¥1—11,...,¥p—1p), i.e. the second regime realizes as sun¥ @nd®.

Different choices of the transition functigy(-;y,c) : R — [0,1] lead to diferent STAR

models. A popular choice is the exponential form leadindi®ESTAR model

G(+7.9) = 1-exp{-y(y-a—0)%}; ¥>0. (3)
This functional form for the transition function is popufar modeling real exchange rates or
real interest rates (see e{apetanios et a[2003). However the estimation of the parameter
v that governs the functional form and thereby the transijmeed is notoriously hard. Indeed

it is shown byDonauer et al(2010 in Theorem 2.4 that

lim Var(y) — oo . 4)

g l0
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As the parametey is absolutely crucial in STAR models (s@eng(1990) this result makes
it almost impossible to obtain reliable estimation resfdtseasonable small innovation vari-
ances.

To remedy this probler@onauer et al(2010 propose to reformulate the well known transi-

tion function in @) as
G670 =1-{1+(a-0?"; y>0. (5)

The resulting model is called T-STAR model and reduces tbatitication problem for the
most part. Both transition functions iB)(and 6) share the same properties which make them
applicable in the same situations. For further details vier te Donauer et al(2010.

The modeling cycle for nonlinear models as proposedarasvirta(1994) consists of three
main steps:

Step 1: Specification

e Specifying a linear autoregressive model via an infornmatigterion such as AIC (see
Akaike (1974) or BIC (seeSchwarz(1979).

e Testing linearity for diferent values ofl and if it is rejected specifgl by minimizing the
p-value of the linearity test via a grid search over possiblees ofd (seeTsay (19869
or Terasvirta(1994).

e Choosing an adequate transition function by testing asefimested hypotheses (see
Terasvirta and Andersqi 992, Terasvirta(1994 andEscribano and Jord2001).

Step 2: Estimation

e Estimate the specified model using either nonlinear leasires or conditional (quasi)
maximum likelihood. Consistency for these techniques leas lestablished dglimko and Nelson
(1978 andTjgstheim(1986 respectively.



Step 3: Evaluation

e Perform residual based tests against serial dependencemaining nonlinearity and
parameter constancy as proposedtitrheim and Terasvirt§1996. Evaluate the dy-
namic behavior via generalized impulse response functereldped byKoop et al.

(1996. Modify the model if necessary.

After an adequate model is identified it can be used eithedéscriptive purposes or for
computing forecasts. Forecasting techniques for nonlimealels are studied extensively by
Clements and Smitf1997 (see als@ranger and Terasvirfd993 andClements and Hendry
(1998).

Specification testing on the first stage, i.e. linearityitgsand selecting the transition func-
tion, is partially considered iDonauer et al(2010 by developing a linearity test for the new
model. This test will be only briefly reviewed here for thesak completeness. Starting with
the model formulation inZ) with transition function in $) Donauer et al(2010 proceed in
the spirit ofLuukkonen et al(1988 and approximate the nonlinearity by expand&(g vy, )

as a Binomial series which they truncate at a suitable lekgtfihis yields the following

general auxiliary regression for a fixdd p andk:
& >y © ° a °y @ Sy
Vo= D ot ) 0% i+ ) 0N iyea+ Y OV iyE g+ 8y iy + e (6)
i=1 =1 j=1 j=1 =1
The null in this auxiliary model reads:
Ho:6§€) =0 vs. Hj:atleast onégf) #0; j=1,...,pand¢=0,...,2k.

This null can be tested by using a stand&rtest for a subvector of parameters.

3 Choosing the transition function

Selecting an adequate transition function is crucial tdwapthe in-sample dynamic of the
data generating process properly. A first approach has bade byTerasvirta and Anderson

(1992 andTerasvirta(1994. These methods concentrate on discriminating betweetwine
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most popular STAR models, namely ESTAR and LSTAR. Their psga technique exploits
the properties of the Taylor series expansion of the twoineal alternatives and is based on
testing a sequence of nested hypotheses. Using such a predadolves some problems:
First the size is not under control anymore because of séiqligasting. A second problem
is that the classical approach only considers a first ordeamsion. AsEscribano and Jorda
(2001 point out this approximation is only adequate if the logsatparametec is restricted
to zero a priori. To circumvent this and related problemy firepose to always include cubic
and fourth power terms in the auxiliary regression. Thisnowps the discriminatory power
of the test but as this procedure is still based on sequéeasitihg the size is not under control
in neither of these approaches.

A rather diterent approach is proposed 67en(2003. Based on an encompassing principle
for non-nested models fro@hen and Kuaf2002 andChen and Kuax2007) he directly test
whether an ESTAR or LSTAR formulation is more adequate. imusations he shows that his
approach is more powerful in detecting the correct spetifioa

The T-STAR model was proposed as an alternative to the ESTABReihand therefore we
concentrate on distinguishing between T-STAR and LSTAR eht@rmulations.

Our approach is related ©hen(2003 in the sense that we also aim to directly test whether
T-STAR or LSTAR is more appropriate. The approach we take isrecompassing approach
to conditional mean testing for non-nested hypotheses@soped bywooldridge(19903.
The idea is that the residuals of the model under the nulinesgéd by nonlinear least squares
should be orthogonal to the gradient of the null model andék&luals should also be inde-

pendent of the gradient of the model under the alternativaeNMormally, let
mW,a):acAt=12..}, AcIRP 7)

be the model under the null. In our case this is the T-STAR mimd€) together with the

transition function in%). The model under the alternative reads
{i(Wm.B) 1 BB, t=12..}, BCR?. (8)
In our case this is an LSTAR model defined asdpwith the transition function

G(7,0) = {1+expCy(yia—0)) . 9)
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Define the residuals under the null as
& = Yi — (W, @) -
The test considers to test fo= 0 in
yi = M(W, @) + 6V u(B) + errory, (10)

whereVu(B) = Vau(w,f) is the Qx 1 gradient ofu(w,8) evaluated at the nonlinear least
squares estimatg of 8. Denote byV,m(&) the sameP x 1 quantity for the null model

my(W;, @). The test can be carried out by computing
LM =TR, (11)

whereT is the sample size ari®f is the codficient of determination from the regressionepf ~
on Vﬂ,u(B) andV,m(@). Asymptotically this test statistic follows&(Q) distribution.

If no homoscedasticity is assumed the test can be robudtifieding results froriVooldridge
(19908 and run through the steps describedPmcedure 3.1in Wooldridge(1990a p. 336).

4 Residual based misspecification tests

4.1 Test of serial independence

In deriving the evaluation tests for the T-STAR model we fdydollow the steps taken in
Eitrheim and Terasvirt§1996. However, there are some crucialfdrences between their
tests and the ones developed during the course of this sectio

Consider the following general T-STAR model of orger
Vi = [Pl + [ow x |1 {1+ 0rg = 0] 7|+ ur, (12)

with ¥ = (Yo,¥1,....¥p), © = (po,¢1,...,¢p) andwg = (1, ¥i-1,...,Yt-p)’. The innovation pro-

cesay is autocorrelated and follows an invertible moving-averpmpcess of order (MA(q))?

w=[1+aL)]e; &~ (0.09), (13)

2This is not restrictive as this is also the test against iations following an ARg) process since they are

asymptotically local equivalent alternatives of each o{seeGodfrey(1988 p. 114)).
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whereL denotes the lag operator an(l) = (a1L +aol?+...+ aql9).
Under the null of no serial correlation the innovatiap#n (12) areiid and under the alterna-

tive they follow (L3). The testable pair of hypotheses thus reads
Ho:@j=0 vs. Hjp:atleastone; #0; i=1,...,q.

Based on results given iBodfrey (1988, we can proceed to develop a Lagrange multiplier
(LM) test against serially correlated innovations.

To keep the notation simple define the so-called skelet@Hsases and van Diji2000)
FT) = [P we] + [Dwe] x| 1= {1+ (=07 7| (14)
with I' = (¥, ®,y,c) and the model becomes
Yo = f(w; )+ .
Further define
O = ye— f(Wi;T)
wherel = (¥, ®,7,8) is the minimizer of
T
Q=) ly- fws D)
t=1
The test statistic for the null of no serial correlation camwrbe obtained as
LM@y =TR, (15)

whereT is the sample size arfé? is the codficient of determination from the regression of

af(a";t;r) o This 'TR variant of the LM test has

0 on lagged residuals;y,. .., 0—q and7 =
been proposed for detecting misspecificationBlogusch(1978 and Godfrey (1978 (see
alsoGodfrey(1989).

Eitrheim and Terasvirt§1996 provide the components needed for computih) for the



ESTAR and LSTAR case. The respective components for theARSEse are as follows:

af(w;T)

av M (16)
oTwT) (;ﬁ; D~ [ow]x {[1 +(-a—0)%] T In(1+ (Yia— C)z)} (18)
o (We.T) |1+ (g - 02| "y (~2y +20)

—act = [Ow]x { T 0= o7 : (19)

Eitrheim and Terasvirt§1996 point out that such a test canfiar from size distortions in
finite samples because the estimation procedure in the fagtrsay result in a solution in
which the residuals are not perfectly orthogonal to the igrad;. We adopt their proposed
remedy for this situation and take an extra orthogonabraesitep after estimating the model

in (12) and obtaining the residuals. The test can now be performdtée stages:

(i) Estimate the T-STAR model using either nonlinear legstases or conditional (quasi)

maximum likelihood under the null and obtain the residwgls ~
(i) Regresau; on the gradient;,"and obtain the residuais. ”

(i) Regressu; on ti—1,...,U—q and the partial derivatives df(w;I') evaluated af’ as de-

tailed in (16) - (19) and compute the respectii.

Under the null of no serial correlation the test statistitofes

LM ~ x2(q) .

4.2 Test of no remaining nonlinearity

Since there a numerous ways in which a nonlinear model canisepecified we restrict

ourselves to the case of additive nonlinearity. Thereforesaer the model
Yt = [P W] + [PW] X G1(Yi-d; ¥1.C1) + [EW] X G2(Vi—e; Y2, C2) + &t » (20)
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whereG1(-) andGo(-) are transition functions of the form i), As the null model we consider

(20) but without the second nonlinear component. The respeotiM can be formulated as
Ho:y2=0 vs. Hi:y2>0.

This situation can also be interpreted as testing a two reg#STAR model against a three
regime T-STAR model. In this interpretation the test is ryaelxtendable to more general
models containing more than two or three regirhes.

If we want to test the pair of hypotheses &1) we face a similar problem dsiukkonen et al.
(1988 andDonauer et al(2010 when constructing linearity tests, i.e. that under the ting
model in QO0) is not fully identified. We circumvent this problem similaand approximate
the second nonlinearity by using an adequate linear sexigansion around, = 0. As a
Taylorian expansion is impractical here we foll@onauer et al(2010 and use a Binomial
series expansion which we truncate aker 3 summands.

The linear approximation tg»(-) reads

1 1
G5 = v2W-e= )~ 5y2(r2+ D=2 + 51202+ D02+ 20e -, (21)

After substituting the transition function and combiniegrhs we obtain the auxiliary model

Yo = [Pw]+[PW]XG1(Yi-d;y1.C1)+ (22)

oW + 51Wtyt—e + 62Wtyt2—e + 63Wtyg_e + 54Wty€_e + 65Wtyt5—e + 56Wty?—e +TIt,

whered;, i =0,...,6, are functions of the parametefsy, andc, given in the appendiA.
This reformulation solves the identification problem aspheameters,,c, and= are now
multiplicatively connected. The innovation term is now desd byr; as it not only contains
&t but also the approximation error from truncating the inériinomial series. Notice that
underHg, ri = &t.

The pair of hypotheses for the auxiliary model reads

Ho:6i=0 vs. Hp:atleastong; #0;i=0,...,6.

3To test against a very general form of remaining nonlingamithe residuals, artificial neural network tests as
studied bylLee et al (1993 could be used. See al3erasvirta et al(2008.
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This most general case simplifies if the location parametés set to zero a priori which is
frequently done in empirical applications. Then only thel @dwers remain in the auxiliary
model.

The test can be carried out using the test statistid 8. (The corresponding? is obtained
from regressing the residuals obtained under the null, medel 0) without the second
nonlinearity, on the partial derivatives of the regresdionction evaluated under the null,
i.e. Z given in (L6) - (19) and the auxiliary regressovg andwtyit_e, i=1,...,6. After the
estimation of the null model the additional orthogonaimatstep(ii) as for the test against
serially correlated innovations can be performed to avaishe@rical problems as described at
the end of sectiod.1

The resulting test statistic follows

LMy ~ x*(7(p+1)) .

Note that in the model formulatior2() the delay parameter of the second nonlinear compo-
nent is assumed to leawith e« d bute < p. Similar to determine the delaldescribed in step
1 of the modeling cycle the test can be carried out for van@hses ofe and the test yielding

the minimalp-value is chosen as the decisive test decision.

4.3 Test of parameter constancy

Testing for the constancy of estimated parameters a welbksthed way of checking the
adequacy of linear models (see e@how (1960, Quandt(1960Q or Andrews(1993). In

the context of nonlinear time series this maintains its irtgace but the assumption of an
abrupt break in the parameters is questionable. Theref@eropose a parametric test of the
null of parameter constancy against the alternative tfeaaitlioregressive parameters change
smoothly over time. Assuming the parameters of the trasftinction fixed the model under

the alternative reads

Vi = [P(O) W] + [P(t) W] X G(Vi-d:¥.C) + &t s (23)
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with & id N(0,1). The parameter vecto¥4t) andd(t) are now functions of time and can be

represented as

P(t) = P+ 11K (t; y1,C1) (24)
D(t) = @+ 2K (t;y1,¢1) , (25)
where;, i = 1,2, are vectors conformable to the dimensionfond® and K(-) has the
functional form
K(tyr.c) =1-{1+(t-c)?} ;71> 0. (26)

This function induces a nonmonotonic change which is symoatoundt = c;. If K(-) takes
on the limiting case/; — oo thenX(-) — 1- 1, which corresponds to a single abrupt break
only att = c;. 1, denotes the indicator functionat The null of parameter constancy against

the alternative of smoothly changing parameters over tiamenow be expressed as
H()Z’)/]_:O VS. H1171>O.

Again we face an identification problem under the nulyass not identified. We expan#(-)

as Binomial series and truncate afket 3 summands. This yields

1 1
K =ypt-c)*-Snon+Dt-c)'+ an+ Do +2t-c)®.  (27)
Upon substitution of the approximation if%) into the model in 23) we obtain after combin-
ing terms the auxiliary regression
N I 2 3 4 5 6
Vi = [‘I’Wt + OOW + 51tWr + 5ot2Wh + 03t3We + St Wi + I5tW + St wt] + (28)
| DWWt + Bowk +B1twt + Bt Wh + Bat>wh +Bat Wt + Bt + Bt W] X G(¥e-a ¥, ©) + It ,
where under the nutk = &. The codficientss;, i =0,...,6, andg;, i =0,...,6, are functions

of y1,¢1 andJ4;, i = 1,2 and given in the appendi.

The pair of hypotheses for the auxiliary model reads
Ho:6i=Bi=0 vs. Hjp:atleastongjorBi+#0;i=0,...,6.

The test against smoothly changing parameters can now bputethusing 15) where the

R? is obtained from the regression of the residuals under thieonuthe gradient;”and the

-12-



auxiliary regressors. The additional orthogonalizatitapgii) is again recommended. The
additional regressors ir28) are trending but using Theorem 1 liin and Terasvirtg1994)
the OLS estimates are still normally distributed and thealasymptotic holds.
The test statistic follows

LM3) ~ x> (14(1+ p)) .
As with the test against remaining nonlinearity the aurylie@gression simplifies whar =0

is assumed a priori. Then only the even powers of the trendirem

4.4 Generalized impulse response function

Impulse response functions (IRF) are a well establishedtwapalyze theféect of a shock on
the behavior of a time series model. Traditional impulspoese analysis therefore considers
the question: 'What is thefkect of a shock of sizé hitting the system at timeon the state
of the system at time+ n, if no other shock hits the system in the meantime?’. Dendtie w
6 the size of a shock hitting the system at titrend withw;_1 a particular realization of the

information set;_1 then we can define the impulse response function more foyrasll
IRF(N,6,wt-1) = E[Yinlet=6,6t41=... = 6tin = 0,wt-1] - (29)
ElYiinlet = et41= ... = 6t4n = 0, wi-1] .

The second conditional expectation is often called theéelyas’ which acts as a reference
point. For linear model&oop et al.(1996 point out three properties of the impulse response
functions:Symmetryi.e. a shock of -1 has exactly the opposifieet of a shock o#1, shock
linearity, i.e. a shock of size 2 has exactly twice tHeeet as a shock of 1, and the IRF is
history independeni.e. the past does noffect the response in any way. The authors also
provide various examples to show that these properties tdeangy over to the nonlinear case.
To remedy this drawback&oop et al.(1996 propose a generalized impulse response function

(GIRF) which is itself a random variable and is defined as
GIRF(n,8,wt-1) = E[Ytinlet = 6, wi-1] = E[Yinlwi-1] - (30)

Here, the conditional expectation is conditioned only a&shocks and the pasii_1. The

shocks occurring in the meantime are handled by averagem thut. For computing the
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GIRF obviously we need the conditional expectation of a mear model which is cumber-
some as the dimension of the integral defining the conditiexgectation grows witi (see
Granger and Terasvirfd993). To ease implementatidfoop et al.(1996 propose a numer-
ical technique to compute the conditional expectation bamseof Monte Carlo integration
(for further details se&oop et al.(1996 p. 135)).

The history on which we condition the GIRF can also be onlyl@sstiof the entire history
such aswi-1 € A. WhereA could be the subset containing only the observations coming
from one regime. Such an approach is useful in determinirgthér the dynamic behavior is
different in periods of recession compared with expansionaiggse(see e.gvan Dijk et al.
(20023 andKapetaniog2003).

The GIRF can also be used to analyze whether the model undsideoation produces asym-

metric éfects over time. This could be done adiatter(1995 by defining
AS Y Mn, 8, wi_1) = GIRF(N, 6, wi—1) + GIRF(N, -6, wi_1) - (31)

Another use of the GIRF is to examine the persistence of sh@eaoop et al.(1996). If a
time series model is stationary, at least globally, theretfect of a shock should eventually
fade away to zero if the horizon goes to infinity. As a consequence the density of the
GIRF defined by 30) should collapse to a single spike at zero. Therefore, thgedsion of
the densities of the GIRF atftierent horizons can be used as a pragmatic measure of the

persistence of shocks.

5 Finite sample properties

To study the behavior of the tests in finite samples we coragatall scale simulation study.

We report size results from simulating the following T-STARCcess

1
i = O.7Yt—1—0.5yt_1[1— (1+y2,) ]+gt , (32)

wheresg; id N(0,1). The location parameter is setde 0 only to reduce computational burden
in the estimation process and it does nid¢et the results reported here.

We study diferent sample sizes &f= 300,500, 1000. For all time series generated we discard
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the first 500 observations in order to be independent of tiialimalues. The first step in each
simulation is to compute the linearity test against T-STARgwsed byDonauer et al(2010.

If the null cannot be rejected at the 5% level of significareegeries is discarded and a new
one is simulated. If the null is rejected the size or powereexpent is conducted. This is
done until the number of replicatidd = 50000 is reached. Applying the linearity test in the
first step is done to avoid the estimation of a series in whiehe is not much evidence of
nonlinearity.

The results of the size experiment for the test against LSiiels from sectio are shown

in Tablel.

@ | T=300 T=500 T=1000
1% | 0.950 0.912 0.922
5% | 4.822 4.844 4.750
10% | 9.900 9.890 9.956

Table 1: Empirical size of the test against LSTAR [in %].

The size of the test procedure to choose between competiAR Ermulations shows
virtually no distortions in the considered sample sizesis Th especially notable as the en-
compassing test to discriminate between ESTAR and LSTARqgwed byChen (2003 is
generally undersized.

The power of the test against LSTAR was simulated using thesong LSTAR specification
as alternative:

yi = 0.7y;-1 —0.5y;-1 [1+ exp(—Zyt_l)]‘1 +é&t.

The results are given in Tabke

a | T=300 T=500 T=1000
1% | 21.050 39.078 67.472
5% | 39.838 57.910 78.750
10% | 50.675 66.920  83.512

Table 2: Empirical power of the test against LSTAR [in %].
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The power of the testing procedure shows reasonable disatary power of the test.
In particular it yields better results than the selectioocedures offerasvirta and Anderson
(1992 andTerasvirta(1994), relying on the simulation results bhen(2003. Compared to
the test procedure for the ESTAR-LSTAR case of the lattdrauhe power is comparable in
most settings. In some cases the power of the te€hein (2003 is clearly higher but given
the serious size distortiohghe power of his test is not readily interpretable.
When studying the empirical power of the test against dgr@rrelated innovations de-
scribed in sectiod.1 we simulate from 2) but assume that the innovation process follows
an AR(1) process; = pUi_1 + &, With & Id N(0,1) andp = 0.2,0.4,0.6.
The results for the size and power experiment are summainzZeable3 and Table4 respec-

tively.

T =300 T =500 T =1000

o’ g=1 9=2 9=5|9g=1 9g=2 9g=5|9g=1 g=2 (g=5

1% | 1.066 1.044 0990 0982 1.072 0910 1.074 0.982 1.014
5% | 5.254 5.208 5.022 5.074 5.186 4.892 5362 5.028 5.100
10% | 10.302 10.506 10.104 10.234 10.438 10.032 10.164 10.200.00

Table 3: Empirical size of the test of no innovation corrielafin %].

The results in Tabl& show that the empirical size is always very close to its n@inin
level. Although some minor distortions are visible the @lleresult confirms a satisfactorily

behavior of the test in finite samples.

4In some settings he obtains a size of only 0.5% at a nomirab% level.
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p=02 T =300 T =500 T =1000
a g=1 q9=2 9g=5|9g=1 =2 9g=5|9g=1 qg=2 g=5
1% 4030 7.210 4.117 18.004 12.424 7.088 38.910 29.094 @7.60
5% | 10.036 20.176 13.880 38.422 30.090 20.644 62.968 52.82883
10% | 14.276 30.718 23.064 50.936 42.136 31.470 74.304 65.806002
p=04 T =300 T =500 T =1000
a g=1 q9=2 9g=5|9g=1 =2 9g=5|9g=1 qg=2 (g=5
1% 43.138 32.416 19.384 68.482 57.274 40.060 95.498 91.40663
5% 67.250 56.998 41.046 86.474 78.716 64.146 98.962 97.43882
10% | 77.660 68.994 54.452 92.132 86.608 75.866 99.568 98.88810
p=006 T =300 T =500 T =1000
o’ g=1 q9q=2 9=5|9g=1 9g=2 9g=5|9q=1 g=2 (=5
1% 75.702 65.084 46.986 94.442 89.720 77.Y84 99.950 99.824100
5% | 90.392 84.140 70.484 98.626 97.014 91.434 99.994 99.98@46
10% | 94.778 90.658 80.636 99.398 98.576 95.508 99.996 99.99D46

Table 4: Empirical power of the test of no innovation cortielia [in %].

The results for the empirical power displayed in Ta#hlshow a similar behavior to the
test for the ESTAR case described Hitrheim and Terasvirt§1996. The power slightly
decreases if the tested order of autocorrelatjagmcreases. This might be expectedgas 1
is the true data generating process. Another factor thatenfles the power is the degree of
autocorrelatiomp. In finite samples and a low degree of serial correlation theqy is quite
low but increases steeply if the sample size/anthe p becomes larger. Such a behavior
is somewhat expected as th&distribution holds only asymptotically andgfincreases the
serial correlation becomes easier to detect. In generdieliteyields good results for most
situations encountered in practice and helps to reveatsevisspecifications.

For the assessment of the test of no remaining nonlineaaiy Sectiord.2we simulate data

from (32) to perform the size experiment. The results for the sizepavder experiments are
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displayed in Table§ and6 respectively.

@ | T=300 T=500 T=1000
1% | 0.806 0.834 0.852
5% | 4.552 4.728 4.640
10% | 9.540 9.600 9.566

Table 5: Empirical size of the test of no remaining nonlintgdm %].

The results of the size experiment show that the empirizalisiclose to its nominal level.
If anything, the test is slightly conservative.

For the power experiment we simulate data from

-1 35
Yt=0-3Yt—1—0.1yt_1[1—{1+yt2_1} ]+O.75yt_1[1—{1+yt2_1} ]+gt,

wherest id N(0,1). Additionally to this data generating process we sinaiiadm an LSTAR(1)
and ESTAR(1) process and induce remaining nonlinearitytbgdithe wrong model, namely

an T-STAR(1). The respective processes read

0.7yt-1—0.5y;_1[1+exp2yi-1)]  + &t

0.7yt-1- 0.5y 1| 1—exp(-2y7 )|+t

Wt

Wt

with & i N(0,1). The results for these simulations are presented in Hable

Another variant of the power simulation inspired Bitrheim and Terasvirt&1996 is also
explored: The data is generated I32) but misspecification is assumed by fitting a STAR
model of the wrong kind to the data, namely a LSTAR(1). Thesmilts are presented in

Table?.
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Hi: T-STAR

a T=300 T=500 T=1000
1% 3.120 2.986 3.772
5% 12.224 11424  12.184
10% 21.474 20.076  20.676
Hi : LSTAR
a T=300 T=500 T=1000
1% 4.430 5.522 8.274
5% 13.924 16.898  27.044
10% 24.070 28.614  43.822
Hi: ESTAR
a T=300 T=500 T=1000
1% 1.348 1.292 1.276
5% 6.848 6.480 6.210
10% 13.440 12.716  11.990

Table 6: Empirical power of the test of no remaining nonlnitgdin %].

For this test the empirical power results reveal a comparpbiformance for this test as

for the test in the ESTAR case reportedEitrheim and Terasvirt§l996. The test appears
to have reasonably good power against LSTAR models espeiciddrger samples where the
power increases quite steeply.
Interestingly the test appears to have some nontrivial p@g® against ESTAR at least in
small samples. This is surprising given that T-STAR has laEsigned to resemble the desir-
able properties of ESTAR. This power vanishesrascreases underlining that the T-STAR
model can very well serve as an alternative to ESTAR as theyaedly be distinguished for

reasonable sample sizes.
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a T =300 T =500 T =1000

1% 31.512 34.200 41.434
5% 49.670 52.924 60.868
10% 61.682 64.914 71.762

Remark: An LSTAR(1) model was fitted to data generated fr88)(

Table 7: Empirical power of the test of no remaining nonlnitgdin %].

Analyzing the power experiment set up asHitrheim and Terasvirt§1996 we obtain
rather good results for the test against no remaining neatity even in finite samples. In
particular we obtain higher power as in the ESTAR case.

Turning to the results for the test of parameter constancyepert size and power results in

Tables8 and9 respectively.

« | T=300 T=500 T=1000
1% | 0.778 0.850 0.940
5% | 4.490 4.504 4.784
10% | 9.278 9.354 9.522

Table 8: Empirical size of the test of parameter constancdj.

The test shows only minor size distortions in finite samples @pproaches its nominal
level as the sample size increases. Overall the test sedmesctnservative, if anything.
For the power simulations we generate data fr@B) ¢f order one and sefy(t) = 2K(-), v1(t) =
—-0.2, 9o(t) = 0 and+1(t) = (1.1- 0.9%(-)) whereX'(-) = K (t/T;3,0) as in £6).

@ | T=300 T=500 T=1000
1% | 3.008 22.110 99.248
5% | 11.458 44.252  99.746
10% | 19.528 57.336  99.824

Table 9: Empirical power of the test of parameter constamcyq].
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The test shows reasonable power to detect parameter chemfjete samples. If the
sample size increases the power of the test increases eeplwt Thus the test is a useful tool

to detect parameter changes in most sample sizes.

6 Modeling real exchange rates

To demonstrate the application of the test developed ingdger we run through the whole
modeling cycle described in secti@rio model real exchange rates.

We use the same data that has been analyza@dydyr et al.(2001) and byRapach and Wohar
(2006. Namely, we analyze monthly real exchange data for Gernagiaynst the US from
1980:01 - 1994:12T = 288)° The series is depicted in Figute

0.4

0.2

0.0
|

-0.2
|

-0.4
|

T T T T T T
0 50 100 150 200 250

Time

Figure 1: Monthly log real exchange rate for Germany.

Determining the lag length using the consistent BIC we obpa: 1. The linearity test
rejects the null of linearity on the = 5% level of significance. The test against LSTAR yields

a test decision in favor of the null model, i.e. T-STAR.

5The data set is available from David Rapach’s websitatp;//pages.slu.edtaculty/rapachdNIfit.zip.
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As the data set has also been analyzedraylor et al.(2001) and by Rapach and Wohar
(2006 we report also their estimates for an ESTAR model. The edgchmodel has been
theoretically justified by the assumption that real exclearajes follow a nonlinear STAR
model with one unit root regime and one stationary regimée phés the real exchange rate

back into its stable equilibrium once it wanders too fr ®he model reads
Yt = Y1+ Yi-1G() + &t (33)

where-2 < 7 < 0 to ensure global stationarity of the model. The transifiamction G(-)
is either as in §) for the ESTAR model or as in5] for the T-STAR model. Additionally
Taylor et al.(200]) andRapach and Woh4R006 setr := —1.

The estimation results are in taldlé.

ESTAR T-STAR
-1 -0.023
0.264 275.284
os | 0.035 0.032

N

=

Table 10: Estimation of STAR models.

Albeit the estimates for the T-STAR model might look puzgliat first Donauer et al.
(2010 show that these estimates are much more reasonable thaortksponding ESTAR
estimates as the ESTAR model actually degenerates to amanaddk as opposed to the T-
STAR model which maintains the regime switching behaviartter support of the PPP can

be seen in Figura.
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1- G(Y(—lr V)

Figure 2: Monthly log real exchange rate for Germany andsitaom function.

The figure shows the time series, rescaled to be in the closexval [Q 1], and one minus
the estimated transition function over time. The gray sbadea are the time periods in which
the process behaves like a random walk. This is always theewhsn the process is close
to its equilibrium near zero (note that the dotted line ati6.the zero line of the unscaled
series). Thus we have a stationary but nonlinear processafibe time which behaves like a
random walk near the equilibrium as predicted by the BRRauer et al(2010 further show
that the data is globally stationary although one unit regtime is present. Global stationarity
is important for the asymptotic distributions of the missfieation tests to hold. Performing

the misspecification tests yields the results in tdlle

-23-



Test Statistic Critical Value

Test against LSTAR LM =5.779 | x344._, = 9.210

Test of serial independence LMy = 0501 | x249._, =6.635

Test of no remaining nonlinearity LM = 8.935 X%.QQ;V:S =11345

Test of parameter constancy LM3) =1.283 X%.gnge =16.812

Table 11: Results of the misspecification tests.

The respective null hypotheses of the tests cannot be e€j@ttthex = 0.01 level of sig-
nificance hinting at a well specified model.
To gain further insights about the dynamic properties offifted model we estimate gener-
alized impulse response functions. As the test against AlR@#tts as described iBngle
(1982 provides no evidence of conditional heteroscedasticayandomly sample the inno-
vations with replacement from the estimated model. Thelsha® use aré; = 67, with
6 = x2,+1. We compute the GIRF for a horizon o= 150 and estimate the conditional ex-
pectations in30) as means over 5000 Monte Carlo repetitions. Figusbaows the estimated

impulse response functions.
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GIRF(n, 8, w4)

0 50 100 150

n

Figure 3: Generalized impulse response functions.

Obviously the shocks hitting the system are very persistegittime but eventually vanish.
This supports the parameter estimates that show a highsyspemt model. Additionally a
high persistence of shocks in the model can also be inducesbbynearities which in turn
leads to such highly persistent impulse response func(ees e.g.van Dijk et al. (20023
andKuswanto and Sibberts¢2008). Another interesting aspect is whether the response to
shocks is asymmetric depending on the sign of the shock. Auanedor asymmetry is defined

in (31). Figure4 shows the estimated quantities.
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Figure 4. Measure of asymmetry.

For both shocks the behavior is asymmetric depending oni¢imeas the shock. If the
shock is negative but relatively small the response to dngdr compared to a positive shock
of the same size. Thisfilerence vanishes quite fast as the horizon increases. Ifvsowee
shock is negative and relatively largg € |25.|) the response to a negative shock is heavier

and decreases much slower. Indeed the asymmetry first seg&efore it decreases.

7 Conclusion

In this paper we extend the treatment of the newly develomedimear time series model
named T-STAR developed lyonauer et al(2010. We consider the modeling cycle for non-
linear time series models and contribute to the evaluatagesby proposing LM tests against
serially correlated innovations, no remaining nonlingaaind parameter constancy. We also
consider evaluation by generalized impulse response iimgctas proposed bi{oop et al.
(1996. In simulations we show that all the tests have reasonaiepagainst their respec-

tive alternatives and are therefore an useful addition ¢oetialuation toolbox for nonlinear
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T-STAR models.

In an empirical application to real exchange data we put Yaguation techniques to the test
and verify that a proposed T-STAR formulation adequateftwaes the nonlinear behavior
of the data. Impulse response analysis is used to furthénageathe dynamic propagation

behavior of the estimated model.
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A Appendix

A.1 Regression cofficients in (22)

Expanding the expressions containtgs

(Vie—C2)® = Vi o—2)t-eCo+Ca,
Yt-e— C2)4 = yﬁ—e - 4yg—ec2 + GYtZ—ecg - 4Yt—ecg + 0‘2‘,
(Viee—C2)® = Y2 o= BYP Co+ 15y oC5 — 20y2 oC3 + 15y7 oC5 — Byt_eC + C,

we obtain after some algebra

1 1
S0 = [(7202 - 572(72 +1)+ 572(72 +1)(y2+ 2)03) E]

01 = [(~2r2C2+2y2(y2+1)C3 —yaly2 + 1)r2+2)c3) E]
[ 1
52 = |(-3yaly2+1)c5+ 25v2(y2+ 1) 2+ 2)03) El
i . N
03 = ||2y2(y2+1)c2- 3572(72 +1)(y2+2)6; |2
(1 1 o\
04 = —572(72 +1)+ 2572(72 +1)(y2+2)c5 |2
05 = [(=y2(y2+1)(r2+2)c2) E]
1
oo = |[gratas 02+ 23]

A.2 Regression cofficients in (28)

Expanding the expressions containtgs

(t-c1)®> = t2-2tcy+c3,
(t-c)? = t*—at3c; +6t3c2 - 4tcS +cf,
(t-c)® = t0-6t3cy +15t*c2 — 2033 + 15t%c] - 6t +c5 .
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we obtain after some algebra for

00

01

and forA, respectively

Bo

B1

B2

B3

Ba
Bs
Bs

1 1
[(ylcl -~ 571(71 +1)+ (—571(71 +1)n+ 2)0613) /11]
|(—2y1c1 +2y1(y1 + )6} - va(y1 + D)1 +2)c3) Aa|

[ 1
~3y1(y1+1)C + 2571(71 + 1)1+ 2)011) /11]

[ 1
2y1(y1+1)c1 - 3571(71 +1)(y1+ 2)03) ﬂll

1 1
—571(71 +1)+ 2571(71 +1)(y1+ 2)C§)/11]

[(=y1(y1+ D)1 +2)c) A

(5710005 +2)

1 1
[()/101 —on+ D+ enli+ D+ 2)0(2) /12]
[(=2y1c1+ 27101+ 1)6 ~ y1(r1 + D1 +2)c2) 22

[ 1
~3y1(y1+1)cE + 2571(71 + 1)1+ 2)0‘11) /12]

[ 1
2y1(y1+1)c1— 3571(71 +1)(y1+ 2)03) 42]

—%yl(yl +1)+ 2%71(71 +1)(1+ 2)‘3%) /12]

[(=y1(y1+ 1) (y1+2)c1) A2]

(271(71 +1D)+ 2)) /12] -
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