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1 Introduction

The notion of twin peaks in the cross-country distribution of GDP per capita was intro-
duced by Quah (1993, 1996, 1997). He interpreted the emergence of twin peaks as polar-
ization distribution into a rich and a poor convergence club. Bianchi (1997) confirmed
Quah’s observation of twin peaks via rigorous statistical testing. The contributions of
Quah are part of a larger literature on convergence (e.g. Barro, 1991; Barro and Sala-i-
Martin, 1992; Mankiw, Romer and Weil, 1992; Sala-i-Martin, 1996; Galor, 1996; Jones,
1997; Graham and Temple, 2006). It is controversial in this literature whether the twin
peaks represent locally stable equilibria/convergence clubs (Quah, 1996) or whether they
are only a temporary phenomenon due to a high frequency of growth miracles (Jones,
1997).

The unified growth theory (c.f. Galor, 2010 for an overview) provides another expla-
nation for multiple regimes in the cross-country distribution of GDP per capita which
also uncovers the forces that have lead to the emergence of these regimes. The theory
suggests that growth segments economies into three fundamental regimes: a malthu-
sian regime with slow growing economies, fast growing economies in a sustained growth
regime, and a third group in the transition from one regime to the other. One important
difference to models with multiple equilibria is that this segmentation does not repre-
sent the long-run steady state of these economies. Variations in the levels of income only
reflect country-specific characteristics and not the actual stage of development. Thus,
there are no critical levels that permit economies to switch from one regime to the other,
but rather critical rates of progress.

Recent theoretical work by Schumacher (2009) and Strulik (2012) provides alternative
explanations for the emergence of multiple equilibria in the cross-country distribution
of GDP per capita. Schumacher (2009) endogenizes discounting via wealth in a neoclas-
sical growth model and shows that this can generate multiple equlibria. Strulik (2012)
formulates an endogenous growth theory with endogenous patience, which can explain
the take-off from stagnation to modern growth. He concludes that either all countries
adjust to the same balanced growth path or that lagging countries will never catch up.

In this paper we challenge Quah’s twin peaks result. We show that the number of
peaks of a distribution is not preserved under strictly monotonic transformations of the
data: a simple log transformation may change the number of peaks in the cross-country
distribution of GDP per capita. This fact casts doubts on the economic interpretation
of twin peaks: it does not make much sense to call a country high income on the original
scale of the GDP per capita data and middle income on a log scale of the same data.
A suitable measure of convergence clubs or growth regimes should not be affected by a
simple log transformation of the data.

We therefore propose another method to identify different regimes within a distribu-
tion which does not have this problem. We will use mixture models to estimate the
cross-country distribution of GDP per capita and to statistically assign countries to dif-
ferent convergence clubs. Mixture models are not new to the economic literature and
have been used in quite a few articles to model income distributions. Most prominently,



Paap and Dijk (1998) used a two-component mixture, consisting of a truncated normal
distribution and a Weibull distribution, to model the cross-country distribution of GDP
per capita. Nevertheless, we are not aware of any article that challenges the twin peaks
approach and suggests mixture models as an alternative.

2 Data

We use the Penn World Tables 7.0 (PWT) data for the period from 1970 to 2009. The
PWT is a panel dataset containing 190 countries and 38 variables. We use the variable
rgdpch, which is PPP converted GDP per capita (chain series) at 2005 constant prices.
We consider the mentioned GDP per capita variable on its original scale ($1,000) and
on a logarithmic scale with base 10.

We exclude a few small countries whose economies heavily depend on oil export:
Bahrain, Brunei, Equatorial Guinea, Gabon, Kuwait, Qatar, Suriname, Timor-Leste and
Trinidad and Tobago from the analysis. The reason for this choice is, that these countries
show large fluctuations in GDP per capita, which are mostly driven by fluctuations of the
oil price. Arguably, these countries are not relevant for understanding multiple equilibria
in the world’s cross-country distribution of GDP per capita . The PWT dataset contains
two versions of China, we thus exclude the second version (CH2) from the analysis. We
believe that using a balanced panel is the most appropriate to analyze the cross-country
distribution of GDP per capita over time, because a balanced panel is not affected by
changes in the sample composition. This leaves 151 countries in the dataset, for which
we have GDP per capita data for all years from 1970 to 2009.

3 Peaks

Figure (1] shows simple kernel density estimates of the cross-country distribution of GDP
per capita in 1985 on the original scale ($1000) and on a logarithmic scale with base 10.
The density of the data on the original scale has two peaks and the density of the data
on a log scale has three peaks. This simple picture illustrates that the number of peaks
is not preserved under a simple log transformation: Quah’s twin peaks become triple
peaks on the log scale.

However, the different numbers of peaks in the plots could be a simple artifact of
the nonparametric curve estimates, e.g. from inaccurate choice of the tuning parameter.
It is therefore necessary to validate the statistical significance of the peaks via rigorous
statistical testing. To this end we utilize Silverman’s test. Formally, a peak of a density f
(and similarly of the kernel estimator f) is a local maximum of f (or f). Silverman (1981)
showed that the number of modes of f is a right-continuous, monotonically decreasing
function of the bandwidth A if the normal kernel K (z) = (27) ! exp(—2?/2) is employed.
This allowed him to define the k-critical bandwidth h.(k) as the minimal bandwidth h
for which f still just has k modes and not yet k + 1 modes. Based on the notion of the



k-critical bandwidth, Silverman (1981) proposed a bootstrap test for the hypotheses
Hj, : f has at most k& modes against K}, : f has more than k modes.

This test is known to be slightly conservative (even asymptotically), for H, we therefore
use the adjustment proposed by Hall and York (2001). The tests were performed using
our R-package silvermantestﬂ We apply Silverman’s test to the distributions of GDP
per capita and log-GDP per capita for all years from 1970 to 2009. We report the p-
values in Tables [l and @2l The left hand column of the tables shows the different null
hypotheses of the tests.

For the distribution of GDP per capita we can reject the null hypothesis of a single
peak from 1970 to 1990, but we cannot reject the null hypothesis of two peaks in favor
of three or more peaks. This is basically the period that Quah studied in his influential
papers, and our results confirm his findings. From 1991 onwards we can also reject
the null hypothesis of two peaks in favor of three peaks (but not more). Thus, we
find evidence for two peaks from 1970 to 1990 and for three peaks thereafter. For the
distribution of log-GDP per capita we can reject the null hypothesis of two peaks in
favor of three peaks (but not more) from 1970 to 1990, but we fail to reject the null
hypothesis of a single peak. Note that this result does not mean that the null hypothesis
of a single peak is correct, it just means that there is not enough evidence to reject it at
a level of 5%. Thus, there is evidence of three peaks, but none of only two peaks from
1970 to 1990. From 1991 onwards we cannot reject any of the null hypothesesE| and thus
find evidence for only a single peak.

What do we learn from this analysis? The number of peaks is relevant information
for the proper visualization of data. However, our results show clearly that peaks should
neither be used for economic interpretation of the cross-country distribution of GDP per
capita nor for assigning countries to convergence clubs, growth regimes and the like. It
does not make sense to conclude that the distribution of the GDP per capita consists
of two convergence clubs between 1970 and 1990, while the distribution of log GDP per
capita consists of three convergence clubs over the same period.

4 Components

4.1 Methods

We now turn to mixture models to estimate the cross-country distribution of GDP per
capita. Let fx denote the density of the cross-country distribution of GDP per capita
X for a given year. We model

fX(x>:0419(x7¢1)++04mg(x7¢m)7 $>0,

available online at http://www.uni-marburg.de/fb12/stoch/research/rpackage
2with the exception of a few transition years from 1992 to 1994 where the distribution appears to have
four peaks



where g(x; ¢) is a parametric family of densities and the weights «; > 0 sum up to one.
There is no general simple connection between the number of modes of f and the number
of components m. Typically, for unimodal g, the number of modes of f will be at most
m, but often will be less than m. The number of components is preserved if the data
are transformed via a strictly monotonic transformation (if densities are correspondingly
transformed). We let Y = log X and model the density of log-income fy by

fy(y) = arp(y; p1,01) + .. + am@(Ys fm, Om),

where ¢(-, i, o) is the density of the normal distribution with mean p € R and standard
deviation ¢ > 0. Then g(-;¢) in the representation of fx is the log-normal distribu-
tion. The number of components is determined via statistical inference: Ee aim to test
successively for ascending m in N the hypotheses

Hyy :mo=m against K, : mo > m + 1,

where mg € N is the true, unknown number of components. Testing in parametric models
is often accomplished by using the likelihood ratio test (LRT). However, the standard
theory of the LRT does not apply for the number of components in finite mixture models
(Dacunha-Castelle and Gassiat, 1999). Recently, Chen et al. (2001, 2004) and Chen and
Kalbfleisch (2005) suggested modified LRTSs, which retain comparatively simple limit
theory as well as the good power properties of the LRT. Unfortunately, these tests are
only valid if the switching parameter is one-dimensional and hence we cannot apply them
for selecting the number of components.

In our setting with switching u and o only an asymptotic test for homogeneity, i.e. for
Hy, is available, see Chen and Li (2009). Therefore, in order to test all hypotheses
under investigation with the same methodology, we apply the commonly used parametric
bootstrapf| As is well known, since u and o both switch the likelihood function is
unbounded if small values of the standard deviation are allowed. Therefore, we use a
penalized log-likelihood as proposed in Chen and Li (2009) as follows:

In(X1,.. ., Xps o, ) = Zlog <Zaj<p(X,-; ,uj,aj)> + pn(X1,..., Xn,0),
i=1 j=1

where o = (p1,...,pim), & = (01,...,0m) and a = (aq,...,qpm—1) with a,, := 1 —
Z;”:_llaj for m > 1 and e =1 for m =1, and

pn(X1,..., Xp,0) = ~50 Z (s%/ajz +log(af/si)),

1 m
j=1
where s2 =n~ 13" (X, — X)? with X =n~! 3" | X;. The function p, penalizes small

values of a 0j, and guarantees a bounded (penalized) likelihood.

3We used 1000 bootstrap replications.



After fitting the model and selecting the number of components, we can use the
mixture model for cluster analysis, see e.g. Fraley and Raftery (2002). Each observation
can be assigned posterior probabilities to belong to each of the components in the mixture
model. This yields three levels of income which we label poor, intermediate and rich,
with indices 1,2,3 when a three component mixture is fitted or two levels of income
which we label poor and rich when a two component mixture is fitted. Specifically, the
posterior probability of an observation y to belong to group j is equal to

a0(y; fig,05)

pi(y) =

for m = 2 or m = 3 in case of a two- or a three-component mixture. Therefore, we do
not merely assign an income level to each country, but rather a probability distribution,
which makes transitions from one group to the other much more transparent. One may
then assign an observation y to one of the components by using the maximum a-posterior
estimate (MPE), which assigns the j to the country ¢ for which p;(y) is maximal. One
can also determine the threshold t; 11, j = 1,...,m — 1, for the values of the log-GDP
per capita at which the MPE changes between group j and j+1, by solving the equations

pi(tij+1) = pj+1(tjj+1),

restricted to the interval [fi;, fij41].

4.2 Results

Table [3] displays the results of the parametric bootstrap test based on 1000 bootstrap
samples. We can always reject the hypothesis of homogeneity, i.e. of a single normal
distribution. Further, we cannot reject the null hypothesis of two components in 1970,
1971 and 1972 at the 5 percent significance level, however, the p-values are already quite.
From 1973 to 1995 we can reject the null hypothesis of two components with p-values
at the 5% level. From 1996 to 2001 the p-values are still quite low, but we cannot
reject the null hypothesis at the 5 % level anymore. After 2002 the p-values are rather
large and the null hypothesis cannot be rejected. Overall, we observe a three component
mixture that evolves into a two component mixture. We thus model the cross country
distribution of GDP per capita with three components from 1970 to 1995 and with two
components from 1996 to 2009.

In Figure 2] we show the fitted three-component mixtures for 1975 and 1985 and com-
pare it to the corresponding kernel density estimators based on the smallest bandwidths
which produce three modes. Further, Figure [3|shows the fitted two-component mixtures
for 1996 and 2005 with the corresponding kernel density estimators based on the smallest
bandwidths which produce two modes. We also provide quantile-quantile (qq) plots of
the data against the fitted mixture models, see figure [§ and f] The qqg-plots show that
the three respectively the two component mixtures describe the data well.

Figure [6] shows the development of the different component means over time as well
as the thresholds where the maximum a-posterior estimate changes from one component



to the other. The component means are also shown in Table |4, The mean of the low-
income and the middle-income component hardly changes between 1970 and 1990, but
both component means show substantial increases from 1991 to 1995. The mean of the
high-income component steadily grows from 1970 to 1995 (by roughly 50 percent over
the entire period).

After 1995 the three components merge into two components. The new higher-income
component basically continues on the growth path of the high-income component from
the previous model, whereas, the low-income and middle-income components from the
previous model merge into a new lower-income component. Both component means
steadily grow between 1996 and 2009 (both roughly by one third over the entire period).

The observation that the low-income and middle-income components of the three-
component model merge into a new lower-income component in the two-component
model is also supported by the component weights which are displayed in Table . In
1970 the low-income component constitutes about 50 percent of the countries, whereas
the middle-income and high-income components represent 33 and 17 percent respectively.
Over time, this picture reverses: Between 1970 and 1990, the size of the low-income com-
ponent decreases to roughly 31 % and the size of the middle income component increases
to 50 %. After 1996 the lower-income component is about as large as the low-income
and middle-income components were jointly, which again supports the observation that
those two components merged into a new lower-income component. Between 1991 and
1995 there is some variation in the component sizes, but before and after this picture is
remarkably stable.

It is also important to keep the relative component sizes in mind when we interpret the
component means. Even though the means of both the low-income and middle-income
components stagnated between 1970 and 1990, there was still quite a bit of growth,
because many countries made transition from the low-income component to the middle
income component.

5 Concluding Remarks

In this paper we challenge the long standing twin peaks finding in the cross-country
distribution of GPD per capita. We show that the number of peaks of a distribution
depends on the scale (e.g. original or logarithmic) and argue that this feature is highly
undesirable for economic interpretations. As an alternative approach to peaks, we use
finite mixture models to investigate the cross-country distribution of GDP per capita,
since a. their number of components does not depend on the scale, b. components in
the mixture arguably correspond better to income clubs in the distribution than peaks,
and c¢. finite mixture models allow for an accurate analysis of the intra-distributional
dynamics by using posterior probability estimates.

Interestingly, our conclusions are not so different from Quah’s, however, this might
well be a coincidence. For the period that Quah studied, we find that the cross-country
distribution of GDP per capita consisted of three components, which seem more like
transition regimes rather than convergence clubs. Only for more recent years we find



that the cross-country distribution of GDP per capita consists of two groups which are
quite stable and follow their own growth paths, and thus could potentially be interpreted
as convergence clubs. In any case, we wanted to make the point that in our opinion,
components should take the place of peaks in the literature on economic growth, because
they do not suffer from the inherent shortcomings that peaks have and thus can lead to
more meaningful economic interpretations.
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Figure 1: Kernel density estimate for GDP per capita in $1000 (left) and log GDP per
capita (right) for 1985. We use the logarithm to the base 10.
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1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

at most 1 0.000
at most 2 0.267
at most 3 0.585
at most 4 0.170

0.000
0.245
0.644
0.232

0.000
0.286
0.620
0.238

0.000
0.170
0.768
0.624

0.000
0.154
0.874
0.775

0.000
0.429
0.812
0.678

0.001
0.932
0.858
0.728

0.030
0.814
0.528
0.770

0.023
0.954
0.740
0.352

0.008
0.916
0.854
0.596

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

at most 1 0.001
at most 2 0.650
at most 3 0.569
at most 4 0.546

0.002
0.302
0.251
0.954

0.001
0.672
0.814
0.836

0.000
0.806
0.598
0.520

0.000
0.430
0.316
0.784

0.000
0.364
0.038
0.750

0.007
0.390
0.042
0.488

0.000
0.784
0.476
0.152

0.001
0.833
0.361
0.184

0.000
0.508
0.523
0.175

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

at most 1 0.003
at most 2 0.251
at most 3 0.434
at most 4 0.326

0.011
0.024
0.460
0.124

0.021
0.017
0.038
0.134

0.044
0.002
0.022
0.106

0.041
0.008
0.009
0.222

0.016
0.031
0.065
0.254

0.009
0.142
0.178
0.245

0.011
0.138
0.247
0.116

0.021
0.042
0.407
0.188

0.061
0.002
0.296
0.220

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

at most 1  0.031
at most 2 0.000
at most 3 0.300
at most 4 0.221

0.029
0.000
0.136
0.101

0.026
0.002
0.552
0.536

0.036
0.000
0.580
0.235

0.029
0.000
0.638
0.278

0.025
0.002
0.676
0.378

0.011
0.008
0.608
0.416

0.006
0.017
0.310
0.144

0.005
0.042
0.221
0.022

0.009
0.034
0.154
0.204

Table 1: P-values for testing the number of peaks in the cross-country distribution of
GDP per capita with Silverman’s test.
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1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

at most 1
at most 2
at most 3
at most 4

0.215
0.084
0.202
0.729

0.212
0.051
0.352
0.596

0.129
0.003
0.413
0.656

0.011
0.006
0.858
0.654

0.033
0.013
0.824
0.367

0.104
0.024
0.360
0.290

0.308
0.034
0.144
0.711

0.551
0.130
0.054
0.276

0.393
0.075
0.048
0.822

0.529
0.118
0.011
0.850

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

at most 1
at most 2
at most 3
at most 4

0.533
0.128
0.002
0.811

0.163
0.048
0.032
0.822

0.249
0.039
0.063
0.414

0.167
0.034
0.699
0.770

0.197
0.018
0.859
0.780

0.221
0.011
0.956
0.816

0.180
0.013
0.607
0.744

0.246
0.020
0.850
0.642

0.264
0.036
0.734
0.764

0.264
0.012
0.404
0.348

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

at most 1
at most 2
at most 3
at most 4

0.220
0.008
0.878
0.708

0.220
0.166
0.004
0.840

0.228
0.118
0.013
0.457

0.275
0.180
0.013
0.605

0.246
0.128
0.120
0.199

0.227
0.352
0.214
0.070

0.173
0.386
0.408
0.174

0.168
0.235
0.166
0.848

0.139
0.202
0.389
0.594

0.103
0.154
0.388
0.091

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

at most 1
at most 2
at most 3
at most 4

0.136
0.208
0.048
0.126

0.105
0.140
0.326
0.284

0.102
0.068
0.259
0.444

0.109
0.122
0.475
0.472

0.133
0.173
0.544
0.138

0.126
0.112
0.667
0.250

0.157
0.112
0.566
0.242

0.171
0.158
0.492
0.258

0.245
0.117
0.563
0.261

0.262
0.104
0.722
0.436

Table 2: P-values for testing the number of peaks in the cross-country distribution of log
GDP per capita with Silverman’s test.

1970  19v1 1972 1973 1974 1975 1976 1977 1978 1979
1vs.2 <001 <001 <001 <001 <001 <001 <001 <001 <001 <0.01
2vs. 3 007 0.16 0.16 0.01 0.01 0.02 0.01 0.02 0.07 0.02

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
1vs.2 <001 <001 <001 <0.01 <001 <0.01 <001 <001 <001 <0.01
2vs. 3 0.02 0.01 0.00 0.01 0.02 0.01 0.01 0.02 0.04 0.02

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
lvs.2 <0.01 <0.01 <001 <001 <001 <001 <0.01 <001 <001 <0.01
2vs. 3 0.01 0.04 0.41 0.07 0.07 0.04 0.06 0.19 0.06 0.05

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
1vs.2 <001 <001 <001 <001 <001 <001 <001 <001 <001 <0.01
2vs. 3 0.16 0.10 0.05 0.27 0.40 0.23 0.33 0.38 0.41 0.29

Table 3: Bootstrap p-values for testing the hypotheses of one and two components in the
cross-country distribution of GDP per capita.
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Figure 2: Fitted three-component mixture densities (solid line) and kernel density esti-
mate based on h.(3) (dashed line) for the log-data.

(a) 1996 (b) 2005

Figure 3: Fitted two-component mixture densities (solid line) and kernel density estimate
based on h.(2) (dashed line) for the log-data.
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Figure 5: QQ plot of the log-data with two components.
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Figure 6: Estimated means (based on the log GDP data, but displayed on the original
scale) of the three or respectively two distinct groups (solid lines). Income
levels where the maximum a-posterior estimates switch from one group to the
other (dashed lines).
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low middle high
1970 1136 4669 16651
1971 1129 4719 17225
1972 1042 4411 17641
1973 983 4475 18726
1974 1000 4652 19058
1975 948 4463 18980
1976 881 4290 19457
1977 886 4314 19408
1978 928 4547 19607
1979 798 4025 20385
1980 933 4838 20910
1981 979 5038 20604
1982 1025 5202 20908
1983 916 4796 21196
1984 915 4782 21739
1985 930 4728 22048
1986 922 4798 22407
1987 962 5144 23678
1988 927 4847 23933
1989 952 5040 24853

low  high
1996 2752 25910
1997 2799 26646
1998 2842 27211
1999 2901 27807
2000 2964 28897
2001 2953 28827
2002 3016 29470
2003 3137 30396
2004 3308 31732
2005 3423 32402
2006 3591 33512
2007 3760 34544
2008 3905 34259
2009 3946 32791

1990 916 4985 24721 (b) Component means for
1991 842 4401 24771 the years 1996 to 2009
1992 1120 5649 23460 (balanced dataset).

1993 1292 6245 22985
1994 1342 6416 23634
1995 1472 6773 24290

(a) Component means for the years
1970 to 1995 (balanced dataset).

Table 4: Estimated means (based on the log GDP data, but displayed on the original
scale) of the three or respectively two distinct groups.
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low middle high
1970 050 033  0.17
1971 048 035  0.17
1972 043 040  0.17
1973 0.40 0.44  0.17
1974 0.39 0.44  0.17
1975 035 049  0.15
1976 030 056  0.14
1977 0.29 056  0.15
1978 031 054  0.16
1979 0.23 0.62 0.15
1980 0.33 0.51  0.16
1981 035 047  0.17
1982 0.37 046  0.17
1983 0.33 051 0.17
1984 0.33 049 0.18
1985 0.33 049  0.18
1986 0.32  0.50 0.18
1987 034 048  0.18
1988 0.30 0.51  0.18
1989 031 052 0.17

low high
1996 0.81 0.19
1997 0.81 0.19
1998 0.81 0.19
1999 0.81 0.19
2000 0.82 0.18
2001 0.81 0.19
2002 0.81 0.19
2003 0.82 0.18
2004 0.83 0.17
2005 0.82 0.18
2006 0.82 0.18
2007 0.83 0.17
2008 0.83 0.17
2009 0.83 0.17

1990 0.31 0.50  0.19 (b) Component weights for
1991 0.25 057  0.18 the years 1996 to 2009
1992 042 0.36  0.22 (balanced dataset).

1993 0.49 027 024
1994 0.50 0.25 0.24
1995 0.53 0.23  0.24

(a) Component weights for the years
1970 to 1995 (balanced dataset).

Table 5: Estimated weights (based on the log GDP data) of the three or respectively
two distinct groups.
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