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Abstract

While it is widely agreed that Purchasing Power Parity (PPP) holds as a long-run

concept the specific dynamic driving the process is largely build upon a priori economic

belief rather than a thorough statistical specification. The two prevailing time series

models, i.e. the exponential smooth transition autoregressive (ESTAR) model and the

Markov switching autoregressive (MSAR) model, are both able to support the PPP as

a long-run concept. However, the dynamic behavior of real exchange rates implied by

these two models is very different and leads to different economic interpretations.

In this paper we approach this problem by offering a bootstrap based testing procedure

to discriminate between these two rival models. We further study the small sample

performance of the test.

In an application we analyze several major real exchange rates to shed light on the

question which model describes these processes best. This allows us to draw conclusions

about the driving forces of real exchange rates.
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1 Introduction

An ongoing debate about the behavior of real exchange rates suggests that Purchasing

Power Parity (PPP) holds as a long-run concept (see e.g. Edison and Klovland, 1987,

MacDonald, 1998 or Taylor et al., 2001). Econometrically speaking PPP states that

real exchange rates fluctuate finitely around an equilibrium, i.e. a time stable mean,

and are thus weakly stationary. However, stationarity of real exchange rates does not

say anything about the detailed dynamics driving them. Modeling real exchange rates

by linear stationary models does not lead to convincing results as standard unit root

tests can not reject the null of a random walk in the linear framework and thus can not

confirm PPP (see e.g. Adler and Lehmann, 1983, Meese and Rogoff, 1983, Meese and

Rogoff, 1988 or Caporale et al., 2003).

Dumas (1992) shows in a theoretical model with two countries and proportional trans-

action costs that the real exchange rate behaves nonlinear and mean reverting. In this

framework, the probability of moving away from the equilibrium is higher than moving

towards it. As a consequence the exchange rate spends the most time away from PPP.

However, the adjustment speed increases the further the series is away from parity. This

can explain the long swings in exchange rates (see Engel and Hamilton, 1990). There-

fore, nonlinear models came into the focus of economists. Empirical evidence that a

nonlinear adjustment mechanism could solve the PPP puzzle is recently provided by Lo

(2008) and Norman (2010).

The two prevailing approaches to model the dynamic of nonlinear adjustment towards

PPP are exponential smooth transition autoregressive (ESTAR) models (see e.g. Michael

et al., 1997, Taylor et al., 2001 and Kilian and Taylor, 2003) and Markov switching au-

toregressive (MSAR) models (see e.g. Bergman and Hansson, 2005 and Kanas, 2006).1

Both approaches imply under certain conditions that PPP may hold as a long-run con-

cept. However, the nonlinear dynamics driving the respective processes are very distinct.

The dynamic of an ESTAR process is driven by lagged values of the endogenous, and

therefore observable, variable while an unobservable Markov process governs the dy-

namic in the MSAR case. This implies different economic intuitions, arbitrage and

market imperfections on the one hand and structural instability on the other.

The ESTAR approach is based on the idea that international trade only starts if the

price differences between countries exceed a certain level which is determined by the

costs of trading such as transportation costs, taxes and many others. As long as the

price differences are smaller than this level no trading takes place and therefore real

1An exception is Lahtinen (2006) who uses a symmetric, second order logistic STAR model. However,
second order logistic STAR models are designed to closely resemble ESTAR models and the estimation
results imply a dynamic very similar to a switching regression.
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exchange rates fluctuate freely and behave like a random walk. As soon as the price

differences exceed this level international trading starts and real exchange rates are

pulled back to a long-run equilibrium leading to an economic view of real exchange rates

which is expressed in the ESTAR model by an inner unit root regime and stabilized by

a stationary outer regime. This arbitrage-based adjustment models market behavior

without exogenous shocks as the adjustment is driven by an observable endogenous

variable. The approach has been applied to real exchange rates by Taylor et al. (2001),

Kapetanios et al. (2003) and Rapach and Wohar (2006) amongst others.

In contrast, the adjustment in the MSAR model is driven by an unobservable Markov

chain. Therefore, the nonlinear dynamic of the process is exogenous which emphasizes

a Peso process or infrequent regime or policy rule changes as a driving force of real

exchange rates. Compared to the symmetric ESTAR adjustment based on arbitrage

opportunities these effects might cause an asymmetric behavior around the equilibrium.

van Norden (1996) shows that MSAR models are able to capture such occasional, sudden

and large exchange rate changes. Regarding the MSAR approach there are two possi-

bilities of modeling this economic behavior. One possibility is to implement Markov

switching within the autoregressive parameter and thus having a model with two au-

toregressive regimes, one of them being explosive and the other stabilizing. This model

was applied among others by Kanas (2006). A second option is to implement Markov

switching in the mean rather than in the autoregressive parameter. This approach was

motivated by Engel and Hamilton (1990) and Hamilton (1993) who argue that switches

in the mean are more appropriate for modeling the dynamics of financial data. Bergman

and Hansson (2005) apply this approach to real exchange rates.

The application of either approach has so far been motivated by an a priori economic

belief about the behavior of real exchange rates rather than formal statistical specifica-

tion. However, arbitrage as well as structural instability are probably present in each

real exchange rate. Thus, we do not see the ESTAR and the MSAR approach as mutu-

ally exclusive. It is possible and likely that both described effects influence the behavior

of real exchange rates. For example Sarno and Valente (2006) estimated an MS-VECM

model with an ESTAR function. However, this is not the scope of this paper. The

main question here is if one of these influences has only a minor impact so that the

explanatory power of the model is sufficient without including additional dynamics. In

fact there is no guarantee that one of the applied models is correct. Therefore, our

proposed test is not a model selection procedure, but a specification test saying which

model approximates the data better and therefore gives an idea which of the proposed

dynamics is the dominating one for the considered real exchange rates.

This statistical test procedure is based on a parametric bootstrap version of the Cox

test to discriminate between ESTAR and MSAR models. We study the finite sample
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behavior of the proposed test and analyze several major real exchange rates to shed

some light on the question which model and by that which effect influences the dynamic

behavior of a particular real exchange rate most.

The rest of the paper is organized as follows: In section 2 we describe the two competing

models for real exchange rates. In section 3 we discuss the testing procedure with the

corresponding bootstrap in order to distinguish the competing models and investigate

the finite sample properties of this test. Section 4 applies the test procedure to empirical

data before section 5 concludes.

2 Two Competing models for real exchange rates

The general ESTAR model is given by two autoregressive regimes connected by a smooth

exponential transition function G(yt−d;γ,c) : IR→ [0,1]. This function governs the tran-

sition between the two extreme regimes in a smooth way. Alternatively, an ESTAR

model can also be interpreted as a continuum of regimes which is passed through by the

process.

In general, a univariate ESTAR(p) model with p ≥ 1 and d ≤ p is given by
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with εt
iid
∼ (0,σ2).

The exponential transition function G(yt−d;γ,c) is given by

G(yt−d;γ,c) = 1−exp
{

−γ(yt−d − c)2
}

; γ > 0 . (3)

This transition function provides a symmetric adjustment towards the equilibrium c.

Surveys of the broad field of nonlinear time series models in general and STAR models

in particular are given by van Dijk et al. (2002) and Teräsvirta (1994).

The most frequently used special case of the general ESTAR model in (2) is the ES-

TAR(1) model

[yt − c] = ψ[yt−1− c] +φ[yt−1− c]
{

1−exp
(

−γ (yt−1− c)2
)}

+εt . (4)

To model real exchange rate behavior, Taylor et al. (2001) and Rapach and Wohar

(2006) impose an inner unit root regime, ψ = 1. This regime is corrected back by a
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white noise process for the outer regime, φ = −1, to ensure global stationarity. In this

case the process behaves like a random walk if yt−1= c. When the deviation |yt−1−c| from
the long-run equilibrium c grows, the process is corrected back by the more and more

influential stationary outer regime. The parameter γ governs the speed of the mean

reversion. In the unrestricted case global stationarity is given as long as |ψ+φ| < 1.

Estimation of these models either by nonlinear least squares or maximum likelihood

techniques is treated by Klimko and Nelson (1978) and Tjøstheim (1986) respectively.

For the Markov switching framework we use the framework based on Lindgren (1978),

and first applied to exchange rates by Engel and Hamilton (1990) and Engel (1994):

yt = µst +φ1,styt−1+ . . .+φp,styt−p+εt . (5)

The values of the autoregressive parameters φ1,st , . . . ,φp,st and the mean µst and thus the

regime switching is governed by an unobservable first order Markov chain

P(st = j|st−1 = i, st−2 = k, . . . ,yt−1,yt−2, . . .) = P(st = j|st−1 = i) = pi j .

The transition probabilities pi j are interior points in the open unit interval to ensure an

ergodic Markov chain and µ1 ≤ µ2 ≤ · · · ≤ µk for a clear identification of the k regimes.

Extensions of this basic framework are possible, see e.g. Hamilton and Raj (2002) and

the papers cited therein.

Although it is possible to use such a general model, the models usually found in applied

work are more restrictive and have only a few parameters that are regime-dependent. In

real exchange rate work the most frequently used model is a first order autoregression

with a Markov switching mean and/or autoregressive parameter (see e.g. Engel and

Hamilton, 1990, Bergman and Hansson, 2005 or Kanas, 2006). The switching mean

model is empirically justified by Hegwood and Papell (1998) and Montañés (1997) who

find reversion to an equilibrium which is subject to structural breaks.

In our analysis we use the same two-state model as Bergman and Hansson (2005),

yt = µst +φyt−1+εt , (6)

where εt
iid
∼ (0,σ2) as before. The model in (6) is locally stationary as long as the usual

condition |φ| < 1 holds. Global stationarity is given when the following conditions hold

(see Francq and Zaköıan, 2001):

(p11+ p22)φ
2
+ (1− p11− p22)φ

4 < 1 (7)

(p11+ p22)φ
2 < 2 . (8)
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Maximum likelihood estimation by direct, numerical maximization of the likelihood

function of such models is treated in detail by Hamilton (1989).

It should be mentioned that the ESTAR and MSAR model are partially non-nested in

the sense of Pesaran (1987) as both models nest linear AR-models and thus also the

random walk as a special case. As soon as some kind of nonlinear dynamic comes into

play, the models are non-nested.

3 Testing non-nested hypotheses

Testing non-nested hypotheses was pioneered by Cox (1961, 1962). He shows that the

usual unadjusted likelihood-ratio statistic does not converge to zero if the two models

are non-nested. He solves this problem by generalizing the principle and introducing a

centered likelihood ratio approach widely known as Cox test. Alternatively Gourieroux

et al. (1983) and Mizon and Richard (1986) modify the encompassing principle to allow

for non-nested hypothesis testing. This Wald- or Score test based approach has good

statistical properties but needs the existence of a Hessian under the null and alterna-

tive. As the transition function of the Markov-Switching model is not differentiable the

encompassing approach cannot be applied in our context. For this reason we apply a

bootstrap version of the Cox test. For a detailed overview about non-nested hypothesis

testing see Pesaran and Weeks (2001) or Gourieroux and Monfort (1994).

For the Cox test let the two models for the conditional density be denoted by

H f : Fθ =
{

f (yt|Ft−1;θ), θ ∈ Θ ⊆ IRr} , t = 1, . . . ,T (9)

Hg : Fλ =
{

g(yt|Ft−1;λ), λ ∈ Λ ⊆ IRq} . (10)

The process is given by yt and Ft−1 is the sigma algebra generated by (yt−1,yt−2, . . .). For

the sake of brevity we will suppress the dependence on yt and Ft−1 and simply write f (θ)

and g(λ) whenever possible. The likelihood-ratio statistic of Cox (1961, 1962) is given

by

T f (θ̂, λ̂) =
[

log f (θ̂)− logg(λ̂)
]

−E f

[

log f (θ̂)− logg(λ̂)
]

, (11)

where θ̂ and λ̂ denote the maximum likelihood estimates. E f [·] is the expectation op-

erator evaluated with respect to the ’true’ density f (θ). This serves as a measure of

closeness between the two densities and is defined by the Kullback-Leibler information

criterion (KLIC) which is defined by

E f [·] =
∫

IR

log
f (θ)
g(λ)

f (θ) dy . (12)
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The quantity in (12) is then minimized by choosing a parameter vector λ that is closest

to the true density. This can be equivalently reformulated as

max
λ

E f
[

logg(λ)
]

. (13)

The solution to this problem is called the pseudo-true value of λ given θ.

Regularity conditions for the applicability of Cox’s test are given by White (1982b)

for the i.i.d. case. It is basically required that consistent and asymptotically normally

distributed estimators for the parameters θ and λ can be obtained. This is especially

important for the estimator of λ as a consistent and asymptotically normally distributed

estimator is needed which allows the likelihood function to fail to correspond to the true

joint density of the observations. Such an estimator is the quasi-maximum-likelihood es-

timator (QMLE). Consistency and asymptotic normality results are provided by White

(1982a) for the i.i.d. case. Gallant and White (1988) treat the dynamic nonlinear case

and derive results regarding the QMLE which ensure the applicability of the Cox test

in the setting under consideration.

The main problem when using the Cox test statistic is that the measure of closeness can

be analytically derived in a closed form only for very specific and simple cases such as the

linear versus log-linear model (see Aneuryn-Evans and Deaton, 1980). It is, however, not

possible in general. In cases where the exact expression of the KLIC is very complicated

or even impossible to obtain. E.g. for nonlinear models, Pesaran and Pesaran (1993)

and Lu et al. (2008) propose simulation based methods for approximating the quantity.

Coulibaly and Brorsen (1999) report the results of a simulation study in which they

compare different ways of computing the Cox test statistic. Their results suggest that

simulation of the whole test statistic and the use of Monte Carlo p-values instead of

simulating only parts of the test statistic and relying on asymptotic critical values is the

more promising approach in finite samples. These results have also been confirmed more

recently by Godfrey and Santos Silva (2005) and Kapetanios and Weeks (2003). The

latter authors consider non-nested testing in a time series context to distinguish between

several non-nested nonlinear time series models for the conditional mean. Different

methods and test statistics based on the likelihood ratio principle are explored. Similar

to Coulibaly and Brorsen (1999) Kapetanios and Weeks (2003) find that a studentized

but not mean-adjusted test statistic with a simple variance estimator performs best

over a variety of different settings; see also Lee and Brorsen (1997) for an application to

nonlinear models for the conditional variance.

To derive the test statistic used in our set-up we write the average log-likelihood functions
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for the models (9) and (10) as

L f (θ) =
1
T

T
∑

t=1

l f ,t(θ)

Lg(λ) =
1
T

T
∑

t=1

lg,t(λ) ,

where li,t is the log-likelihood of model i at time t, i = { f ,g}. Let θ̂ and λ̂ denote the

parameter values maximizing these functions. Then the averaged log-likelihood ratio

reads L f (θ̂)− Lg(λ̂). In order to studentize this likelihood ratio Coulibaly and Brorsen

(1999) and Kapetanios and Weeks (2003) consider different estimators based on the

outer-product of the scores of the models under consideration as in Berndt et al. (1974)

and based on the information equality. A third alternative calculates

V̂2
=

1
T −1

T
∑

t=1

(

dt− d̄
)2
, (14)

where dt = l f , t (θ̂)− lg, t (λ̂) is the likelihood ratio for the t-th observation of yt and d̄ is

the respective arithmetic mean. These three methods are asymptotically equivalent but

Pesaran and Pesaran (1993), Coulibaly and Brorsen (1999) and Kapetanios and Weeks

(2003) report superior performance of the simple variance estimator in (14). Therefore,

we adopt this approach in our test.

We consider the test statistic

S =

√
T
{

L f (θ̂)−Lg(λ̂)
}

√

V̂2
. (15)

Note that this test statistic is not mean adjusted by an estimate of a measure of closeness

of the two distributions in (9) and (10) such as the KLIC. This reduces the computational

burden significantly compared to the methods of Pesaran and Pesaran (1993) and Lu

et al. (2008) but renders the test statistic asymptotically non pivotal (see e.g. Pesaran

and Pesaran, 1993 and Godfrey, 2007). However, as Hall and Titterington (1989) show,

non pivotal statistics will have the same asymptotic accuracy regarding size and power

as pivotal statistics. Thus we can reduce the computational burden by using the non

mean adjusted statistic in (15) as we only need one bootstrap loop instead of two nested

loops for computing an estimate of the KLIC (see Lee and Brorsen, 1997 for a related

approach).

We use the following parametric bootstrap to resample the likelihood ratio statistic in

(15):
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(i) Obtain the initial estimates θ̂ and λ̂ from yt and compute the test statistic S in

(15).

(ii) Generate bootstrap samples by parametric resampling from the fitted model under

the null f (θ̂). yb
t denotes the t-th observation of the b-th bootstrap sample which

is dependent on θ̂, i.e. yb
t

(

θ̂
)

.

(iii) For the b-th bootstrap sample yb
t

(

θ̂
)

let θ̂b and λ̂b denote the parameter estimates

obtained from maximizing Lb
f = T−1∑T

t=1 lbf ,t(θ) and Lb
g = T−1∑T

t=1 lbg,t(λ). Use θ̂b and

λ̂b to compute the bootstrap analog to S in (15):

S b
=

√
T
{

Lb
f

(

θ̂b
)

−Lb
g

(

λ̂b
)}

√

V̂2
b

.

(iv) Repeat steps (ii) – (iii) B times and save the bootstrap test statistics S b. This will

give a small sample approximation of the distribution of S in (15).

(v) Compare S from (i) with critical values obtained from the distribution of S b to

decide which model captures the data best.

This bootstrap algorithm can be easily implemented using only a single loop design. It is

also possible to exchange the standard parametric bootstrap with the wild bootstrap to

allow for unknown forms of conditional or unconditional heteroscedasticity in the data.

In this case generate the bootstrap samples in (ii) by a recursive design wild bootstrap

(see Gonçalves and Kilian, 2004). Using Rademacher variables the bootstrap residuals

are generated as follows:

εb
t = ε̂t ∗ηt (16)

ηt =























−1 with probability 1/2,

+1 with probability 1/2.
(17)

A special case arises if the MSAR model is under the null. Here the residuals cannot be

obtained directly, but estimated via one-step forecast errors (see Krolzig, 1997). Because

of the possible difference of the estimated variance and the variance in the residuals we

suggest to use a normalization of the estimated residuals ût,

ε̂t =
û
σ̂û
· σ̂, (18)
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to receive correctly scaled residuals for the bootstrap without affecting a possibly hete-

roscedastic structure of the variance.

It should be mentioned again that the test merely decides whether the null model,

ESTAR or MSAR, is the better approximation to the data compared to the alternative.

It does not indicate that one of the models under consideration is the correct one.

Therefore, in order to obtain more decisive results the null and alternative should be

exchanged after the first test.

3.1 Finite sample properties

We investigate the finite sample properties of the bootstrap based likelihood ratio test

by a Monte Carlo analysis. Therefore, we simulate data generating processes (DGPs)

with different parameterizations of the two models under consideration as well as AR(1)

series to include the nesting case. We use each process to investigate the behavior with

the ESTAR model and with the MSAR model under the null hypothesis. Each exper-

iment is computed with 2000Monte Carlo repetitions and 500 bootstrap replications.

The first 1000 generated values of each time series are discarded. All cases are com-

puted with the normal parametric resampling. An application and comparison of the

wild bootstrap can be found in section 4.

For the ESTAR DGPs we use the specification in (4) with the parameter combinations

ψ = {1.5,1,0}, φ = {0.7,0.9,−0.5,−1,−1.4}, γ = 1, c = 0 and εt ∼ NID(0,1). Only represen-

tative parameter combinations which ensure global stationarity are considered. These

parameter combinations include the very parsimonious ESTAR model used by Rapach

and Wohar (2006) and Taylor et al. (2001). The MSAR model for the Monte Carlo

H0: ESTAR H0: MSAR

φ ψ T = 200 T = 400 T = 200 T = 400

1 -0.5 3.3 3.7 31.5 55.1

-1 2.3 2.3 81.2 98.2

1.5 -1 3.1 2.8 80.0 97.3

-1.4 2.4 2.4 97.3 100.0

0 0.7 3.0 2.1 53.0 79.9

0.9 2.1 2.2 65.6 90.8

Table 1: Empirical sizes of nominal 5%-level bootstrap-based likelihood ratio test for different
ESTAR DGPs with ESTAR or MSAR under the null.
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H0: ESTAR H0: MSAR

φ µ1 - µ2 T = 200 T = 400 T = 200 T = 400

0.5 0 5.75 6.80 7.70 8.60

1 13.25 21.00 8.00 7.74

2 71.00 95.65 7.00 5.35

0.8 0 5.25 5.45 9.10 7.94

1 13.85 25.15 8.40 7.10

2 93.65 99.85 4.90 3.60

0.95 0 3.90 4.70 14.15 13.35

1 39.35 70.24 7.25 5.80

2 99.40 100.00 3.55 3.05

Table 2: Empirical sizes of nominal 5%-level bootstrap-based likelihood ratio test for different
MSAR DGPs with ESTAR or MSAR under the null.

analysis is given in (6). The parametrizations for the MSAR DGPs are φ= {0.5,0.8,0.95},
−µ1 = µ2= {0,0.5,1}, p11= p22= 0.9 and εt ∼ NID(0,1). This includes three linear AR(1)

nesting cases.

The results for the ESTAR DGPs are shown in Table 1. The size of the test with the

ESTAR model under the null is below the nominal level in all cases. This behavior is

quite stable, only minor deviations in both directions occur if the number of observations

increases. The power of the test with the MSAR model under the null is promising even

for small sample sizes. The power increases steeply with T and depends on the difference

between the inner and outer regime. The higher the difference, the higher the power.

In most cases for T = 400 the power is close to 1.

The first two DGPs with ψ = 1 and φ = {−0.5,−1} are close to the previous empirical

work. Especially in the very parsimonious parametrization with φ = −1 the power is

above 80% even for small samples.

The results for the MSAR DGPs are shown in Table 2. Three observations can be made.

First, the size properties for the linear nesting cases with the ESTAR model under the

null are around the nominal 5% level. Second, the power of the test with the ESTAR

model under the null increases with T and rapidly with the difference between the states.

The power is near 1 when the difference between µ1 and µ2 is at least 2. Third, the size

of the test with the MSAR model under the null is above the nominal level for the linear

DGPs and small switches. This result occurs because of estimation errors under the

null. On average the switch is overestimated, so that the bootstrap distribution shifts to

the right and the null is rejected too often. For larger regime switches and larger values

of T the size level tends to go to the conservative ESTAR results.

The last group in Table 2 with ψ = 0.95 is close to a unit root and to the empirically
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estimated results by Bergman and Hansson (2005). Surprisingly, the power of the test

increases rapidly when ψ goes against one. On the other hand the size distortions due

to estimation errors are more volatile than in the other groups.

4 Modeling real exchange rates

We apply the testing procedure on real exchange rates. Real exchange rates are often

used to proof (or disprove) the existence of PPP in a world of transaction costs and other

market imperfections. On the other hand, PPP can also hold in a world of structural

instabilities and Peso effects. The two competing models in this paper, ESTAR and

MSAR, capture only one economic theory sufficiently. As pointed out before, every

country may face transaction costs as well as some structural instability - the question

is which effect dominates the time series. By using two models which are designed for

one type of PPP disturbance, we should be able to give a suggestion which model is

more appropriate for a specific exchange rate and by that be able to conclude which

effect on the exchange rate is stronger.

We use monthly (end of period) real exchange rates of 24 countries against the US dol-

lar to apply the proposed test procedure. The data is from the International Monetary

Fund (IMF) and starts January 1973 and ends June 2011. All available data is used,

so that a maximum of T = 462 observations is available. For the countries in the Euro

area T = 312 and T = 150 observations are available for the Euro.

For real exchange rates Taylor et al. (2001) propose the ESTAR formulation in (4) which

we use in the test. Even though Taylor et al. (2001) restrict this model for their final

results, we test with the unrestricted version.

This model is tested against the MSAR(1) model of Bergman and Hansson (2005) with

a switching mean as in (6). We use B = 500bootstrap repetitions for all tests. Because

of the high probability of heteroscedasticity in at least some exchange rates we apply

the standard parametric bootstrap as well as the recursive wild bootstrap.

To get a feeling of how persistent the time series are the results of four unit root tests are

given in Table 3. In the first three columns the ADF test, the KSS test by Kapetanios

et al. (2003) and the inf-t test by Park and Shintani (2009) are presented. All tests

are performed with demeaned data and a lag length according to the BIC criterium.

Although these tests are designed against a linear or an ESTAR alternative, the tests

have also power against a MSAR DGP as shown by Choi and Moh (2007). As it has

turned out in former work (see Taylor et al., 2001) that the power of univariate unit

root tests in real exchange rate settings is rather poor, it is not surprising that the tests

can reject the null only in 4, 3 and 4 cases respectively. These results are supported by

Figure 1. This exemplary graph shows that the time series for the estimated ESTAR
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ADF KSS inf-t Kruse (2011)

Argentina -2.931** -6.477*** -6.442*** 42.910***

Brazil -1.736 -2.544 -2.528 6.637

Canada -1.448 -1.442 -1.460 3.157

Chili -1.295 -0.850 -1.318 9.964*

Colombia -1.326 -1.080 -1.329 1.291

Denmark -2.136 -1.754 -2.203 9.601*

Euro Area -1.032 -1.454 -1.451 3.238

Finland -2.101 -2.369 -2.456 5.826

France -1.972 -1.472 -2.044 8.727*

Germany -2.041 -1.491 -2.044 8.558

Italy -1.959 -2.230 -2.219 6.270

Japan -2.237 -2.327 -2.325 8.742*

Mexico -3.342** -2.506 -3.449** 14.409***

Netherlands -2.120 -1.660 -2.139 6.438

Norway -2.641* -2.137 -2.684 11.764**

Peru -1.566 -1.574 -1.943 9.204*

Portugal -1.567 -1.320 -1.616 3.304

Russia -3.378** -4.357*** -4.493*** 46.726***

South Africa -2.224 -2.175 -2.451 4.722

Spain -1.713 -1.532 -1.717 4.162

Sweden -2.060 -2.408 -2.442 6.952

Switzerland -2.245 -2.073 -2.405 5.470

Turkey -1.706 -4.303*** -4.271*** 18.476***

United Kingdom -2.513 -2.596 -2.638 11.240**

Table 3: Results of different unit root tests. Critical values are {-2.57, -2.87, -3.66} for the
ADF test, {-2.66, -2.93, -3.48} for the KSS test, {-3.03, -3.30, -3.86} for the inf-t test and
{8.60, 10.17, 13.75} for the Kruse (2011) test. All critical values are given for the {10%, 5%,
1%} significance level.

model is highly persistent, even if deviations occur. On the other hand the results of the

unit root test of Kruse (2011) in column four show 11 rejections. This test incorporates

the location parameter c. As shown in Table 5, the arithmetic means of the real ex-

change rates, ȳ, differ slightly from the estimated equilibrium ĉ for all ESTAR models.

Therefore, the latter test seems to be the most appropriate one.

The results of the test procedure are presented in Table 4. The column |S | shows the

test statistic in absolute value for both testing directions. In 17 cases the log likeli-
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Standard Bootstrap Wild Bootstrap

H0: ESTAR H0: MSAR Suggested H0: ESTAR H0: MSAR Suggested

|S| p-Value p-Value model p-Value p-Value model

Argentina 2.270 0.000 0.032 - 0.082 0.028 -

Brazil 1.850 0.000 0.252 MSAR 0.320 0.104 -

Canada 0.967 0.054 0.394 MSAR 0.532 0.154 -

Chili 0.615 0.180 0.436 - 0.098 0.406 MSAR

Colombia 1.790 0.008 0.112 MSAR 0.318 0.040 ESTAR

Denmark 0.210 0.562 0.032 ESTAR 0.710 0.032 ESTAR

Euro Area 0.102 0.586 0.008 ESTAR 0.846 0.018 ESTAR

Finland 1.552 0.008 0.550 MSAR 0.032 0.612 MSAR

France 0.339 0.480 0.090 ESTAR 0.478 0.088 ESTAR

Germany 0.806 0.338 0.370 - 0.432 0.318 -

Italy 0.447 0.174 0.440 - 0.168 0.512 -

Japan 0.215 0.528 0.184 - 0.242 0.080 ESTAR

Mexico 0.517 0.182 0.454 - 0.060 0.426 MSAR

Netherlands 1.189 0.202 0.752 - 0.240 0.594 -

Norway 0.910 0.298 0.204 - 0.486 0.194 -

Peru 3.771 0.000 0.570 MSAR 0.002 0.716 MSAR

Portugal 0.338 0.132 0.576 - 0.156 0.558 -

Russia 2.690 0.000 0.134 MSAR 0.098 0.106 MSAR

South Africa 2.420 0.000 0.274 MSAR 0.052 0.104 MSAR

Spain 0.151 0.106 0.588 - 0.108 0.556 -

Sweden 1.730 0.728 0.050 ESTAR 0.732 0.032 ESTAR

Switzerland 0.063 0.588 0.672 - 0.680 0.112 -

Turkey 2.887 0.002 0.364 MSAR 0.000 0.334 MSAR

United Kingdom 0.809 0.392 0.062 ESTAR 0.450 0.054 ESTAR

Table 4: Test results for 24 exchange rates against the US dollar. |S | is the test statistic
in absolute value. The other columns contain p-values and model suggestions based on the
standard bootstrap and the wild bootstrap test procedure.

hood of the MSAR model is higher, in 7 cases the ESTAR log likelihood. In the next

block ’Standard Bootstrap’ the first two columns provide the p-values of the test with

the normal parametric bootstrap. If the null model is ESTAR, the test rejects the null in

9 cases. If the null model is MSAR, 6 rejections occur. Only one rejection on each side

is not mutually exclusive (Argentina). The third column contains the suggested model.

A suggestion is only made if one test cannot reject the null and the other test can reject

at least at the 10% level. Following this procedure the test provides suggestions in 13

of 24 cases. The block ’Wild Bootstrap’ contains p-values and model suggestions of the

test procedure using the recursive wild bootstrap. In this case the test rejects 9 times if
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Country γ̂ ĉ σ̂ LR p-value ȳ

Colombia 0.035 7.570 0.025 0.127 7.627

Denmark 0.287 1.957 0.033 0.125 1.858

Euro Area 0.491 -0.126 0.031 0.161 -0.169

France 0.356 1.758 0.032 0.265 1.651

Japan 0.193 4.661 0.033 0.989 4.696

Sweden 0.216 1.927 0.033 0.082 1.886

United Kingdom 0.369 -0.409 0.030 0.169 -0.477

Table 5: Estimation and test results for the restricted ESTAR model with ψ = 1 and φ = −1.
LR p-value is the p-value of the likelihood ratio test on this restriction. ȳ is the arithmetic
mean of the time series.

the null model is ESTAR and 8 times if the null model is MSAR. Here the test provides

suggestions in 14 cases. A comparison between the bootstrap methods shows that the

test decision does not change in 18 of 24 cases. The difference to the former procedure is

that Brazil and Canada are not identified as MSAR model anymore, Chili and Mexico are

now in the MSAR group and for Japan and Columbia an ESTAR model is suggested.

Columbia is the only switch between suggestions. This is not completely surprising

since the p-value of the standard bootstrap with the MSAR model under the null is only

11.2%.

In the next step we estimate all exchange rates where at least one bootstrap-type of the

test suggests a specific model. The estimation results of the ESTAR model are given

in Table 5. Even though we test with an unrestricted ESTAR model to allow for high

flexibility, i.e. an explosive inner regime, the estimated parameters for the seven ESTAR

suggestions are very close to an inner unit root regime and an outer white noise. Similar

to previous work we cannot reject the null that ψ = 1 and φ = −1 to the 5% level in all

cases. The results show that (i) the Euro has the highest adjustment speed, followed by

the British Pound and the French Franc, (ii) that the estimated equilibrium level c is

very close to the average of the time series ȳ and (iii) that the results are quite close to

the results of Taylor et al. (2001) and Rapach and Wohar (2006) given that we use an

extended data set.

The results of the 10 MSAR suggestions are presented in Table 6. All countries have a

highly persistent autoregressive parameters, Colombia and Turkey are extremely close

to a unit root. From the pure parameter estimates all time series fulfill the stationary

conditions in (7) and (8). The regime probabilities are also persistent for most countries.

One crucial exception in the sample is Turkey. All unit root tests reject the null for this

series while the estimation result is more a random walk with drift than a nonlinear

switching model. In this case both competing models do not seem to be adequate.
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µ̂1 µ̂2 φ̂ p̂11 p̂22 σ̂

Brazil 0.041 0.087 0.923 0.988 0.977 0.050

Canada 0.002 0.013 0.965 0.989 0.976 0.018

Chili 0.904 0.823 0.857 0.992 0.984 0.054

Colombia 0.047 0.107 0.993 0.978 0.585 0.021

Finland 0.097 0.125 0.927 0.982 0.960 0.029

Mexico 0.114 2.534 0.954 0.999 0.475 0.053

Peru 0.188 0.351 0.829 0.993 0.990 0.077

Russia 0.148 0.399 0.954 0.984 0.528 0.041

South Africa 0.047 0.194 0.971 0.977 0.171 0.034

Turkey -0.004 0.297 0.998 0.987 0.001 0.039

Table 6: Estimation results for the MSAR model in (6).

From an economic angle the major difference between the two models is the nonlinear

switching behavior. In the MSAR model (6) only exogenous effects affect the series

through the mean in a nonlinear fashion. Thus, a country where the MSAR model is

suggested for the corresponding real exchange rate should be influenced by exogenous

shocks like policy changes or economic crisis. In contrast, in the ESTAR model (4)

lagged observations have a nonlinear effect on yt. Therefore, endogeneous market effects

should have a crucial impact on real exchange rates identified as ESTAR.

In a last step we discuss some major historical developments in specific parts of the

world and show that our empirical findings match to the expected behavior in general,

but that there are also a three exceptions (Finland, Canada and Columbia) and some

countries where no suggestion is made but expected. We classify two parts of the world,

Western Europe and Latin America. All tested real exchange rates can be assigned to

one of these areas except Canada, Japan, Russia, South Africa and Turkey.

For five European countries an ESTAR model is suggested and only one MSAR sugges-

tion can be found. During the sample period the western European countries started

to cooperate politically as well as in economic policy in particular within the European

Economic Community (EEC). This collaboration got even closer with the transition to

the European Community (EC). This period of political stability might explain why

exogenous effects have only minor influence on these real exchange rates. Another im-

portant development was the European Monetary System from 1979-1993 where the

member countries of the EC (first without the UK) fixed their exchange rates against

each other.This explains the similar behavior of the series over time. Even though the

central banks of the western European countries are independent from each other they

pursued a similar interest rate policy to control inflation on a rather low level. This co-
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Figure 1: Real exchange rate Euro area with transition function against time and lagged
values.

operation led to the adoption of inflation targeting during the 1990’s, which is another

indicator for stability in this region.

For five Latin American countries at least one type of bootstrap procedure suggests an

MSAR model. Columbia is identified as MSAR and ESTAR depending on the bootstrap

but shows a complete different behavior than the other Latin American time series. De-

velopments and events which support the MSAR model for this region are exogenous

political shocks like the end of the military regime in Brazil in 1985 or the military coup

in Peru in 1975. Beside these two major political events many examples of a very volatile

and diverse policy making in all Latin American countries during the second half of the

twentieth century can be found. Other important external impacts are the oil crises in

1973 and 1979, which led to the Latin American Debt Crisis in 1982 and hyperinflation
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Figure 2: Real exchange rate Brazil with smoothed transition probabilities.

during the 1980s. Another major event was the economic crisis in Mexico in 1994 which

had also influence on the other Latin American countries. All these events had an direct

effect on the real exchange rate.

Three other countries in the MSAR group show a very similar behavior compared to

Latin America: Turkey, Russia and South Africa. Some key events during the sample

period are the debt crisis in Russia in 1998, high political and economic instability

in Turkey during the 1970s or the end of apartheid in South Africa in 1990. The

two remaining countries, Canada and Japan, are only classified for one bootstrap type.

Besides neither of the two countries fall in any of the before described clusters. Therefore,

no further conclusions for these countries are drawn.
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5 Conclusion

Different theories about the existence of the PPP support different economic views of the

in-sample dynamic driving real exchange rates. These different views result in different

models frequently used in the analysis of PPP, namely ESTAR and MSAR models.

As both models are able to support PPP under certain conditions the question which

model to use for the analysis is usually answered upon prior economic belief rather than

statistical specification. However, as the dynamics of the competing models are rather

different the question which model captures the data best is important as it results

in different economic theories. In this paper we propose a bootstrap based likelihood

ratio test that allows us to discriminate between both classes of nonlinear time series

models. The bootstrap approximation of the asymptotic distribution of the test statistic

allows us to obtain convincing power results for sample sizes frequently encountered in

empirical studies.

In an empirical application we find that the real exchange rates of countries with high

inflation rates such as Brazil, Columbia or Peru are modeled best using MSAR models,

thus supporting Peso effects and structural instability. Countries not suffering from

high inflation like many Western European countries are better described by an ESTAR

model. In general continuous adjustment towards a long-run PPP equilibrium can be

concluded.
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