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1 Introduction

In their 2008 QJE paper, Mulligan and Rubinstein (2008) found that the composition

of the female workforce in the United States has changed over time. In particular, they

provided evidence that in the late 1970s working women were negatively selected from

the female population, while in the late 1990s there was a positive selection of women

into the female workforce. Positive selection means that those women with the highest

skills are in the labor force, while the opposite is true in case of negative selection. The

authors argue that the fact that more highly skilled women attended the labor force is

able to explain the narrowing of the male-female wage gap in the United States over this

time period.

Mulligan and Rubinstein employed the Heckman sample selection model to draw their

conclusions. However, they did not control for the potential endogeneity of education, a

variable which is likely to be endogenous. Ignoring the potential endogeneity of education,

though, may lead to inconsistent parameter estimates so that the results of Mulligan

and Rubinstein might be invalid. In this paper, we set up a Heckman sample selection

model which also accounts for the potential endogeneity of education and revisit the

issues addressed in the Mulligan and Rubinstein paper. In particular, we analyze whether

accounting for the endogeneity of education has an effect on the amount and direction of

sample selectivity of working women.

To see why education may be endogenous in the Mulligan/Rubinstein example, note

that there might be unobservable factors like ability which are likely to jointly affect

a woman’s wage (main equation), her probability of labor force participation (selection

equation) and her educational attainment. Since these unobservable factors cannot be

included as control variables in our econometric model, we have a typical situation of

endogeneity as the education variable will be correlated with the error terms of the main

and the selection equation.1

1Recall that the Heckman selecton model is based on two equations, the main equation (of interest)
and a selection equation which governs the probability of being selected.
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Before analyzing the econometric implications of the joint presence of sample selec-

tivity and endogeneity, we begin with a description of the virtues and drawbacks of the

Heckman selection model. The Heckman selection model, originated in 1979, is based on

a joint normality assumption of the error terms in the main equation and the selection

equation. This bivariate normality assumption has often been criticized and challenged

since. The reason is that parameter estimates of the main equation are typically incon-

sistent if the bivariate normality assumption is violated. Beginning in the 1980s, several

authors have, thus, provided semi- and nonparametric estimation strategies which impose

minimal assumptions on the distribution of error terms and are, therefore, more likely to

consistently estimate the parameters of interest in applications. Examples include Gallant

and Nychka (1987), Powell (1987), Ahn and Powell (1993), Das et al. (2003) and Newey

(2009).

Most of these estimation approaches focus on consistent estimation of the parameters

in the main equation and selection equation, where the latter ones can be viewed as

nuisance parameters which are needed to obtain consistent estimates of the main equation

parameters. However, if one focuses on the direction of selection and, thus, on the sample

selection mechanism itself, one needs an estimation strategy which also gives an estimate

of a parameter which measures the correlation between main and selection equation. If

this correlation parameter is positive, we talk about positive selection, while in the other

case we call this negative selection. The paper of Mulligan and Rubinstein is an example

why estimation of a correlation parameter is useful, as it shows that the composition

of the female workforce has changed from negative to positive selection, which in turn

provides explanation why the male-female wage gap may have narrowed.

In this paper, we expand the Heckman selection model to allow for endogeneity of

covariates. As in other econometric models, not accounting for endogeneity if it is indeed

present leads to inconsistent parameter estimates.

First, we present a fully efficient full information maximum likelihood framework;

thereafter, we present a limited information maximum likelihood framework which can be
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easily implemented in standard econometrics software. The latter does not give correct

estimates of the correlation parameter, but appropriate formulas to calculate it are also

provided.

Econometric estimators which account for sample selectivity and the presence of en-

dogenous covariates have been provided by Das, Newey and Vella (2003), Chib et al.

(2009) and Wooldridge (2010). Das, Newey and Vella (2003) employ a nonparametric es-

timation framework which relies on few distributional assumptions, but does not provide

an estimate of a correlation parameter or a similar measure of the interdependence be-

tween main and selection equation. Chib et al. (2009) advocate a Bayesian framework and

set up a full information maximum likelihood procedure. Our approach is quite similar,

but easier to implement, and it is not Bayesian. Wooldridge (2010) suggests to augment

the main equation with an inverse Mills ratio term and then to estimate this equation

by two stage least squares (2SLS), thereby eliminating the endogeneity bias2. However,

Wooldridge’s strategy only works if the endogenous explanatory variable appears only in

the main equation but not in the selection equation.

Our proposed likelihood estimator is in the spirit of the estimators for the Tobit model

with endogenous covariates as provided by Smith and Blundell (1986) and the probit

model with endogenous covariates as provided by Rivers and Vuong (1988); see also Newey

(1987). Despite the fact that these estimators rely on strong distributional assumptions

(as our estimator, too), they are implemented in standard econometric software packages

(such as STATA) and are still frequently used in applied work. Even if one questions the

parametric assumptions underlying these estimators, they still may be used for exploratory

data analysis followed by a more appropriate procedure afterwards.

As pointed out above, and in contrast to the Smith-Blundell and Rivers-Vuong esti-

mators, our estimator cannot simply be “improved” by a semi-/nonparametric estimator

since it has the unique virtue that it provides an estimate of the correlation between main

and selection equation, which is an important ingredient for analyzing how the sample se-

2This approach has been put forward in Semykina and Wooldridge (2010).
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lection mechanism works. We will illustrate this latter point by revisiting the composition

of the female workforce in the U.S. in the spirit of Mulligan and Rubinstein (2008).

The remainder of the paper is organized as follows. In section 2, we set up an economet-

ric model which allows for the simultaneous presence of sample selectivity and endogeneity.

Section 3 presents the full information and limited information maximum likelihood esti-

mation strategies and shows how the latter can be implemented in standard econometric

software. In this section, we also provide a test which indicates whether endogeneity is

indeed present. In section 4, we apply our estimator to the Mulligan and Rubinstein

analysis. Section 5 concludes the paper.

2 Econometric Model

The primary purpose of this paper is to revisit the Mulligan and Rubinstein example,

where we seek to analyze the effects of treating education as endogenous. However, we

also want to present a rather general framework for incorporating endogeneity into the

Heckman selection model. The reason is that endogeneity may occur in three respects.

First, endogeneity may only appear in the main but not in the selection equation; second,

endogeneity may appear only in the selection but not in the main equation; and third,

endogeneity may appear in both equations. Thus, we set up a relatively general model to
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cover all these cases. The model is given by

y∗i = X1iβ1 +X2iβ2 + Ciβ3 + ui ≡ Xiβ + ui (1)

z∗i = W1iγ1 +W2iγ2 + Ciγ3 +Qiγ4 + vi ≡ Wiγ + vi (2)

X2i = [X1i,W1i]∆1 + Z1i∆2 + ε1i ≡ Z̃1i∆ + ε1i (3)

W2i = [X1i,W1i]Λ1 + Z2iΛ2 + ε2i ≡ Z̃2iΛ + ε2i (4)

Ci = [X1i,W1i]Υ1 + Z3iΥ2 + ε3i ≡ Z̃3iΥ + ε3i (5)

zi = 1(z∗i > 0) (6)

yi = y∗i 1(zi = 1), (7)

where i = 1, . . . , n indexes individuals. The first equation is the main equation, where

the latent dependent variable y∗ is related to a (1×K1)-vector of exogenous explanatory

variables, X1, to a (1 × K2)-vector of endogenous explanatory variables only included

in the main equation but not in the selection equation, X2, and to a (1 × P )-vector of

endogenous explanatory variables included in the main and the selection equation, C.

The second equation is the selection equation, where the latent variable z∗ is related

to a (1 × L1)-vector of exogenous explanatory variables, W1, to a (1 × L2)-vector of

endogenous explanatory variables, W2 only included in the selection equation but not

in the primary equation, to C and to Q. Q is an exogenous variable (it could also be

a vector) which appears only in the selection equation. This is a well-known exclusion

restriction serving to identify the parameters of the main equation. In equations (2.3)

to (2.5) it is assumed that the endogenous explanatory variables can be explained by a

(1 ×M1)-vector, a (1 ×M2)-vector and a (1 ×M3)-vector of instrumental variables, Z1,

Z2 and Z3, respectively. Equation (2.6) expresses that only the sign of z∗ is observable.

Finally, equation (2.7) comprises the selection mechanism, i.e. the latent variable y∗ is

only observed if the selection indicator z is equal to one. Equations (2.1), (2.2), (2.6),

and (2.7) build up the framework of the sample selection model without endogeneity as

presented in many textbooks (e.g., Davidson and MacKinnon, 1993, pp. 542-543). The
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additional feature in equations (2.3) to (2.5) is that some of the covariates (X2, W2 and

C) in the primary and the selection equation are endogenous, i.e. correlated with the

error terms u and v. We assume that for each of these endogenous variables there exist

instrumental variables Z1, Z2 and Z3 which are not correlated with any error term in the

model.

To complete the model, it is assumed that the vector of error terms (ui, vi, ε
′
1i, ε

′
2i, ε

′
3i)
′

is distributed according to



ui

vi

ε′1i

ε′2i

ε′3i


∼ NID

0,


 σ2

u ρσuσv

ρσuσv σ2
v

 Ω′

Ω(J×2) Σ(J×J)


 , (8)

where NID denotes “normally and independently distributed”, J ≡ K2 + L2 + P , and

the distribution should be interpreted as conditional on all exogenous variables (the con-

ditioning has been omitted for the ease of notation). The covariance matrix of the error

terms consists of four parts. The upper left part is the covariance matrix attributed to

the error terms of the primary and selection equation, respectively, where σ2
u and σ2

v de-

note the variances of u and v, and ρ denotes the correlation coefficient. If there was no

concern about endogeneity, inference would be based solely on this part of the covariance

matrix, as it is common in the standard sample selection model. However, the (potential)

presence of endogeneity is indicated by the (J×2)-matrix Ω, which captures the influence

of unobserved factors which jointly affect the dependent variables in equation (2.1) and

(2.2) and the endogenous explanatory variables. Note that endogeneity is absent if and

only if Ω is equal to the null matrix. Finally, the error terms attributed to the endogenous

explanatory variables have covariance matrix Σ whose dimension is (J × J).

Note that it is assumed that the distribution of the endogenous covariates can be

reasonably approximated by a normal distribution, which favors continuous regressors
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and excludes binary regressors.

3 Estimation and Testing for Exogeneity

First, we lay out a full information maximum likelihood procedure in which all parame-

ters of the model (1)-(6) are estimated simultaneously. First, note that the conditional

distribution of (ui, vi)
′ given (ε1i, ε2i, ε3i) is given by

ui
vi


∣∣∣∣∣∣∣ ε1i, ε2i, ε3i ∼ NID

(
Ω′Σ−1

[
ε1i, ε2i, ε3i

]′
, B

)
(9)

where

B ≡

 σ2
u ρσuσv

ρσuσv σ2
v

− Ω′Σ−1Ω. (10)

Define

Ψ ≡

 ψ11
(1×K2)

ψ12
(1×L2)

ψ13
(1×P )

ψ21
(1×K2)

ψ22
(1×L2)

ψ23
(1×P )


(2×J)

≡ Ω′Σ−1 (11)

Γ ≡

σ̃2 ρ̃σ̃

ρ̃σ̃ 1

 ≡
 σ2

u ρσuσv

ρσuσv σ2
v

− Ω′Σ−1Ω, (12)

where the lower right element of Γ has been set equal to unity due to normalization.

Therefore, equation (3.1) can be recast as

ui
vi


∣∣∣∣∣∣∣ ε1i, ε2i, ε3i ∼ NID


ψ11ε

′
1i + ψ12ε

′
2i + ψ13ε

′
3i

ψ21ε
′
1i + ψ22ε

′
2i + ψ23ε

′
3i

 ,
σ̃2 ρ̃σ̃

ρ̃σ̃ 1


 , (13)
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which resembles the (unconditional) joint error distribution of the sample selection model

without endogeneity (except for the non-zero means).3

Then, the likelihood function can be written as the product of a conditional distribu-

tion which resembles the (unconditional) likelihood function of the sample selection model

without endogeneity and the joint distribution of the error terms (ε1, ε2, ε3). Thus, the

log-likelihood function is given by

l(θ) =
∑
zi=0

log{Φ(−Wiγ − ψ21ε
′
1i − ψ22ε

′
2i − ψ23ε

′
3i)}

+
∑
zi=1

log{σ̃−1φ(σ̃−1(yi −Xiβ − ψ11ε
′
1i − ψ12ε

′
2i − ψ13ε

′
3i))}

+
∑
zi=1

log{Φ((1− ρ̃2)−1/2[Wiγ + ψ21ε
′
1i + ψ22ε

′
2i + ψ23ε

′
3i

+ ρ̃σ̃−1(yi −Xiβ − ψ11ε
′
1i − ψ12ε

′
2i − ψ13ε

′
3i)])}

− n

2
log |Σ| − 1

2

n∑
i=1

[
ε1i ε2i ε3i

]
Σ−1

[
ε1i ε2i ε3i

]′
, (14)

where θ ≡ (β′, γ′, ρ̃, σ̃, vec(Ψ)′, vech(Σ)′, vec(∆)′, vec(Λ)′, vec(Υ)′)′,

ε1i = X2i − Z̃1i∆ (15)

ε2i = W2i − Z̃2iΛ (16)

ε3i = Ci − Z̃3iΥ, (17)

Φ(·) denotes the standard normal cumulative distribution function and φ(·) the standard

normal probability density function.

The FIML estimator of the sample selection model with endogenous covariates is thus

given by

θ̂ = arg max
θ

l(θ). (18)

3The approach undertaken here to accommodate the endogeneity problem is known as a “control
function approach” in the literature (see, e.g., Wooldridge, 2010, pp. 126-29).
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The FIML estimator actually does not provide estimates of the “structural” variance-

covariance parameters, i.e., those parameters in the unconditional distribution of the error

terms. Especially the correlation parameter between main and selection equation is of

interest, as pointed out in the introduction. However, these structural parameters can be

deduced from the FIML estimates by noting that

Π̂ = Γ̂ + Ψ̂Σ̂Ψ̂′ (19)

Ω̂ = Σ̂Ψ̂′ (20)

ρ̂ =
ĝ

σ̂uσ̂v
, (21)

where Π ≡

σ2
u g

g σ2
v

 and g ≡ ρσuσv. In the appendix it is shown how standard errors

for these structural estimates can be derived by means of the delta method.4

The FIML estimator is fully efficient. However, if the number of observations is large

and/or the number of covariates is large, estimation may be quite time consuming. As an

alternative, one may consider choosing a limited maximum likelihood (LIML) approach.

We propose the following procedure:

1) Estimate the reduced form equations (3)-(5) by OLS and obtain the residuals ε̂1, ε̂2

and ε̂3.

4We also provide in the appendix a small Monte Carlo simulation study which analyzes the finite
sample performance of the FIML estimator and compares its estimates to the (biased) estimates based
on the ordinary Heckman selection model which does not control for endogeneity. Moreover, we provide
an application of our estimator to the well-known Mroz (1987) labor supply data set in order to compare
our results with those of Wooldridge (2010), who did the same using his estimator.
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2) Insert these estimated values into the following log-likelihood function

l(θ̃) =
∑
zi=0

log{Φ(−Wiγ − ψ21ε̂
′
1i − ψ22ε̂

′
2i − ψ23ε̂

′
3i)}

+
∑
zi=1

log{σ̃−1φ(σ̃−1(yi −Xiβ − ψ11ε̂
′
1i − ψ12ε̂

′
2i − ψ13ε̂

′
3i))}

+
∑
zi=1

log{Φ((1− ρ̃2)−1/2[Wiγ + ψ21ε̂
′
1i + ψ22ε̂

′
2i + ψ23ε̂

′
3i

+ ρ̃σ̃−1(yi −Xiβ − ψ11ε̂
′
1i − ψ12ε̂

′
2i − ψ13ε̂

′
3i)])}, (22)

which is then maximized over θ̃ ≡ (β′, γ′, ρ̃, σ̃, vec(Ψ)′).

Observe that the log-likelihood function is the same as for the Heckman selection model

without endogeneity, with the difference that we have the additional covariates ε̂1, ε̂2 and

ε̂3. Thus, our model can be estimated using any econometrics software which supports

maximum likelihood estimation of the Heckman selection model. One must simply add

to the set of covariates the estimated residuals ε̂1, ε̂2 and ε̂3.

Of course, using estimated residuals as covariates instead of the true error terms

requires an adjustment of the (asymptotic) standard errors. To get appropriate standard

errors, one can either

a) use a correction formula which gives that
√
n(ˆ̃θ − θ̃) d−→ N (0, C), where C is the

corrected asymptotic covariance matrix which accounts for the estimation error in

ε̂1, ε̂2 and ε̂3. The exact expression for C is provided in the appendix;

b) combine the first order conditions from maximizing the limited information log-

likelihood function with the normal equations for estimating the reduced form equa-

tions for the endogenous explanatory variables and estimate the parameters jointly

in a generalized method of moments (GMM) framework;

c) use the bootstrap.

We now present a simple test which indicates whether endogeneity is indeed a problem

in a particular application. The absence of endogeneity means that the matrix Ω is equal

11



to the null matrix. But this implies that Ψ is equal to the null matrix as well. Hence, we

can test for the absence of endogeneity by performing a simple test of joint significance

of the parameters associated with the additional “covariates” ε̂1, ε̂2 and ε̂3. If we cannot

reject the joint hypothesis that these parameters are equal to zero, then we may conclude

that endogeneity is indeed absent and estimates from an ordinary Heckman selection

model would be consistent.

A test of the hypothesis that Ψ = 0 is a standard task in maximum likelihood estima-

tion. We propose a Wald test. In that case, the test statistic will be given by

WΨ = vec(Ψ̂)′(Asy.Cov[vec(Ψ̂)])−1vec(Ψ̂) ∼ χ2(2J), (23)

where Asy.Cov[vec(Ψ̂)] denotes the asymptotic covariance matrix of vec(Ψ̂). In case of

the FIML estimator and provided that suitable regularity conditions hold (for instance,

cf. Amemiya, 1985, pp. 120-127), this asymptotic covariance can be obtained by using

the fact that

√
n(θ̂ − θ) d−→ N (0,−H−1), (24)

where H = n−1E
(
∂2l(θ)
∂θ∂θ′

)
.

4 Empirical Analysis

In this section, we apply our LIML estimator to the Mulligan and Rubinstein (2008)

example. Mulligan and Rubinstein (2008) used CPS data to fit wage regressions for

men and women. The estimates for women were conducted using the two-step Heckman

selection estimator which controls for sample selectivity. Based on their estimation results,

the authors concluded that selection of women into the labor force had turned over time

from negative to positive, a fact which might explain the narrowing of the male-female

wage gap over the time period under consideration.
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We do basically the same as Mulligan and Rubinstein (2008) did. More specifically, we

estimate wage regressions for women and analyze the composition of the female workforce

while controlling for sample selectivity and endogeneity. Instead, however, of using CPS

data, we employ the public use files of the 1980 US Census and the 2005-2010 American

Community Survey (ACS). The reason is that we need plausible instrumental variables

for education. These should be randomly assigned, affect the wage only through the effect

on education (“exclusion”) and should have a statistically significant relation to education

(“first stage”). Instrumental variables satisfying these conditions are hard to find.

To resolve this issue, we exploit the idea underlying the Angrist and Krueger (1991)

paper. Angrist and Krueger (1991) used the quarter of birth (and various interactions)

as an instrumental variable for education. The idea is that children in the United States

attend school in the year they turn six, where December the 31st is the cutoff date. Thus,

a child who turns six late in the year attends school at the age of five, whereas a child

who turns six early in the year attends school at the age of six. Since the legal high school

drop out age in the United States is 16 years of age, Angrist and Krueger (1991) argue

that children born late in the year attend school at an earlier age and, thus, stay longer

in school.

Unfortunately, a quarter of birth variable is not included in the CPS files for the

entire time period of interest. We thus employ the 1980 US Census and the American

Community Survey data from 2005 to 2010, since these data sets do contain the quarter

of birth variable.5

Mulligan and Rubinstein (2008) perform regressions for the time periods 1975-1979

and 1995-1999, which means they pooled these years and estimated wage regressions

for men and women. We will estimate wage regressions only for women since we are

interested in the composition of the female workforce. Moreover, we take the 1980 Census

as a substitute for the period 1975-1979 and the (pooled) ACS files from 2005-2010 as

a substitute for 1995-1999. Despite the fact that the ACS files cover a period ten years

5We obtained our data files from the IPUMS-USA database (Ruggles et al., 2010).
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after, we conjecture to find the same basic pattern, i.e., that the selection of women into

the workforce has become more positive over time.

As in Mulligan and Rubinstein (2008), our sample consists of white non-Hispanic

adults between 25 and 54 years of age not living in group quarters. Moreover, our sample

includes women only. As the working population we only consider full time full year

(FTFY) workers, i.e., workers who worked at least 36 hours per week and 50 hours in

the last year. Only for these women we calculated an hourly wage given by their annual

income divided by (52 times the usual hours of work).6 The remaining women add to the

non-selected population, which thus comprises women who do not work at all and women

who did not work full time full year. Hence, the selection parameter (i.e., the correlation

between main and selection equation) that we will compute refers to the selection of

women into the full time full year workforce. Put differently, the subject of our analysis

is the composition of the full time full year workforce in 1980 and from 2005 to 2010.

In order to prevent our estimation results from the impact of outliers, we excluded

incomes below the fifth percentile and above the 95th percentile in each time period.

Moreover, observations for which incomes have been imputed by a “hot deck” procedure

were eliminated as well. We also excluded unemployed people as we cannot say whether

these (potentially) belong to the FTFY people or to the remaining population. Further-

more, we eliminated self-employed workers.

Due to Mulligan and Rubinstein (2008), we specify the following empirical model. The

main equation has the natural logarithm of the hourly wage as its dependent variable,

so that the estimated coefficients of the explanatory variables can be interpreted as the

percentage change in the wage rate due to a one-unit increase in an explanatory variable

(in case of continuous variables). Covariates in the main equation include educational

attainment (educ), age (age), age squared (age2 ), dummies for the census region (north-

east, midwest, south; west is the baseline) and dummies for the marital status (widowed,

6Of course, these wage calculations have been adjusted for the inflation rate. We multiplied each
hourly wage with the cpi99 variable included in the public use samples, which expresses all nominal
values in 1999 US dollars.
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divorced, separated, never married ; married is the baseline). The selection equation in-

cludes the same variables as the main equation and the number of children younger than

five years of age (nchlt5 ). The latter variable is exclusive in the selection equation and

serves for the sake of identification.

Since education is potentially endogenous, we follow the LIML approach outlined in

section 3 and estimate in the first stage a reduced form equation for education. Explana-

tory variables are the exogenous variables from the main equation and our quarter of

birth dummies (where the first quarter is the baseline) as instrumental variables.

Table 1 provides descriptive statistics of the variables. We see that the people from the

pooled ACS samples have a higher wage on average, have more educational attainment,

are older and have a lower probability of being married. The quarter of birth dummies

are almost evenly distributed over the population, as one would have expected. In the

1980 Census file we have 1,032,668 observations, while we have 1,528,735 observations in

the pooled ACS files. In the 1980 Census file 40.04 percent of these people worked, while

in the ACS files 62.06 percent worked. We used these observations unweighted in our

regressions; results were very similar for the weighted and unweighted samples.

We begin our empirical analysis with the reduced form estimates for education. From

table 2 we can see that for both samples the quarter of birth dummies have a signifi-

cant impact on the education variable, thus fulfilling one basic requirement to be valid

instrumental variables. In the 1980 sample, the coefficients on these dummies possess

the expected signs, since the coefficient values imply that the educational attainment of

people born late in the year is higher. For the 2005-2010 sample, however, we have the

puzzling finding that people born in the second quarter of the year have the highest educa-

tional attainment. This can also be seen in the regression-unadjusted means of education

by year and quarter of birth, as provided in table 3. The estimated coefficients for the

quarter of birth dummies for the 2005-2010 sample are still significantly different from

zero, though, and we maintain our assumption that the quarter of birth dummies are

exogenous and, thus, valid instrumental variables.
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From these first stage estimates, we obtain the estimated residuals (eps) and insert

them as additional covariates into a maximum likelihood estimation procedure of the

Heckman selection model. By doing this, we not only control for sample selectivity but

for endogeneity as well. But before we proceed so far, we estimate a Heckman selection

model which does not account for endogeneity. This is the approach chosen by Mulligan

and Rubinstein (2008), and we expect to find (qualitatively) similar results using our data

sets.

The results for the ordinary Heckman model without controlling for endogeneity can

be found in table 4. The most important result from table 4 for our study is the estimated

value of the correlation coefficient between main and selection equation. We see that the

coefficient is negative for the 1980 sample (albeit not significantly different from zero)

and positive for the 2005-2010 sample. Hence, these estimates reflect the main findings

in Mulligan and Rubinstein (2008) that the selection has become more positive over time

and that it has changed from negative to positive.

When controlling for the potential endogeneity of education, we obtain the results

shown in table 5. The first result to highlight is that the returns to education are nearly

doubled when endogeneity is taken into account. But more important, the correlation

coefficient has increased for both samples. We still see an increase of the correlation

coefficient over time, so one of the Mulligan/Rubinstein (2008) findings holds true when we

control for endogeneity. However, we also see that the correlation is positive in 1980. Thus,

these results do not support the hypothesis that selection of women into the workforce

was negative in 1980. On the contrary, these results provide evidence that the unobserved

factors which lead to an increased probability of labor force participation also have a

positive impact on the wage.

Moreover, we find that the estimated coefficients of eps are significantly different from

zero in both main and selection equation, which indicates that an endogeneity bias is

present. We also find that these coefficients are negative. Since the coefficients measure

the correlation between unobserved factors governing educational attainment and unob-
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served factors in main and selection equation, we are faced with an interesting puzzle.

There seem to be latent factors which increase the probability of labor force participation

and increase wages, but which decrease educational attainment. Thus the plain ability-like

story from the introduction cannot be true, since if ability was dominant among the un-

observed factors, then the unobserved factors should be positively correlated. It remains

an interesting question for future research why the correlation structure of unobservables

has the pattern found in our estimation results.

5 Conclusions

In this paper, we have revisited the Mulligan and Rubinstein (2008) analysis of the com-

position of the female workforce. Using a different data set as in the original analysis, we

also find that the selection of women into the female workforce has become more positive

over time, which remains true whether or not we control for the endogeneity of education.

However, when taking endogeneity of education into account, we do not have a switch

from negative to positive selection over time any more. On the contrary, we find an in-

teresting relationship between the unobservables of our econometric model. While these

unobserved factors are positively correlated between main and selection equation, they

are negatively correlated with the unobserved factors governing educational attainment.

To reach our conclusions we employed a Heckman sample selection model with en-

dogenous covariates. We provided a rather general model which encompasses various

scenarios of endogeneity, including endogeneity only in the main equation, only in the se-

lection equation or in both. Although our estimator relies on distributional assumptions

which may not be satisfied in applications, the estimator nevertheless serves as a starting

point for a deeper (semiparametric) analysis. The main virtue of our estimator is that

it is relatively simple to compute. In fact, any econometrics software which is capable of

performing maximum likelihood estimation of the Heckman sample selection model can

be used.
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Despite its frequent use in applied econometrics, in most cases authors assume exogene-

ity of covariates when employing the Heckman selection model. The empirical analysis

of the preceding section, however, has shown for instance that the returns to education

are nearly doubled when accounting for endogeneity. This underlines the necessity of

controlling for the joint presence of sample selectivity and endogeneity of covariates if one

seeks to get consistent parameter estimates. This is especially important for analyzing

group differences, e.g., wage differences between men and women. Decomposition methods

used to analyze these differences, such as the well-known Blinder (1973)-Oaxaca (1973)

decomposition, are only valid if the model parameters have been estimated consistently.

18



References

Ahn, H. and Powell, J. L. (1993). Semiparametric estimation of censored selection models

with a nonparametric selection mechanism. Journal of Econometrics, 58(1-2):3–29.

Amemiya, T. (1985). Advanced Econometrics. Basil Blackwell, Oxford.

Angrist, J. D. and Krueger, A. B. (1991). Does compulsory school attendance affect

schooling and earnings? The Quarterly Journal of Economics, 106(4):pp. 979–1014.

Blinder, A. S. (1973). Wage discrimination: Reduced form and structural estimates.

Journal of Human Resources, 8(4):pp. 436–455.

Card, D. (1999). The causal effect of education on earnings. In Ashenfelter, O. and Card,

D., editors, Handbook of Labor Economics, volume 3 of Handbook of Labor Economics,

chapter 30, pages 1801–1863. Elsevier.

Chib, S., Greenberg, E., and Jeliazkov, I. (2009). Estimation of semiparametric models

in the presence of endogeneity and sample selection. Journal of Computational and

Graphical Statistics, 18(2):321–348.

Das, M., Newey, W. K., and Vella, F. (2003). Nonparametric estimation of sample selec-

tion models. Review of Economic Studies, 70(1):33–58.

Davidson, R. and MacKinnon, J. G. (1993). Estimation and Inference in Econometrics.

Oxford University Press, New York, NY.

Gallant, A. R. and Nychka, D. W. (1987). Semi-nonparametric maximum likelihood

estimation. Econometrica, 55(2):pp. 363–390.

Heckman, J. J. (1979). Sample selection bias as a specification error. Econometrica,

47(1):153–61.

Mroz, T. A. (1987). The sensitivity of an empirical model of married women’s hours of

work to economic and statistical assumptions. Econometrica, 55(4):765–99.

19



Mulligan, C. B. and Rubinstein, Y. (2008). Selection, investment, and women’s relative

wages over time. The Quarterly Journal of Economics, 123(3):1061–1110.

Newey, W. K. (1987). Efficient estimation of limited dependent variable models with

endogenous explanatory variables. Journal of Econometrics, 36(3):231–250.

Newey, W. K. (2009). Two-step series estimation of sample selection models. Econometrics

Journal, 12:S217–S229.

Oaxaca, R. (1973). Male-female wage differentials in urban labor markets. International

Economic Review, 14(3):693–709.

Powell, J. L. (1987). Semiparametric estimation of bivariate limited dependent variable

models. Manuscript, University of California, Berkeley.

Rivers, D. and Vuong, Q. H. (1988). Limited information estimators and exogeneity tests

for simultaneous probit models. Journal of Econometrics, 39(3):347–366.

Ruggles, S., Alexander, J. T., Genadek, K., Goeken, R., Schroeder, M. B., and Sobek, M.

(2010). Integrated public use microdata series: Version 5.0 [machine-readable database].

Minneapolis: University of Minnesota.

Semykina, A. and Wooldridge, J. M. (2010). Estimating panel data models in the presence

of endogeneity and selection. Journal of Econometrics, 157(2):375–380.

Smith, R. J. and Blundell, R. W. (1986). An exogeneity test for a simultaneous equation

tobit model with an application to labor supply. Econometrica, 54(3):679–85.

Wooldridge, J. M. (2010). Econometric Analysis of Cross Section and Panel Data. The

MIT Press, Cambridge, MA, 2nd edition.

20



Appendix A

In this appendix, we show how the asymptotic covariance matrix of the LIML estimator

must be corrected in order to account for the estimation of the regressors ε1, ε2 and

ε3. First, let α ≡ (vec(∆)′, vec(Λ)′, vec(Υ)′)′ and l̃(θ̃, α̂) =
∑n

i=1 li(θ̃, α̂) be the limited

information log-likelihood function. Provided there exists an interior solution, we can

write the first order condition from maximizing this likelihood function as

n∑
i=1

∂li(
ˆ̃θ, α̂)

∂θ̃
= 0. (25)

An asymptotic first order expansion about ˆ̃θ = θ̃ gives after rearranging and pre-multiplication

with
√
n

√
n(ˆ̃θ − θ̃) =

(
− 1

n

n∑
i=1

∂2li(θ̃, α)

∂θ̃2

)−1
1√
n

n∑
i=1

∂li(θ̃, α̂)

∂θ̃
+ op(1). (26)

Expanding the gradient about α̂ = α yields

√
n(ˆ̃θ − θ̃) =

(
− 1

n

n∑
i=1

∂2li(θ̃, α)

∂θ̃2

)−1
1√
n

n∑
i=1

∂li(θ̃, α)

∂θ̃

+

(
− 1

n

n∑
i=1

∂2li(θ̃, α)

∂θ̃2

)−1(
1

n

n∑
i=1

∂2li(θ̃, α)

∂θ̃∂α̂

)
√
n(α̂− α) + op(1). (27)

If

− 1

n

n∑
i=1

∂2li(θ̃, α)

∂θ̃2

p−→ H pos. def. (28)

1√
n

n∑
i=1

∂li(θ̃, α)

∂θ̃

d−→ N (0,M) (29)

1

n

n∑
i=1

∂2li(θ̃, α)

∂θ̃∂α̂

p−→ J (30)

√
n(α̂− α)

d−→ N (0, V ), (31)
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then

√
n(ˆ̃θ − θ̃) d−→ N (0, C), (32)

where C = H−1(M +JV J ′)H−1. This follows because the covariance between ∂li(θ̃,α)

∂θ̃
and

(α̂− α) is zero, as shown by Smith and Blundell (1986).

Note that implementation of the LIML estimator using an econometrics software yields

an asymptotic covariance of H−1MH−1, as the software does not know that some regres-

sors have been estimated. Hence, one must add to this expression a correction term of

H−1(JV J ′)H−1 in order to obtain the correct asymptotic covariance.

Appendix B

In this appendix, we derive formulas for the (asymptotic) variances of the estimates of the

structural variance-covariance parameters (based on the FIML estimates). We assume,

however, that FIML estimation does not yield estimates of ρ̃, σ̃ and Σ, but rather of

atanh(ρ̃), ln(σ̃) and S such that Σ = SS ′. The reason for not directly estimating these

parameters is that we have to make sure that ˆ̃ρ ∈ (−1, 1), ˆ̃σ > 0 and Σ̂ be positive

definite. Our reparameterization guarantees that these conditions are fulfilled.

(i) The Asymptotic Distribution of Ω̂
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ML estimation yields estimates of7

s ≡


s11

s21

s22

 = vech(S) and vec(Ψ′) =



ψ′11

ψ′12

ψ′21

ψ′22


(2J×1)

. (33)

Let

q ≡ (s′, vec(Ψ′)′)′. (34)

Since Ω = ΣΨ′ is a function of q, the asymptotic distribution of vec(Ω̂) can be obtained

by means of the Delta method. If

√
n(q̂ − q) d−→ N(0,M), (35)

then

√
n(vec(Ω̂)− vec(Ω))

d−→ N (0, CMC ′) , (36)

where

C =
∂vec(Ω)

∂q′
(37)

=
∂vec(SS ′Ψ′)

∂q′
(38)

= (Ψ⊗ IJ)
∂vec(SS ′)

∂q′
+ (I2 ⊗ SS ′)

∂vec(Ψ′)

∂q′
(39)

= (Ψ⊗ IJ)

[
∂vec(SS′)

∂s′
0

]
+ (I2 ⊗ Σ)

[
0 ∂vec(Ψ′)

∂vec(Ψ′)′

]
(40)

=

[
(Ψ⊗ IJ)∂vec(SS′)

∂s′
(I2 ⊗ Σ)

]
. (41)

7Note: The 2-by-2 case has been used here for the sake of illustration. The following analysis does
not hinge on this case.
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Furthermore,

∂vec(SS ′)

∂s′
=

{
(S ⊗ IJ)

∂vec(S)

∂s′
+ (IJ ⊗ S)

∂vec(S ′)

∂s′

}
(42)

=

{
(S ⊗ IJ)

∂vec(S)

∂s′
+ (IJ ⊗ S)KJ

∂vec(S)

∂s′

}
(43)

= {(S ⊗ IJ)L′J + (IJ ⊗ S)KJL
′
J} (44)

= {(S ⊗ IJ) + (IJ ⊗ S)KJ}L′J (45)

= (IJ2 +KJ)(S ⊗ IJ)L′J , (46)

with

LJ =
∑
i≥j

uijvec(Eij)
′ (47)

KJ =
J∑
i=1

J∑
j=1

Eij ⊗ E ′ij, (48)

where uij denotes a unit vector of size 1
2
J(J+1) whose [(j−1)J+i− 1

2
j(j−1)]-th element

is unity (1 ≤ j ≤ i ≤ J), and Eij is a (J × J) matrix with one at the (i, j)-th position

and zeros elsewhere. Note that LJ and KJ do only depend on J .

Therefore,

C =

[
(Ψ⊗ IJ)(IJ2 +KJ)(S ⊗ IJ)L′J (I2 ⊗ Σ)

]
. (49)

(ii) The Asymptotic Distribution of Π̂ =

 σ̂2
u ρσ̂uσ̂v

ρσ̂uσ̂v σ̂2
v


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ML estimation yields estimates of

s ≡ vech(S), vec(Ψ′) =



ψ′11

ψ′12

ψ′21

ψ′22


, [ln σ̃], [atanh(ρ̃)]. (50)

Let

q ≡ (s′, vec(Ψ′)′, [ln σ̃], [atanh(ρ̃)])′. (51)

Since

Π = Γ + ΨΣΨ′ (52)

=

 (exp{[ln σ̃]})2 tanh([atanh(ρ̃)]) exp{[ln σ̃]}

tanh([atanh(ρ̃)]) exp{[ln σ̃]} 1

+ ΨΣΨ′ (53)

is a function of q, the asymptotic distribution of vech(Π̂) can be obtained by means of

the delta method.

If

√
n(q̂ − q) d−→ N(0,M), (54)

then

√
n(vech(Π̂)− vech(Π))

d−→ N (0, CMC ′) , (55)
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where

C =
∂vech(Π)

∂q′
(56)

= L2J
∂vec(Π)

∂q′
(57)

= L2J

{
∂vec(Γ)

∂q′
+
∂vec(ΨΣΨ′)

∂q′

}
. (58)

Both components of the RHS have to be investigated in detail.

First,

∂vec(Γ)

∂[ln σ̃], [atanh(ρ̃)]
=



2(exp{[ln σ̃]})2 0

tanh([atanh(ρ̃)]) exp{[ln σ̃]} (1− tanh2([atanh(ρ̃)])) exp{[ln σ̃]}

tanh([atanh(ρ̃)]) exp{[ln σ̃]} (1− tanh2([atanh(ρ̃)])) exp{[ln σ̃]}

0 0


(59)

≡ A (60)

⇒ ∂vec(Γ)

∂q′
=

[
0 A

]
. (61)

Next,

∂vec(ΨΣΨ′)

∂(s′, vec(Ψ′)′)
= (ΨΣ⊗ I2)

∂vec(Ψ)

∂(s′, vec(Ψ′)′)
+ (I2 ⊗Ψ)

∂vec(ΣΨ′)

∂(s′, vec(Ψ′)′)
(62)

= (ΨΣ⊗ I2)K2J
∂vec(Ψ′)

∂(s′, vec(Ψ′)′)
+ (I2 ⊗Ψ)

∂vec(ΣΨ′)

∂(s′, vec(Ψ′)′)
(63)

= (ΨΣ⊗ I2)K2J

[
0 I2J

]
+ (I2 ⊗Ψ)

∂vec(ΣΨ′)

∂(s′, vec(Ψ′)′)
(64)

⇒ ∂vec(ΨΣΨ′)

∂q′
=

[
∂vec(ΨΣΨ′)
∂(s′,vec(Ψ′)′)

0

]
(65)

Hence,

C =
∂vec(ΨΣΨ′)

∂q′
=

[
∂vec(ΨΣΨ′)
∂(s′,vec(Ψ′)′)

A

]
. (66)
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(iii) The Asymptotic Distribution of ρ̂

Given an estimate of

Π =

 σ2
u ρσuσv

ρσuσv σ2
v

 , (67)

let

g ≡ ρσuσv ⇒ ρ =
g

σuσv
=

g√
σ2
uσ

2
v

= g
(
σ2
uσ

2
v

)− 1
2 (68)

and

q ≡
(
σ2
u, g, σ

2
v

)′
= vech(Π). (69)

Since ρ is a function of q, the asymptotic distribution of ρ̂ can be obtained by means of

the delta method.

If

√
n(q̂ − q) d−→ N (0, G) (70)

then

√
n(ρ̂− ρ)

d−→ N (0, FGF ′) (71)
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with

F =
∂ρ

∂q′
=

[
−1

2
g
(
σ2
uσ

2
v

)− 3
2 σ2

v ,
(
σ2
uσ

2
v

)− 1
2 ,−1

2
g
(
σ2
uσ

2
v

)− 3
2 σ2

u

]
. (72)

(iv) The Asymptotic Distribution of Σ̂ = ŜŜ ′

ML estimation yields estimates of8

s ≡


s11

s21

s22

 = vech(S). (73)

The asymptotic distribution is given by

√
n(ŝ− s) d−→ N(0,M). (74)

Since vech(Σ) = vech(SS ′) = c(s) is a function of s, the asymptotic distribution of

vech(Σ) can be obtained by using the delta method, which gives

√
n(vech(Σ̂)− vech(Σ))

d−→ N(0, C(s)MC(s)′), (75)

8Note: The 2-by-2 case has been used here for the sake of illustration. The following analysis does
not hinge on this case.
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where

C(s) =
∂c(s)

∂s′
(76)

=
∂vech(SS ′)

∂s′
(77)

= LJ
∂vec(SS ′)

∂s′
(78)

= LJ

{
(S ⊗ IJ)

∂vec(S)

∂s′
+ (IJ ⊗ S)

∂vec(S ′)

∂s′

}
(79)

= LJ

{
(S ⊗ IJ)

∂vec(S)

∂s′
+ (IJ ⊗ S)KJ

∂vec(S)

∂s′

}
(80)

= LJ {(S ⊗ IJ)L′J + (IJ ⊗ S)KJL
′
J} (81)

= LJ {(S ⊗ IJ) + (IJ ⊗ S)KJ}L′J (82)

= LJ(IJ2 +KJ)(S ⊗ IJ)L′J (83)

and

LJ =
∑
i≥j

uijvec(Eij)
′ (84)

KJ =
J∑
i=1

J∑
j=1

Eij ⊗ E ′ij, (85)

where uij denotes a unit vector of size 1
2
J(J+1) whose [(j−1)J+i− 1

2
j(j−1)]-th element

is unity (1 ≤ j ≤ i ≤ J), and Eij is a (J × J) matrix with one at the (i, j)-th position

and zeros elsewhere. Note that LJ and KJ do only depend on J .

Appendix C

In this appendix, we use Monte Carlo simulations in order to study the finite sample

properties of our FIML estimator and in order to gauge the bias which occurs if one does

not account for endogeneity. The results of these simulations are presented in table 6.

The first column of table 6 contains the specification. We distinguish between four

benchmark cases. In the first case, endogeneity is only present in the primary equation.
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In particular, it is assumed that

y∗i = .2 +.4X1i +.9X2i +ui

z∗i = 1 +.7W1i +vi

X2i = .5 +1.5X1i −.2W1i +.7Z1i +ε1i

and

Cov[(ui, vi, ε1i)
′] =


1

.9 1

.5 .4 2

 .

Note that we have assumed a relatively high correlation between the primary and the

selection equation. Hence, we focus our attention on situations where sample selection

bias is indeed a problem.

In the second case, endogeneity is only present in the selection equation:

y∗i = .2 +.4X1i +ui

z∗i = 1 +.7X1i +.3W2i +vi

W2i = .5 +1.5X1i +.7Z2i +ε2i

and

Cov[(ui, vi, ε2i)
′] =


1

.9 1

.5 .4 2

 .

In the third case, there is one common variable in both equations which is endogenous:

y∗i = .2 +.4X1i +.9Ci +ui

z∗i = 1 +.7W1i +.3Ci +vi

Ci = .5 +1.5X1i −.2W1i +.7Z3i +ε3i

30



and

Cov[(ui, vi, ε3i)
′] =


1

.9 1

.5 .4 2

 .

Finally, in the fourth case it is assumed that both equations include an endogenous

variable which is exclusive for each equation:

y∗i = .2 +.4X1i +.9X2i +ui

z∗i = 1 +.7X1i +.3W2i +vi

X2i = .5 +1.5X1i +.7Z1i +ε1i

W2i = −2 +1.8X1i +.6Z2i +ε2i

and

Cov[(ui, vi, ε1i, ε2i)
′] =



1

.9 1

.5 .4 2

.4 .5 1 2


.

Throughout, X1i, Z1i, Z2i and Z3i, i = 1, . . . , n, are scalars which have been simulated

from a standard normal distribution. For each of the four cases, these random numbers

have been drawn once and kept fixed during simulation. In total, each simulation en-

compasses 1000 repetitions in which parameter estimates have been computed. Table 1

presents the mean of these estimates over the repetitions, along with the corresponding

standard deviations.

In order to gauge the finite-sample performance of the estimator outlined in section

3, table 6 contains simulation results for different sample sizes. For each sample size,

table 6 displays the results for the FIML estimator presented in section 3 (“IV”) and

contrasts these results with those obtained when using the ordinary estimator for the
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sample selection model which does not account for endogeneity (“non-IV”). To save space,

only the estimates for the parameters of the primary equation and selection equation are

presented.

In specification (i) where there is only one endogenous variable included in the pri-

mary equation, the IV estimator performs well with respect to the estimates of the primary

equation, even for n = 100. However, the estimates for the selection equation are upward

biased in finite samples; this property is common in all specifications (i)-(iv). In spec-

ification (ii) where there is only one endogenous variable in the selection equation, the

estimator for the primary equation does well for n ≥ 200. This is also true for specifi-

cation (iii) with a common endogenous variable in both equations. When each equation

contains an exclusive endogenous variable (specification (iv)), good results are obtained

for n ≥ 500.

Note that the estimates for the selection equation are subjected to a normalization rule.

This is the reason why the performance of the IV estimator seems to be not “perfect”.

However, as it is well known, in binary choice models only coefficient ratios are identified.

Put differently, one should not consider the raw coefficients given in table 1 but rather

coefficient ratios. For example, in specification (iii) for n = 1000 we can calculate that the

mean of the second coefficient divided by the first gives 0.7018, whereas the mean of the

third coefficient divided by the first gives 0.2991. Thus, we see that also the parameters

of the selection equation are well estimated by the FIML procedure.

On the contrary, in most cases the non-IV estimator yields severely biased estimates

of the parameters of the primary equation among all specifications. For instance, for a

sample size of n = 1000 the bias ranges from 13 to 248.1 percent. However, the estimates

of the selection equation are sometimes relatively close to their true values (specifications

(i) and (iii)). This notwithstanding, note especially that the estimates of the parameters

of the main equation are severely biased even if endogeneity is only present in the selection

equation (specification (ii)). This result, which is due to the nonlinearity of the underlying

model, has not gained much attention in the literature yet.
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Overall, the results show that the FIML-IV estimator from section 3 outperforms

the ordinary estimator for the sample selection model, especially with respect to the

parameters in the primary equation and in case of large sample sizes. Moreover, the

results indicate that the bias in the parameter estimates may be substantial if one does

not account for endogeneity.

Appendix D

In this appendix, we present an application of our FIML estimator to the labor supply

data set introduced by Thomas Mroz (1987). Our goal is to compare our results with

those of Wooldridge (2010), who also applied his estimator to this data set.

The Mroz data set is quite popular and is often used to illustrate the performance

of estimators which account for sample selectivity. The data set consists of 753 married

women of whom 428 are working. We not only have information about relevant labor mar-

ket characteristics of women (such as the wage, educational attainment and experience)

but also on private characteristics such as the number of children, the “non-wife income”

and the educational attainment of the parents and the husband. The former variables

help identify the selection equation, while the latter variables may serve as instrumental

variables for education. These variables are assumed to satisfy an exclusion restriction in

the sense that they directly affect only the probability of labor market participation and

educational attainment, respectively, but not the wage rate.

For this data set, we estimated a wage equation for married women. However, as a

wage equation can only be fitted to the subsample of women who are actually working, a

simple regression with the women’s wage as the dependent variable may yield inconsistent

parameter estimates due to the possibility of sample selection. Hence, the appropriate

model to estimate the wage equation should be a sample selection model. A variable which

is commonly included as an explanatory variable is education. However, there might be

some background variables like ability which cannot be observed and, thus, are captured
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within the error terms. These variables are likely to affect not only wages and labor force

participation, but education as well. Therefore, a priori education should not be regarded

as exogenous. The consequences of falsely treating an endogenous variable like education

as exogenous have been illustrated in the preceding section; hence, estimates from the

ordinary sample selection model may be severely biased.

We estimated the following model: The main equation contains the natural logarithm

of the hourly wage as its dependent variable; explanatory variables are experience, ex-

perience squared and education. The selection equation includes experience, experience

squared, non-wife income, age, number of children aged until 6 years of age in the house-

hold, number of children aged 6 years or older in the household and education. Since

education is treated as endogenous, instrumental variables are needed for estimation.

Following Wooldridge (2010), we chose mother’s education, father’s education and hus-

band’s education as instrumental variables for education.9 Means and standard deviations

of these variables are presented in table 7.

Estimation results are given in table 8. In table 8, estimation results for the ordi-

nary sample selection model (“non-IV”) and the sample selection model with endogeneity

(“IV”) are provided. The first part of this table contains the parameter estimates for

the variables of the main equation, as well as estimates of the “reduced form” selection

parameter ρ̃ and the endogeneity parameter ψ11. This last parameter indicates whether

endogeneity of education is relevant in the primary equation. The second part presents

the parameter estimates for the selection equation. Additionally included is the endo-

geneity parameter ψ21, which indicates whether endogeneity of education is relevant in

the selection equation. Finally, the third part includes the parameter estimates of the

exogenous variables and instrumental variables with respect to education. In analogy

with the instrumental variables terminology, this part has been labeled “first stage”.

The results show significance of education in the primary and the selection equation.

Moreover, the instrumental variables for education employed in the “first stage” are highly

9For the appropriateness of these instrumental variables, cf. the discussion in Card (1999), pp. 1822-
26.
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significant. The remaining variables possess the expected signs. However, the estimates

of ρ̃, ψ11 and ψ21 are not significantly different from zero, indicating that there is neither

a selection bias nor an endogeneity bias present.10 These results are in line with those

reported by Wooldridge (2010) who draws similar conclusions. However, given that there

seems to be neither a sample selection bias nor an endogeneity bias present, this result is

not surprising.

10In addition, joint significance of ψ11 and ψ21 is rejected as well (p-value of 0.1907).

35



Table 1: Descriptive Statistics

Census 1980 ACS 2005-2010
Mean Std.dev. Mean Std.dev.

wage 12.177 3.999 15.306 6.610
educ 12.078 2.480 13.598 2.385
age 38.064 8.965 40.889 8.584
northeast 0.219 0.413 0.178 0.383
midwest 0.268 0.443 0.249 0.433
west 0.188 0.390 0.201 0.401
south 0.326 0.469 0.371 0.483
married 0.786 0.410 0.684 0.465
widowed 0.024 0.153 0.015 0.120
divorced 0.091 0.288 0.132 0.339
separated 0.022 0.147 0.022 0.147
never married 0.076 0.265 0.147 0.354
nchlt5 0.284 0.590 0.228 0.543
qtr1 0.248 0.432 0.242 0.428
qtr2 0.240 0.427 0.242 0.428
qtr3 0.263 0.440 0.264 0.441
qtr4 0.249 0.432 0.252 0.434

# obs. with nonmissing wage 413,447 948,735
# obs. 1,032,668 1,528,735
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Table 2: Reduced form estimates for education
Census 1980 ACS 2005-2010

Coeff. (Std.err) Coeff. (Std.err)

age -0.0316 (0.0028) -0.0042 (0.0024)
age2 -0.0003 (0.0000) -0.0003 (0.0000)
northeast -0.1362 (0.0075) 0.4002 (0.0062)
midwest -0.1600 (0.0072) 0.1317 (0.0057)
south -0.4315 (0.0069) 0.0632 (0.0053)
widowed -0.6909 (0.0157) -0.8144 (0.0161)
divorced -0.0247 (0.0083) -0.3117 (0.0058)
separated -0.9399 (0.0161) -1.0684 (0.0130)
never married 0.4462 (0.0093) 0.1279 (0.0057)
qtr2 -0.0131 (0.0068) 0.0440 (0.0055)
qtr3 0.0432 (0.0066) 0.0304 (0.0054)
qtr4 0.0612 (0.0067) 0.0291 (0.0054)
const 13.8892 (0.0530) 14.1160 (0.0463)

F-statistic 54.0800 22.8200

Table 3: Mean of education by year and quarter of birth

year/quarter of birth 1 2 3 4

1980 12.05483 12.03125 12.10005 12.12346
2005 13.46413 13.52121 13.50251 13.49254
2006 13.49859 13.53202 13.52017 13.53109
2007 13.54718 13.56337 13.5662 13.55667
2008 13.63228 13.68901 13.65922 13.65476
2009 13.64724 13.6988 13.66024 13.66176
2010 13.6481 13.7246 13.68966 13.68822
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Table 4: Heckman estimates without controlling for endogeneity

Census 1980 ACS 2005-2010
Coeff. (Std.err) Coeff. (Std.err)

main equation
educ 0.0490 (0.0003) 0.1007 (0.0003)
age 0.0191 (0.0006) 0.0470 (0.0005)
age2 0.0002 (0.0000) 0.0005 (0.0000)
northeast 0.0341 (0.0016) 0.0105 (0.0013)
midwest 0.0336 (0.0015) 0.0935 (0.0012)
south 0.0959 (0.0014) 0.0882 (0.0011)
widowed 0.0043 (0.0032) 0.0662 (0.0035)
divorced 0.0258 (0.0020) 0.0108 (0.0013)
separated 0.0132 (0.0031) 0.0769 (0.0028)
never married 0.0501 (0.0021) 0.0037 (0.0012)
const 1.4512 (0.0119) 0.1550 (0.0106)

selection equation
educ 0.0959 (0.0006) 0.1439 (0.0005)
age -0.0822 (0.0016) -0.0290 (0.0013)
age2 0.0008 (0.0000) 0.0002 (0.0000)
northeast -0.0695 (0.0043) 0.1083 (0.0035)
midwest 0.0650 (0.0041) 0.2797 (0.0032)
south 0.1432 (0.0039) 0.0817 (0.0030)
widowed 0.3480 (0.0084) -0.0423 (0.0088)
divorced 1.0032 (0.0048) 0.4387 (0.0034)
separated 0.4970 (0.0088) 0.1100 (0.0072)
never married 0.8469 (0.0056) 0.2799 (0.0035)
nchlt5 -0.8228 (0.0034) -0.5529 (0.0023)
const 0.4040 (0.0324) -0.9434 (0.0276)

correlation parameter -0.0161 (0.0080) 0.2776 (0.0061)
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Table 5: Heckman estimates with controlling for endogeneity

Census 1980 ACS 2005-2010
Coeff. (Std.err) Coeff. (Std.err)

main equation
educ 0.1078 (0.0225) 0.2309 (0.0436)
age 0.0209 (0.0011) 0.0476 (0.0007)
age2 -0.0002 (0.0000) -0.0005 (0.0000)
northeast -0.0261 (0.0034) -0.0627 (0.0176)
midwest -0.0242 (0.0043) -0.1107 (0.0064)
south -0.0706 (0.0098) -0.0964 (0.0034)
widowed 0.0363 (0.0162) 0.0399 (0.0361)
divorced 0.0273 (0.0025) 0.0514 (0.0136)
separated 0.0421 (0.0211) 0.0623 (0.0472)
never married 0.0238 (0.0105) -0.0129 (0.0061)
eps -0.0588 (0.0224) -0.1303 (0.0436)
const 0.6326 (0.3139) -1.6872 (0.6146)

selection equation
educ 0.4337 (0.0669) 0.3167 (0.1124)
age -0.0716 (0.0027) -0.0283 (0.0018)
age2 0.0009 (0.0000) 0.0003 (0.0000)
northeast -0.0234 (0.0113) 0.0392 (0.0461)
midwest 0.1190 (0.0128) 0.2570 (0.0161)
south 0.2888 (0.0297) 0.0708 (0.0082)
widowed 0.5814 (0.0462) 0.0984 (0.0923)
divorced 1.0115 (0.0062) 0.4926 (0.0345)
separated 0.8145 (0.0637) 0.2946 (0.1194)
never married 0.6962 (0.0311) 0.2578 (0.0159)
nchlt5 -0.8228 (0.0043) -0.5529 (0.0027)
eps -0.3379 (0.0668) -0.1728 (0.1124)
const -4.2966 (0.9243) -3.3866 (1.5908)

correlation parameter 0.2517 (0.0937) 0.4369 (0.1171)

Note: Standard errors are based on 100 bootstrap replications.
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Table 6: Monte Carlo results

Spec. Param. n = 100 n = 200 n = 500 n = 1000
IV non-IV IV non-IV IV non-IV IV non-IV

β1 = .2 .2397
(.1500)

.1409
(.1498)

.2031
(.0968)

.0934
(.0887)

.2028
(.0556)

.1168
(.0529)

.2014
(.0416)

.0988
(.0381)

β2 = .4 .4019
(.2439)

−.0191
(.1535)

.3947
(.1532)

.0396
(.0983)

.4023
(.0945)

.0338
(.0664)

.3988
(.0621)

.0379
(.0413)

(i) β3 = .9 .8991
(.1396)

1.1570
(.0781)

.9020
(.0933)

1.1412
(.0525)

.8978
(.0567)

1.1415
(.0347)

.9007
(.0381)

1.1404
(.0220)

γ1 = 1 1.1316
(.2492)

1.0201
(.1993)

1.1043
(.1467)

1.0101
(.1270)

1.1016
(.0867)

1.0086
(.0758)

1.0995
(.0625)

1.0087
(.0553)

γ2 = .7 .8567
(.2445)

.7483
(.2169)

.7895
(.1337)

.7067
(.1264)

.7724
(.0815)

.6744
(.0795)

.7688
(.0574)

.6707
(.0564)

β1 = .2 .3068
(.2070)

.6661
(.2250)

.2234
(.1203)

.6784
(.1531)

.2000
(.0597)

.6719
(.1178)

.2001
(.0395)

.6962
(.0642)

β2 = .4 .3082
(.1726)

.0520
(.1892)

.3818
(.1170)

.0181
(.1426)

.4009
(.0561)

.0340
(.1012)

.4000
(.0411)

.0128
(.0584)

(ii) γ1 = 1 1.1567
(.2989)

.9346
(.2554)

1.1254
(.1853)

.8766
(.1623)

1.1021
(.1085)

.8544
(.1093)

1.0967
(.0743)

.8541
(.0690)

γ2 = .7 .8226
(.5229)

.2775
(.3628)

.7896
(.3142)

.2177
(.2517)

.7743
(.1624)

.2391
(.1646)

.7708
(.1143)

.2292
(.0994)

γ3 = .3 .3685
(.3325)

.6418
(.2152)

.3451
(.1895)

.6291
(.1403)

.3316
(.0897)

.5854
(.0826)

.3250
(.0672)

.5851
(.0513)

β1 = .2 .2681
(.1695)

.1575
(.1742)

.2113
(.0987)

.0981
(.1015)

.2010
(.0588)

.0825
(.0570)

.2005
(.0431)

.0863
(.0392)

β2 = .4 .3874
(.2270)

.0147
(.1553)

.4091
(.1554)

.0145
(.1031)

.4007
(.0963)

.0327
(.0631)

.4012
(.0635)

.0348
(.0440)

(iii) β3 = .9 .8858
(.1339)

1.1484
(.0829)

.8893
(.0957)

1.1739
(.0588)

.8992
(.0592)

1.1724
(.0346)

.8977
(.0403)

1.1664
(.0238)

γ1 = 1 1.1446
(.2707)

1.0109
(.2044)

1.1222
(.1637)

.9984
(.1346)

1.1044
(.0969)

.9923
(.0861)

1.0987
(.0630)

.9819
(.0561)

γ2 = .7 .8557
(.2600)

.7658
(.2334)

.8053
(.1556)

.7422
(.1520)

.7760
(.0877)

.7292
(.0872)

.7711
(.0582)

.7180
(.0576)

γ3 = .3 .3569
(.1622)

.4696
(.1385)

.3380
(.0834)

.4160
(.0756)

.3324
(.0501)

.4256
(.0455)

.3286
(.0349)

.4216
(.0313)

β1 = .2 .4320
(.3394)

.3423
(.2752)

.2554
(.2044)

.2899
(.1967)

.1995
(.0835)

.2248
(.0876)

.1988
(.0601)

.2260
(.0649)

β2 = .4 .2738
(.3803)

.0267
(.2147)

.3687
(.2173)

.0735
(.1532)

.4053
(.1219)

.1103
(.0819)

.3994
(.0818)

.1036
(.0603)

(iv) β3 = .9 .8887
(.1856)

1.0489
(.0747)

.8965
(.1063)

1.0462
(.0480

.8983
(.0651)

1.0516
(.0304)

.9010
(.0429)

1.0514
(.0209)

γ1 = 1 1.2063
(.5953)

1.5246
(.39175)

1.1415
(.4180)

1.5172
(.2665)

1.0920
(.2316)

1.4562
(.1525)

1.0882
(.1597)

1.4517
(.1111)

γ2 = .7 .8397
(.5378)

.4488
(.2963)

.7793
(.3654)

.4218
(.1890)

.7665
(.2137)

.4216
(.1099)

.7599
(.1391)

.4254
(.0805)

γ3 = .3 .3724
(.2849)

.5504
(.1572)

.3450
(.1935)

.5326
(.1060)

.3281
(.1062)

.5056
(.0604)

.3278
(.0719)

.5041
(.0426)
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Table 7: Descriptive statistics for the Mroz data

Variable Mean Std.dev.
log wage 4.1777 3.3103
exper 10.6308 8.0691
educ 12.2869 2.2802
nwifeinc 20.1290 11.6348
age 42.5379 8.0726
kidslt6 0.2377 0.5240
kidsge6 1.3533 1.3199
motheduc 9.2510 3.3675
fatheduc 8.8088 3.5723
huseduc 12.4914 3.0208

Sample size 753
No. of obs. with wage>0 428
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Table 8: Estimation of a wage equation for married women based on the Mroz data

non-IV IV

Main Equation

const −0.5527∗∗ (0.2604) −0.2786 (0.3139)
exper 0.0428∗∗∗ (0.0149) 0.0449∗∗∗ (0.0151)
expersq −0.00008∗∗ (0.0004) −0.0009∗∗ (0.0004)
educ 0.1084∗∗∗ (0.0149) 0.0849∗∗∗ (0.0218)
ρ̃ 0.0141 (0.1491) 0.0248 (0.1492)
ψ11 0.0413 (0.0290)

Selection Equation

const 0.2664 (0.5090) 0.6084 (0.6522)
exper 0.1233∗∗∗ (0.0187) 0.1261∗∗∗ (0.0191)
expersq −0.0019∗∗∗ (0.0006) −0.0019∗∗∗ (0.0006)
nwifeinc −0.0121∗∗ (0.0049) −0.0105∗ (0.0053)
age −0.0528∗∗∗ (0.0085) −0.0543∗∗∗ (0.0087)
kidslt6 −0.8674∗∗∗ (0.1187) −0.8620∗∗∗ (0.1190)
kidsge6 0.0359 (0.0435) 0.0316 (0.0438)
educ 0.1313∗∗∗ (0.0254) 0.1046∗∗ (0.0406)
ψ21 0.0425 (0.0502)

“First Stage”

const 5.3947∗∗∗ (0.5826)
exper 0.0577∗∗∗ (0.0219)
expersq −0.0008 (0.0007)
nwifeinc 0.0147∗∗ (0.0058)
age −0.0051 (0.0098)
kidslt6 0.1269 (0.1298)
kidsge6 −0.0700 (0.0511)
motheduc 0.1307∗∗∗ (0.0224)
fatheduc 0.0951∗∗∗ (0.0212)
huseduc 0.3489∗∗∗ (0.0233)

*, ** and *** indicate significance at 1%, 5% and 10%, respectively. Standard errors in parentheses.
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