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Abstract

We provide a semiparametric copula approach for estimating a “classical” sample selection

model. We impose that the joint distribution function of unobservables can be characterized

by a specific copula, but the marginal distribution functions are estimated semiparametrically.

In contrast to existing semiparametric estimators for sample selection models, our approach

provides a measure of dependence between unobservables in main and selection equation which

can be used to analyze the composition of, say, the female workforce. We apply our estimation

procedure to a female labor supply data set and show that those women with the best skills par-

ticipate in the labor market; moreover, we find evidence for the existence of an ability threshold

which involves that women with high ability are to some extent advantaged and, therefore, have

also obtained the best skills.
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1 Introduction

In this paper, we provide a semiparametric copula approach for estimating a “classi-

cal” sample selection model. The specific feature of our approach is that it provides an

estimate of a dependence parameter which can be used to analyze the composition of,

say, the female workforce. By composition we mean whether working women are posi-

tively or negatively selected from the female population. For instance, if only the highly

skilled women are actually working we (unambiguously) have the case of positive selec-

tion, whereas in the case of negative selection predominantly women with below-average

skills are employed.

We apply our estimation approach to the female labor supply data set introduced by

Martins (2001). We find evidence that the sample of working women is positively selected

from the female population and that there is a strong association between ability and

skills in the right tail of the ability distribution. We interpret this finding as evidence for

the existence of an ability threshold which involves that women with high ability are to

some extent advantaged and, therefore, have also obtained the best skills. On the other

hand there is no such association for the women below the threshold. Identifying such

advantaged (or disadvantaged) groups is important for policymakers as such findings allow

to identify and select appropriate policy instruments to improve the situation of certain

target groups.

An important study which analyzed the composition of the female workforce has been

provided by Mulligan and Rubinstein (2008). Using U.S. data from the late 1970s to the

late 1990s, these authors analyzed the composition of the female workforce over time and

found that there has been a switch from negative to positive selection, i.e. the “quality”

of the female workforce has improved over time. The authors further conclude that this

switch has made an important contribution to the narrowing of the male-female wage

differential over time.

Mulligan and Rubinstein used the Heckman sample selection model to obtain their

results. The Heckman selection model is well suited for analyzing the female workforce
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since working women are a non-randomly selected sample from the entire female popula-

tion. As it is well known, estimating a wage regression by ordinary least squares (OLS)

for working women yields biased parameter estimates due to the sample selectivity. The

Heckman selection model, proposed by J. J. Heckman in 1979, corrects ordinary least

squares estimates for the selection bias and gives consistent estimates of the parameters

of interest. Recall that the Heckman selecton model is based on two equations, the main

equation (of interest) and a selection equation which governs the probability of being

selected.

However, the Heckman selection model not only yields parameter estimates related

to the explanatory variables (i.e., coefficients), but it also provides an estimate of the

correlation coefficient between unobserved factors in main and selection equation. A

positive correlation coefficient means that the unobserved factors not only are attributed

with a high probability of working, but also with high wages. In this case, one can

say that women are positively selected from the female population because those women

who are working have skills (represented by the latent factors in the main equation)

which are above the average of the female population. The importance of estimating a

correlation coefficient as a measure of selectivity has been clearly shown, for instance, by

the Mulligan/Rubinstein (2008) analysis. In particular, a correlation coefficient allows a

richer interpretation of the data than the usual “β-parameters” (i.e., coefficients related

to the explanatory variables) would be able to provide.

Since its proposition by Heckman (1979), though, the Heckman selection model has

been criticized because of the bivariate normality assumption with respect to the distri-

bution of the error terms of main and selection equation. The benefit of the bivariate

normality assumption is that, by applying well-known theorems for joint and conditional

normal distributions, the exposition of the likelihood function is relatively simple and

the function itself can be optimized quite easily using numerical optimization algorithms.

Moreover, one can cast estimation in an OLS framework by augmenting the main equation

with the well-known inverse Mills ratio term, which makes estimation especially simple.
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A serious drawback of the bivariate normality assumption is that parameter estimates

are generally biased if this assumption is not fulfilled. For these reasons, several authors

have proposed semi-nonparametric estimation approaches for the parameters of the main

and selection equation which impose relatively weak assumptions on the distribution

of error terms. Examples include Gallant and Nychka (1987), Powell (1987), Ahn and

Powell (1993), Das et al. (2003) and Newey (2009).1 Because of the weak assumptions on

the distribution of error terms, these estimation procedures are likely to yield consistent

estimates in applications.

While these procedures give consistent estimates of the parameters of the main and

selection equation, they typically do not provide an estimate regarding the correlation of

the error terms of main and selection equation. These error terms contain unobservables

such as the skill level or ability of a particular individual. As pointed out above, estimation

of a correlation parameter is useful as it shows, for instance, how the selected sample is

composed, i.e., if there is positive or negative selection.

In this paper, we present a semiparametric estimation procedure which not only gives

consistent estimates of the parameters of main and selection equation, but which also

provides an estimate of a measure of dependence (which is meant here as a generalization

of correlation) between the unobservables in main and selection equation. To do this, we

employ a bivariate copula approach.

A bivariate copula is a function C : [0, 1]2 → [0, 1] which transforms two given marginal

distributions functions, say F and G, into a joint distribution function H. By Sklar’s

(1959) theorem, any joint distribution function H can be represented by a copula C, and

C is unique if the marginal distribution functions F and G are continuous. A further

result gives that any copula function C, applied to given marginal distributions F and G,

yields a joint distribution function H possessing the marginal distributions F and G.2

The copula approach has often been employed in financial econometrics in order to

model correlation patterns between certain assets, for instance. However, an early pa-

1For an account of methods to estimate models with sample selection bias, see Vella (1998).
2More details on copulas can be found in Joe (1997), Nelsen (2006) and Trivedi and Zimmer (2007).
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per by Lee (1983) has already adapted the copula approach to sample selection models,

although Lee never mentioned the word “copula” itself. Lee’s motivation was to depart

from the bivariate normality assumption as in Heckman (1979) by allowing any marginal

distribution function for the error terms of main and selection equation. These marginals

were then combined using a Gaussian copula, and estimation of the model is a relatively

simple task in maximum likelihood estimation since the likelihood function possesses a

well defined closed form (which does not involve integrals, for example).

Smith (2003) extended Lee’s approach to a broad class of non-Gaussian copulas and

provided closed-form likelihood functions for the so-called class of Archimedean copulas.

This class encompasses many well-known copulas such as the Clayton copula, the Frank

copula and the Gumbel copula. All these copulas represent quite different dependence

patterns between the marginal distributions. In our empirical application, we will apply

this copula approach to the estimation of a wage equation and a labor force participation

equation for married women. More specifically, we will analyze which copula (from a list

of four copulas) provides the best explanation of the data. From the dependence pattern

implied by the “best” copula we can then learn something about the sample selection

mechanism and the composition of the female workforce, which is the main objective of

this paper.

There are some empirical examples where authors have already applied copula mod-

els to model sample selection issues. Prieger (2002), for instance applied this approach

to health care data. Genius and Strazzera (2008) gave applications to labor supply and

contingent valuation data. However, these authors used pre-specified marginal distribu-

tion functions (for instance, a t-distribution) which were then inserted into a particular

copula to obtain a joint distribution function for which parameters could be estimated by

maximum likelihood methods.

However, a wrong pre-specification of these marginal distribution functions causes

parameter estimates to be inconsistent. We thus propose to depart from a (parametric)

pre-specification of these distribution functions, and instead estimate these distribution
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functions semiparametrically. For the selection equation where the full set of observations

is available a suitable estimation procedure is the Klein and Spady (1993) estimator for

binary choice models, which not only estimates the parameters of the selection equation

but the distribution function as well. A copula can then be used to couple the pre-

estimated distribution function of the selection equation with the (unknown) distribution

function of the main equation. This latter distribution function is then approximated by

a series expansion and jointly estimated along with the model parameters by maximum

likelihood methods. This approach is taken from Chen et al. (2006) who did the same

but without sample selection.

The remainder of the paper is organized as follows. In section 2, we present the

model and our estimation strategy. In section 3 we discuss inference issues. In sec-

tion 4 we provide the empirical application of our estimator to the female labor supply

data set introduced by Martins (2001), in which we will analyze the composition of the

female workforce. This analysis will give more insights into the structure of the data

than the semiparametric analysis of Martins did, which “only” provided estimates of the

“β-parameters” in main and selection equation. Finally, section 5 concludes the paper.

2 Model Setup and Estimation

In this paper, we consider a “classical” sample selection model. Our model is given by

y∗i = x′iβ + εi (1)

z∗i = w′iγ + ui (2)

zi = 1(z∗i > 0) (3)

yi =


y∗i if zi = 1

“missing” otherwise

, (4)
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where i = 1, . . . , N indexes individuals. The first equation is the main equation, where

y∗ is a latent outcome variable, x is a vector of (exogenous) explanatory variables with

corresponding parameter vector β and ε denotes the error term. The second equation

is the selection equation, where z∗ is the latent dependent variable, w is a vector of

(exogenous) explanatory variables with corresponding parameter vector γ and u denotes

the error term. The last two equations comprise the selection mechanism. The latent

variable y∗ can only be observed if z∗ > 0, or, equivalently, if the selection indicator z is

equal to one.

The main object of interest in this paper is the joint cumulative distribution function

(c.d.f.) of the error terms ε and u, particularly the dependence structure implied by the

c.d.f. In the classical Heckman sample selection model it is assumed that these error terms

have a bivariate normal distribution, i.e.,

εi
ui

 ∼ N
0,

 σ2
ε ρσεσu

ρσεσu σ2
u


 ∀i = 1, . . . , N, (5)

where ρ is the correlation coefficient between ε and u. The c.d.f. is then given by

Hε,u(a, b) =

∫ a

−∞

∫ b

−∞

1

2πσεσu
√

1− ρ2

exp

(
− 1

2(1− ρ2)

((
ε

σε

)2

+

(
u

σu

)2

− 2ρ

(
ε

σε

)(
u

σu

)))
dudε. (6)

Joint distribution functions apart from the bi- or multivariate normal distribution are

not generally parameterized by a correlation coefficient but by some other measure of

dependence instead. In fact, some of the copula functions used in the following imply

dependence patterns which are not linear (as implied by the correlation coefficient), but

exhibit tail dependence for example. In case of right tail dependence, for instance, a large

outcome of ε is associated with a large outcome of u, but the dependence over the rest

of the distribution is far less. Such dependence structures which differ substantially from

linear correlation patterns have quite interesting implications for the sample selection

7



mechanism and the composition of the female workforce, as will be demonstrated in the

empirical application in section 4.

We now turn to modeling the joint distribution function of ε and u using copulas.

First, let Fε and Fu denote the marginal distribution functions of ε and u, respectively.

We assume that ε and u are i.i.d. across observations and that the densities of ε and u are

absolutely continuous with respect to Lebesgue measure. The joint distribution function

Hε,u is obtained by “coupling” these marginal distributions using a copula C : [0, 1]2 →

[0, 1] such that

Hε,u(a, b) = C(Fε(a), Fu(b); τ), (7)

where τ denotes the dependence parameter associated with the copula C. The joint

probability density function (p.d.f.) of ε and u follows then as

hε,u(a, b) = c(Fε(a), Fu(b); τ)fε(a)fu(b), (8)

where c(·, ·; τ) denotes the p.d.f. associated with C(·, ·; τ). Furthermore, fε and fu denote

the marginal p.d.f.’s of ε and u, respectively.

Having specified a joint distribution function of ε and u, the model set up in equations

(1)-(4) is completed. The log-likelihood function for this model is given by

lnL =
N∑
i=1

{
(1− zi) ln

∫ ∞
−∞

∫ −w′
iγ

−∞
hε,u(εi, ui)duidεi

+zi ln

∫ ∞
−w′

iγ

hε,u(yi − x′iβ, ui)dui

}
. (9)

We will illustrate the copula approach with an example. Suppose we can choose a

Gaussian copula to characterize the joint distribution function of ε and u. The joint
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distribution function can then be written as

Hε,u(a, b) = Φ2(Φ
−1(Fε(a)),Φ−1(Fu(b)); τ), (10)

where Φ2(·, ·, τ) is the c.d.f. of the bivariate standard normal distribution with correlation

coefficient τ , i.e.,

Φ2(a, b) =

∫ a

−∞

∫ b

−∞

1

2π
√

1− τ 2
exp

(
− 1

2(1− τ 2)
(x2 + y2 − 2τxy)

)
dydx, (11)

and Φ−1(·) is the inverse of the c.d.f. of the univariate standard normal distribution. This

implies that the joint p.d.f. of ε and u is given by

hε,u(a, b) =

∣∣∣∣∣∣∣
1 ρ

ρ 1


∣∣∣∣∣∣∣
−1/2

exp

−1

2

Φ−1(Fε(a))

Φ−1(Fu(b)


′
1 ρ

ρ 1


−1

− I2


Φ−1(Fε(a))

Φ−1(Fu(b)




× fε(a)fu(b), (12)

where I2 is the 2-by-2 identity matrix. The log-likelihood function for this model is given

by

lnL =
N∑
i=1

{(1− zi) ln(1− Fu(w′iγ))

+zi ln fε(yi − x′iβ) + zi ln Φ

(
Φ−1(Fu(w

′
iγ)) + ρΦ−1(Fε(yi − x′iβ))√

1− ρ2

)}
, (13)

which is the one proposed by Lee (1983). Note that the log-likelihood does not involve

integrals so that numerical optimization of this function is relatively simple. One can

generalize this statement to say that closed form likelihood functions are far easier to

optimize numerically than functions involving integrals.

Fortunately, there are other copulas apart from the Gaussian copula which also give

rise to closed form likelihood functions. An example is the class of Archimedean copulas,

which have been studied by Smith (2003). Archimedean copulas comprise some well
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known copulas such as the Clayton copula, the Frank copula and the Gumbel copula.

Smith (2003) showed that the likelihood function for copulas from this class is given by

lnL =
N∑
i=1

{
(1− zi) ln(1− Fu(w′iγ)) + zi ln fε(yi − x′iβ) + zi ln

(
1− φ′(Fε(yi − x′iβ))

φ′(Cτ )

)}
,

(14)

where Cτ = C(Fε(yi − x′iβ), Fu(w
′
iγ); τ) is an Archimedean copula with dependence pa-

rameter τ . Expressions for 1 − φ′(Fε(yi−x′iβ))
φ′(Cτ )

are provided in Smith (2003) for different

types of Archimedean copulas. In table 1, we give analytical expressions for the copulas

used in section 4. We also provide there the parameter space of the dependence parameter

associated with a copula, since this parameter is of central interest in this paper.

The analysis so far implicitly assumed the marginal distribution functions of ε and

u to be known in advance. In fact, authors analyzing sample selection problems with

copula models have usually assumed a specific c.d.f. for ε and u and then estimated their

model by maximum likelihood. Genius and Strazzera (2008), however, at least tested the

validity of the proposed c.d.f. for the selection equation error term u. As in Martins

(2001), they first estimated the selection equation semiparametrically using the Klein

and Spady (1993) estimator for binary choice models and then tested these estimation

results against a parametric alternative (in their case, a logit model). Since they found

that the logit model was not rejected by the data, they reasonably employed the logistic

distribution as the distribution for u. However, for the distribution of ε the authors used

once more an “educated guess”.

Since a wrong (parametric) specification of the marginal distributions of ε and u leads

to inconsistent parameter estimates, we propose not to rely on “educated guesses”, but

estimate the marginal distribution functions of ε and u semiparametrically. In particular,

we propose the following estimation strategy:

1) Estimate the selection equation in a first step separately by using the semiparametric

maximum likelihood estimator for binary choice models due to Klein and Spady
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(1993). This yields estimates of γ and the of c.d.f. of u.

2) Insert these first step estimates into the likelihood function and estimate the re-

maining parameters as well as the c.d.f. of ε by maximum likelihood, using a series

expansion to approximate the unknown c.d.f. of ε.

The first step of our two-step estimation strategy involves a semiparametric estima-

tion of the selection equation. The Klein and Spady (1993) semiparametric maximum

likelihood estimator is a convenient choice for estimating the selection equation since it

not only yields estimates of the parameter vector γ, but of the c.d.f. of u as well. The

Klein and Spady estimator is defined as

γ̂KS = arg max
γ

N∑
i=1

(1− zi) log(1− F̂u(w′iγ)) +
N∑
i=1

zi log(F̂u(w
′
iγ)), (15)

where

F̂u(w
′
iγ) = Ê[zi|w′iγ] =

∑N
j=1 zjK((wj − wi)′γ/h)∑N
j=1K((wj − wi)′γ/h)

, (16)

where K : R → R is a univariate kernel density function (satisfying certain regularity

conditions; cf. Klein and Spady, 1993) and h is a bandwidth parameter which converges

to zero as the sample size goes to infinity. Given a consistent estimate of γ̂, a consistent

estimator of the c.d.f. of u is given by

ˆ̂
Fu(w

′
iγ̂) =

∑N
j=1 zjK((wj − wi)′γ̂/h)∑N
j=1K((wj − wi)′γ̂/h)

. (17)

Since F̂u(w
′
iγ) is a Nadaraya (1965)-Watson (1964) estimator which consistently estimates

Fu(w
′
iγ), and since γ̂ is a consistent estimator of γ, it follows immediately that

ˆ̂
Fu(w

′
iγ̂)

p−→

Fu(w
′
iγ).

Having obtained these semiparametric estimates, one can then test these estimates

against a parametric alternative, such as the probit or the logit model. A suitable testing
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procedure has been provided by Horowitz and Härdle (1994). If the parametric estimates

cannot be rejected by the data, one can then use the parametric c.d.f. in the likelihood

function from the second step instead of the semiparametric one. Parametric estimates

may be preferred for two reasons. Parametric estimates do not only converge at a faster

rate to their true values; parametric single index models are typically increasing in the

index. This monotonicity property is desirable because it may stabilize the numerical

optimization of the likelihood function from the second step.

In the second step, we propose a series or sieve expansion of the c.d.f. of ε. The

coefficients used in these expansion are then estimated jointly with the model parameters.

For the sieve expansion of the c.d.f. of ε, we follow Chen et al. (2006), who propose to

estimate marginal p.d.f.’s by linear sieves used to approximate the square root of the

density function. More specifically, the sieve space is given by

FNε =

fKNε(x) =

[
KNε∑
k=1

akAk(x)

]2
,

∫
fKNε(x)dx = 1

 ,

KNε →∞,
KNε

N
→ 0, (18)

where fKNε is an approximation to fε based on KNε sieve coefficients, {Ak(·) : k ≥ 1}

denote known basis functions and {ak(·) : k ≥ 1} are unknown sieve coefficients which

must be estimated. Note that KNε depends on the sample size N but grows at a slower

rate. For the basis functions Chen et al. (2006) suggest to use Hermite polynomials or

splines.

For our particular problem, we suggest to use Hermite polynomials. Since the likeli-

hood function not only involves the p.d.f. of ε but the c.d.f., too, a great benefit of using

Hermite polynomials is that the antiderivative of the density can be calculated analyti-

cally, i.e. without the need of numerical integration. Formulas are given in the appendix.

Numerical integration is, of course, possible, but slows down the estimation process and,

thus, may be undesirable for medium scale and large scale problems.

For notational simplicity, let K (instead of KNε) denote the number of sieve coeffi-
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cients. Then, the estimator of the p.d.f. of ε is given by

f̃ε(x) =
ς0 + {

∑K
k=1 ak(

x
σ
)k}2

σ

1√
2π

exp

{
− x2

2σ2

}
(19)

such that

∫ ∞
−∞

f̃ε(x)dx = 1, K →∞, K
N
→ 0, (20)

where ς0 is a small positive constant to be chosen in advance3 and σ > 0 is a scaling

parameter which must be estimated. Consequently, the estimator of the cdf of ε is given

by

F̃ε(x) =

∫ x

−∞
f̃ε(v)dv. (21)

Therefore, the likelihood function to be maximized is essentially given by eq. (9), but

we replace hε,u(εi, ui) with

h̃ε,u(εi, ui) = c(F̃ε(εi), F̂u(ui); τ)f̃ε(εi)f̂u(ui), (22)

where F̂u(·) and f̂u(·) are the first-step estimates of the c.d.f. and p.d.f. of the selection

equation, and F̃ε(·) and f̃ε(·) are given by equations (16) and (18). The parameter vector

to be estimated will be denoted by θ = (ξ′, a′)′, where ξ = (β′, τ ′, σ)′ is finite dimensional

and a = (a1, . . . , aK)′ is infinite dimensional. Typically, the likelihood function only

involves Fu(·), hence we can ignore fu(·).

To make this more precise, in case of the Gaussian copula we maximize the log-

3In the empirical application in section 4, we choose ς0 = 0.005. Also see Coppejans and Gallant
(2002).
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likelihood function

lnL =
N∑
i=1

{
(1− zi) ln(1− F̂u(w′iγ̂))

+zi ln f̃ε(yi − x′iβ) + zi ln Φ

(
Φ−1(F̂u(w

′
iγ̂)) + ρΦ−1(F̃ε(yi − x′iβ))√

1− ρ2

)}
, (23)

and for Archimedean copulas we maximize

lnL =
N∑
i=1

{
(1− zi) ln(1− F̂u(w′iγ̂)) + zi ln f̃ε(yi − x′iβ) + zi ln

(
1− φ′(F̃ε(yi − x′iβ))

φ′(C̃τ )

)}
,

(24)

where C̃τ = C(F̃ε(yi − x′iβ), F̂u(w
′
iγ̂); τ).

3 Inference

In this section we discuss strategies to obtain standard errors for estimates based on

maximizing the likelihood functions (23) or (24). First, recall that our estimator is a

two-step estimator, where the selection equation is estimated first and these estimation

results are then inserted into the likelihood function to obtain estimates of the remaining

parameters.

This implies that the likelihood function can be maximized using only selected observa-

tions, i.e. individuals for which the dependent variable of the main equation is observable.

Let n denote the number of selected individuals.

If we maximize the likelihood function using the selected observations but estimate

the selection equation using the full set of observations, then we have that the first stage

estimates converge at a faster rate to their true values than the second step estimates. This

is because for any fixed number of selected individuals the first stage is estimated with

a larger number of individuals, so that convergence is obtained faster in general. Under

some technical conditions which will not be outlined here we then can ignore estimation of
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the first step parameters and treat them in the second stage as if they were known (rather

than estimated). Put differently, the asymptotic distribution of the second step estimates

does not depend on the distribution of the first step estimates if the latter converge at a

sufficiently faster rate.

There are three strategies to obtain standard errors:

1) Treat Knε as a given finite constant. In this case, standard errors follow easily from

standard maximum likelihood theory. In particular, the variance-covariance matrix

of the estimates is given by the inverse of the Fisher information matrix.

2) Apply the general asymptotic distribution theory for sieve M -estimates as provided

in Chen et al. (2006) and Chen (2007).

3) Use the bootstrap.

Strategy 1) is quite appealing since standard errors can be obtained automatically

using any econometrics software which is capable of dealing with user-supplied likelihood

functions. Strategy 3) is also quite standard and can be used to account for the estimation

uncertainty in the selection equation estimates. Even if this uncertainty is irrelevant for

the asymptotic behavior of the ML-estimator, it may be important in finite samples.

Strategy 2), on the contrary, is non-standard and a lot more involved. Chen et al.

(2006) establish for sieve ML-estimation that the finite-dimensional parameter vector of

interest, ξ, satisfies

√
n(ξ̂ − ξ) d−→ N (0, I∗(θ)

−1), (25)

where I∗ is similar to the usual Fisher information matrix in ML estimation, but its

specific form must be calculated. Unfortunately, Chen et al. (2006) report that in many

cases I∗ lacks an analytical expression. In such cases, Chen at al. propose to estimate I∗

by using sieve approximation methods.
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4 Empirical Application to Female Labor Supply Data

In this section, we apply the estimator from section 2 to the female labor supply data set

introduced by Maria Fraga O. Martins (2001) in the Journal of Applied Econometrics.

Martins’ data set is about Portuguese women of whom only a fraction is working. If we

fitted a wage regression for the working women only we would (potentially) obtain biased

estimates due to sample selectivity.

Martins took standard labor supply variables and set up a wage equations (main equa-

tion) as well as a selection equation. Her goal was to compare parametric estimates (based

on the Heckman selection model with jointly normally distributed error terms) to semi-

parametric estimates of the main equation parameters. Semiparametric estimates were

obtained using the Klein and Spady (1993) semiparametric estimator for the selection

equation in a first step; in the second step Martins estimated an augmented wage equa-

tion by ordinary least squares. The augmented wage equation included a power series

expansion of an unknown control function which accounts for the sample selectivity (a

generalization of the inverse Mills ratio term), where the expansion evolves around the

selection index (which is given by w′γ̂) derived in the first step.

We will do the same estimation using our estimator from section 2. In contrast to

the semiparametric estimator employed by Martins, our estimator also gives an estimate

of a parameter which, in connection with the corresponding copula, characterizes the

dependence structure between the unobservables in main and selection equation. This

parameter is important for analyzing the composition of the female workforce and the

nature of the sample selection mechanism.

Our strategy is to fit the likelihood function (23) or (24), respectively, for different

copulas. We use the Bayesian (Schwartz) Information Criterion (BIC) in order do find (a)

the optimal number of series terms used to approximate Fε and (b) the copula with the

best fit to the data. We then assume that the copula with the best fit to the data (in terms

of BIC) represents the dependence structure underlying the unobservables in main and

selection equation. This gives quite different implications for the selection mechanism,
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depending on the copula.

We consider four copulas: The Gaussian copula, the Clayton copula, the Frank copula

and the Gumbel copula. These copulas are well known and give rise to quite different

dependence patterns. The Gaussian copula was already introduced by Lee (1983) to model

sample selection problems. It is rather flexible as it can equally well handle positive

and negative dependence. The dependence parameter of this copula is just a (linear)

correlation coefficient whose sign indicates whether we have positive or negative selection.

The Clayton copula is not able to handle negative dependence, but it is able to rep-

resent strong left tail dependence. Hence, if the Clayton copula best fits the data this

is evidence that we have positive selection and, in addition, left tail dependence. That

means, that if there are latent factors (we will call them ability) which lead to a low prob-

ability of working for a particular woman, this woman is also at the bottom of the skill

distribution (if skills are the main unobservable factor in the wage equation). However,

the converse is not true in case of left tail dependence. This means, women with an ability

which leads to a high probability of working are not necessarily at the top of the skill

distribution.

If a woman is able, we expect her to have a high skill level, so there is positive

dependence between the unobservables in main and selection equation (as required by the

Clayton copula). However, the Clayton copula implies that the least able people have

the lowest skills, but the highest able people may not have the best skills. This seems

plausible if there is a threshold in the ability distribution. Below this threshold people

might be relatively disadvantaged and, thus, might not have the opportunities to acquire

“good” skills. On the other hand, people above the threshold might be very able but

might not be sufficiently “keen” to acquire the best skills.

The Gumbel copula is similar to the Clayton copula in the sense that it also allows

only for positive dependence. But the Gumbel copula represents right tail dependence.

Back in our example this means that the most able women have the best skills. This

may be plausible if there is an ability threshold above whom women are very advantaged.

17



These women might have extraordinary opportunities to acquire skills, whereas women

below the threshold do not have these opportunities. Moreover, women with a low ability

need not have the least skill level as they might be “keen” enough to acquire skills. Hence,

and this is the implication of the Gumbel copula, the dependence in the left tail of ability

and skill distribution is relatively weak compared to the right tail of these distributions.

The Gumbel copula might best represent a society where we have a lot of people with

moderate wealth and an “upper class” with very high wealth. The Clayton copula, on the

other hand, might best be suited for a society where many people have moderate wealth

and a sufficiently high number of poor people with low wealth.

The Frank copula is similar to the Gaussian copula. It allows for both positive and

negative dependence. Moreover, it is best suited for weak tail dependence. This would

imply a pattern that, in case of positive dependence, the more able a woman the better

are her skills, independent of her rank in the ability distribution.

We will now describe our empirical specification. The data set consists of 2,339 married

women, and 1,400 of these women were employed at the time of the survey. We use the

same variables as Martins (2001) in the selection equation and the main equation. In

the selection equation, the probability of working (WORK) is related to women’s age

(AGE), age squared (AGE2), the number of children younger than 18 living in the family

(CHILD), the number of children younger than 3 living in the family (YCHILD), the

logarithm of the husband’s monthly wage (HW) and women’s educational level (EDU).

The main equation with the logarithm of women’s hourly wage rate (LWAGE) as its

dependent variable includes potential experience (PEXP), potential experience squared

(PEXP2), an interaction of PEXP and CHILD, an interaction of PEXP2 and CHILD,

and EDU. Table 2 shows summary statistics for these variables.

The first step is to estimate the selection equation. As pointed out above, a parametric

estimate has some advantages over semiparametric estimates as provided by the Klein and

Spady (1993) estimator. We thus would (in principle) pursue the strategy proposed in

section 2 for the first step estimation. That is, we would first estimate the selection
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equation using the semiparametric Klein and Spady (1993) estimator and then test a

parametric alternative against these semiparametric estimates by applying the Horowitz

and Härdle (1994) testing procedure.4 For our data set, this has already been done by

Martins (2001) and Genius and Strazzera (2008). Martins (2001) used a probit model as

the parametric alternative and found that this was rejected by the data. On the other

hand, Genius and Strazzera (2008) used a logit model instead, and found that this was

not rejected by the data. We rely on these findings and estimate the selection equation

by logit. Estimation results are given in table 3.

After having obtained first step estimates of γ and Fu, we insert these into the log-

likelihood function and estimate the model for different copulas, as described above. Es-

timation results are provided in table 4. Table 4 contains estimates of the main equation

parameters and the dependence parameter (TAU ) for the Gaussian, the Clayton, the

Frank and the Gumbel copula. We increased the number of series terms, K successively

and report results for K = 3, 4, 5, 6. Starting with K = 3, we see that estimates improve

uniformly (i.e. for every copula) in terms of BIC if two further series term are being

added. At K = 6, however, the performance (in terms of BIC) decreases and optimiza-

tion of the likelihood functions based on the Clayton and Frank copula fails to converge.

We conclude that K = 5 is the optimal number of series terms. Moreover, BIC suggests

that the Gumbel copula best fits the data, so that we further conclude that the depen-

dence pattern of unobservables in main and selection equation is characterized by positive

dependence and right tail dependence.

Hence, for this sample of Portuguese women we may have the threshold effect described

above, i.e., the most able women are to some extent advantaged and have, therefore,

obtained the highest skills. On the contrary, women below this threshold have a weaker

association between ability and skills.

Of course, our conclusions rely on the fact that we examined just a few copulas and

selected the one with the best fit to the data. However, this copula need not be the one

4Details on this procedure can be found in the original paper as well as in the appendix of Martins
(2001).
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which characterizes the true joint distribution of error terms. In that case, the selected

copula is just an approximation to the true joint distribution function in the Kullback-

Leibler sense.

If we chose a copula which was quite far away from the true distribution, our pa-

rameter estimates would be biased in general. We can, therefore, compare our estimates

of the main equation parameters to semiparametric estimates which do not rely on the

specification of a joint distribution function and are, thus, more likely to consistently

estimate these parameters. If the semiparametric estimates are not too far apart from

our copula-based estimates, we may conclude that the copula indeed provides a sensible

approximation to the true joint distribution function.

Since Martins (2001) estimated the main equation semiparametrically, we can compare

our copula-based results to hers. Table 5 contains our estimation results for the Gumbel

copula and K = 5 along with standard errors. For simplicity, and since we do not know if

the selected copula represents the true distribution, we treated K as if it were fixed and

estimated robust standard errors of the “sandwich-type”. Moreover, table 5 also contains

the semiparametric estimates of Martins (2001) along with standard errors. We see that

parametric and semiparametric estimates are relatively similar, at least with respect to

the signs. In particular, both estimation approaches estimate a relatively large coefficient

for the PEXP variable, which, for instance, would not have been obtained when using

an ordinary Heckman selection model based on the joint normality assumption (Martins

(2001) reports an estimate of 0.13). Furthermore, the estimated dependence parameter

(TAU ) is large and significantly different from zero, thus providing evidence for right

tail dependence. Since our parametric estimates give a rather similar picture as the

semiparametric estimates of Martins (2001), we conclude that the Gumbel copula is a

valid approximation to the true joint distribution of unobservables in main and selection

equation.5

5Genius and Strazzera (2008) obtained similar results using a Joe copula with a logit selection equation
and a t-distribution for the main equation error term. However, their likelihood value (-2334) falls below
ours, suggesting that our Gumbel copula with K = 5 is more appropriate to represent the data generating
process.
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5 Conclusions

In this paper, we have proposed a semiparametric copula approach to estimating a sample

selection model. In contrast to fully semi-nonparametric estimation procedures our ap-

proach also yields information on the dependence of unobservables in main and selection

equation. This information can be used to analyze dependence and composition issues. In

an empirical application, we applied our estimator to a sample of Portuguese women. We

found that the composition of the female workforce is dominated by positive selection,

i.e., women who work also have the highest skills. If we call the unobservables in the

selection equation “ability”, we can conclude from our analysis that the higher the ability

of a woman the higher are her skills. However, our results also suggest that this positive

association is governed by right tail dependence. That means the association between

ability and skills is strongest for the most able women (who also possess the best skills).

Mulligan and Rubinstein employed the Heckman selection model to show that the

composition of the female workforce in the U.S. has changed over time from negative to

positive selection. Our model could also be applied to these issues. It would be inter-

esting to see whether we not only have a positive association between ability and skills

in more recent years, but whether we also have tail dependence. As sketched in section

4, tail dependence among the unobservables in main and selection equation may suggest

the existence of thresholds, where people above or below the threshold are relatively ad-

vantaged/disadvantaged. This in turn may give quite interesting policy implications. For

example, in case of disadvantaged people, one can use the estimation approach proposed

in this paper to study whether a certain policy and/or other trends have led to an im-

provement of the situation of disadvantaged people over time. This could be indicated if

the copula model which best describes the data changes from the Clayton copula to the

Frank or Gaussian copula, for instance.
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Appendix

This appendix shows how we estimate the density and the distribution function of ε within

our numerical maximum likelihood optimization procedure. We cannot use eq. (19) to

estimate the density directly because we have to make sure that the density integrates to

one. To do this, we estimate f̃ε(x) by

f̃ε(x) =
[ς0 + {

∑
ak(x/σ)k}2] 1

σ
1√
2π

exp(− x2

2σ2 )∫∞
−∞[ς0 + {

∑
ak(x/σ)k}2] 1

σ
1√
2π

exp(− x2

2σ2 )dx
. (26)

The denominator can be simplified. First, we make a change of variable z = x/σ. This

gives

∫ ∞
−∞

[ς0 + {
∑

ak(x/σ)k}2] 1

σ

1√
2π

exp

(
− x2

2σ2

)
dx (27)

=

∫ ∞
−∞

[ς0 + Z ′aa′Z]
1√
2π

exp

(
−z

2

2

)
dz (28)

=ς0 + tr

[
aa′
∫ ∞
−∞

ZZ ′
1√
2π

exp

(
−z

2

2

)
dz

]
, (29)

where a = (a1, . . . , aK) and Z = (z, z2, . . . , zK)′. The integral term represents moments

of the standard normal distribution. For example, if K = 3, we have that Z = (z, z2, z3)

and

∫ ∞
−∞

ZZ ′
1√
2π

exp

(
−z

2

2

)
dz = E[ZZ ′] = E


z2 z3 z4

z3 z4 z5

z4 z5 z6

 =


1 0 3

0 3 0

3 0 15

 (30)

with

E[zk] = 0, k odd (31)

E[zk] = (k − 1)(k − 3) · ... · 1, k even. (32)
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Consequently, the cdf of ε is estimated by

F̃ε(x) =

∫ x

−∞
f̃ε(v)dv (33)

=
ς0Φ(x/σ) + tr

[
aa′
∫ x/σ
−∞ ZZ ′ 1√

2π
exp

(
− z2

2

)
dz
]

ς0 + tr
[
aa′
∫∞
−∞ ZZ

′ 1√
2π

exp
(
− z2

2

)
dz
] . (34)

The integral term in the numerator can be expressed as

∫ x/σ

−∞
ZZ ′

1√
2π

exp

(
−z

2

2

)
dz =



b′2:(K+1)

b′3:(K+2)

...

b′(K+1):(2K)


, (35)

where b′i:j = (bi, . . . , bj) with

b1 = −φ(x/σ) (36)

b2 = −φ(x/σ)x/σ + Φ(x/σ) (37)

bk = −φ(x/σ)(x/σ)k−1 + (k − 1)bk−2, k = 3, . . . , 2K, (38)

where φ(·) denotes the standard normal p.d.f. and Φ(·) the standard normal c.d.f.
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Table 1: Some characteristics of selected copulas

Copula Parameter Space 1− φ′(Fε(yi−x′iβ))
φ′(Cτ )

Gaussian −1 ≤ τ ≥ 1 -

Clayton 0 ≤ τ <∞ 1− F−(τ+1)
ε (F−τu + F−τε − 1)−(1+τ)/τ

Frank −∞ < τ <∞ eτFε (eτFu−eτ )
eτ(Fε+Fu)+eτ (1−eτFu−eτFε )

Gumbel 1 ≤ τ <∞ 1− b((− logFu)
τ + (− logFε)

τ )−1+1/τ (− logFε)
τ−1F−1ε

Note: b = exp(−((− logFu)τ + (− logFε)
τ )1/τ ).
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Table 2: Summary Statistics for the Martins (2001) data
Variable Mean Std. Dev.

LWAGE 5.832 0.660
WORK 0.599 0.490
AGE 3.842 0.941
AGE2 15.647 7.447
CHILD 1.623 1.096
YCHILD 0.197 0.439
HW 11.196 0.378
EDU 7.237 3.771
PEXP 2.518 1.063
PEXP2 7.472 5.737
PEXPCHD 4.197 3.579
PEXPCHD2 12.247 13.420

No. of observations: 2,339
No. obs. with LWAGE>0: 1,400

Table 3: First-step estimates of the selection equation

Variable Coeff. S.E.

Constant -1.532 1.582
AGE 1.507 0.425
AGE2 -0.227 0.053
CHILD -0.211 0.047
YCHILD -0.123 0.123
HW -0.139 0.131
EDU 0.240 0.017
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Table 4: Second-step estimates
K=3 Gaussian Clayton Frank Gumbel

Constant 4.441 4.346 4.288
EDU 0.118 0.123 0.124
PEXP 0.191 0.235 0.278
PEXP2 -0.013 -0.025 -0.035
PEXPCHD 0.017 0.004 0.002
PEXPCHD2 -0.008 -0.004 -0.004
TAU 0.481 5.249 2.090

Log L -2,367.127 No -2,338.455 -2,349.030
BIC 4,757.527 convergence 4,700.183 4,721.332

K=4 Gaussian Clayton Frank Gumbel

Constant 5.565 4.703 4.410 3.035
EDU 0.067 0.105 0.120 0.125
PEXP 0.064 0.137 0.248 0.290
PEXP2 0.010 0.001 -0.027 -0.034
PEXPCHD 0.019 0.029 0.005 0.009
PEXPCHD2 -0.005 -0.010 -0.004 -0.006
TAU -0.731 0.087 5.196 2.230

Log L -2,316.314 -2,336.756 -2,314.669 -2,322.734
BIC 4,663.657 4,704.542 4,660.368 4,676.499

K=5 Gaussian Clayton Frank Gumbel

Constant 5.172 4.698 4.421 3.558
EDU 0.072 0.103 0.120 0.119
PEXP 0.119 0.153 0.239 0.332
PEXP2 0.001 -0.002 -0.024 -0.045
PEXPCHD 0.020 0.038 0.006 0.001
PEXPCHD2 -0.005 -0.013 -0.005 -0.004
TAU -0.687 0.022 5.154 2.395

Log L -2,301.612 -2,314.547 -2,313.125 -2,293.198
BIC 4,642.012 4,667.881 4,665.037 4,625.183

K=6 Gaussian Clayton Frank Gumbel

Constant 4.862 4.358
EDU 0.092 0.122
PEXP 0.154 0.296
PEXP2 -0.003 -0.037
PEXPCHD 0.021 0.003
PEXPCHD2 -0.006 -0.004
TAU -0.441 2.070

Log L -2,307.789 No No -2,305.651
BIC 4,662.122 convergence convergence 4,657.847
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Table 5: Copula estimates vs. Martins (2001)
Gumbel copula, K=5 Martins (2001)

Variable Coeff. S.E. Coeff. S.E.

Constant 3.558 0.114 4.8 1.7
EDU 0.119 0.005 0.09 0.015
PEXP 0.332 0.042 0.41 0.133
PEXP2 -0.045 0.009 -0.06 0.03
PEXPCHD 0.001 0.011 0.04 0.026
PEXPCHD2 -0.004 0.003 -0.017 0.01
TAU 2.395 0.260 - -
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