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1 Introduction

Since the seminal work of Heckman (1979), the sample selection model has become a

standard tool in applied econometrics. Its objective is to obtain consistent estimates of

the parameters of interest by removing a potential sample selection bias. In most cases,

the sample selection model consists of a main equation with a continuous dependent

variable (which is only partially observable) and a binary selection equation determining

whether the dependent variable of the main equation is observed or not.

In this paper, we consider semiparametric estimation of a binary choice model with

sample selection. That means, we do not assume a continuous dependent variable in the

main equation but a binary one instead, taking only the values one or zero. Paramet-

ric estimation typically involves an assumption on the distribution of error terms (e.g.,

bivariate normal) and the setup of an appropriate likelihood function which is then maxi-

mized to obtain parameter estimates. However, as in the ordinary sample selection model

originated by Heckman (1979), a parametric assumption on the joint distribution of error

terms gives inconsistent parameter estimates if these assumptions are not fulfilled.

For the same reasons, several authors have analyzed semi-nonparametric methods to

estimate the ordinary sample selection model which assumes a continuous dependent

variable; examples include Gallant and Nychka (1987), Powell (1987), Ahn and Powell

(1993), Das et al. (2003) and Newey (2009). However, to the best of our knowledge, there

has not been developed a semiparametric estimation approach for a sample selection

model with a binary dependent variable yet. This paper closes the gap.

In particular, we propose two different estimation strategies based on two distinct

assumptions on the sample selection mechanism. Both strategies may be associated with

what has been called the “control function approach”. Our first estimation strategy is

an extension of the Klein and Spady (1993) semiparametric estimation procedure for

binary choice models. More specifically, our approach closely resembles the one of Rothe

(2009), who extended the Klein and Spady estimator to a binary choice model with

endogenous covariates. We can follow Rothe’s approach since handling endogeneity and
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sample selectivity is conceptually similar.

Our second estimation strategy is based on augmenting the main equation with a

“control function” term which accounts for sample selectivity. This term is simply a

generalization of the inverse Mills ratio term in the ordinary sample selection model.

We will show how combining “similar” observations makes it possible to get rid of the

unknown control function, so that the resulting model can be estimated by known tech-

niques. In particular, we employ the maximum score estimator due to Manski (1975)

and the smoothed maximum score estimator due to Horowitz (1992). This approach is

conceptually similar to Powell (1987).

A sample selection models for a binary dependent variable was first considered by

van de Ven and van Praag (1981). They simply augmented a probit model with an

inverse Mills ratio term and estimated the model by maximum likelihood. The authors

proposed to consider these probit estimates as approximative since the probit specification

is inappropriate (as the error term after including the inverse Mills ratio term is not

normally distributed even if the original error term is normally distributed). However,

van de Ven and van Praag (1981) also provide the “true” likelihood function (based on a

joint normality assumption).1 The reason why the authors considered the approximative

probit model with the inverse Mills ratio term included instead of the true likelihood

function was due to the computational costs of maximizing the true likelihood function

at that time.

The van de Ven and van Praag (1981) model has often been employed in empirical

research. Van de Ven and van Praag (1981) used their model to analyze empirically the

demand for deductibles in private health insurance. Further examples of application of

the model include, for instance, Boyes et al. (1989), Greene (1992) and Mohanty (2002).

While Boyes et al. (1989) and Greene (1992) used the model to analyze loan default

probabilities, Mohanty (2002) employed the model to study teen employment differentials

in Los Angeles county.

1Meng and Schmidt (1985) also analyzed this model and provided the likelihood function.
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However, the van de Ven and van Praag (1981) model is parametric since it relies on

a joint normality assumption on the error terms in the (latent) main equation and the

selection equation. As raised above, parametric estimation leads to inconsistent parameter

estimates if the parametric assumptions are not fulfilled.

We will investigate the consequences of estimating a misspecified parametric model in

a small Monte Carlo study, in which we will also investigate the finite sample properties of

our proposed semiparametric estimators. We also provide an empirical example in which

we apply parametric and semiparametric estimators to study the determinants which lead

women to work from home. In this example, we show how semmiparametric estimates

may indicate that parametric estimates are subjected to misspecification.

The remainder of this paper is organized as follows. In section 2 we set up the econo-

metric model. In section 3 we review parametric estimation of the model, and in section

4 we propose our semiparametric estimation strategies. In section 5, we conduct a small

Monte Carlo study to compare the performance of the parametric and semiparametric

estimators in small samples. Section 6 contains an empirical example where we apply our

estimators to real data. In section 7, we extend our model to the case where explanatory

variables are allowed to be endogenous. Finally, section 8 concludes the paper.

2 The Model

The model we consider is given by

y∗i = x′iβ + εi (1)

d∗i = w′iγ + ui (2)

di = 1(d∗i > 0) (3)

yi =


1(y∗i > 0) if di = 1

“missing” otherwise

, (4)
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where i = 1, . . . , N indexes individuals. The first equation is the main equation of interest,

where y∗ is the latent dependent variable, x is a vector of exogenous explanatory variables

and ε is an error term. The second equation is the selection equation, where d∗ is the

latent dependent variable, w is a vector of exogenous explanatory variables and u is an

error term. The third equation expresses that only the sign of d∗ is observable. By

equation (4), the same is true for y∗, but only if d is equal to one. Otherwise, y∗ cannot

be observed (“missing”). This model differs from the ordinary sample selection model by

the fact that the dependent variable of the outcome equation is binary, taking only the

values one or zero.

Now we make three assumption which are assumed to hold irrespective of whether the

model is estimated by parametric or semiparametric techniques. The first assumption is

standard in sample selection modeling and is needed to identify the parameters of our

model:

Assumption 1: w contains at least one variable which is not included in x.

Assumption 1 is a well-known exclusion restriction on the variables appearing in the main

equation. It says that there is at least one variable included in the selection equation

which can be excluded from the main equation (i.e., a variable that has no direct impact

on the dependent variable).

Our next assumption is on the sampling process:

Assumption 2: {y∗i , xi, d∗i , wi}Ni=1 is an i.i.d. sample from some underlying distribu-

tion. yi ≡ 1(y∗i > 0) is observable if and only if di ≡ 1(d∗i > 0) = 1.

We further require that there is no “multicollinearity”:

Assumption 3: x and w are not contained in any proper linear subspace of RK and

RL, respectively, where K and L denote the dimension of x and w, respectively.

This is again a standard assumption which is needed to identify the model parameters.

Having made these basic assumptions, we proceed to consider parametric and semi-

parametric estimation of our model.
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3 Parametric Estimation

We briefly consider parametric estimation of the model set up in the last section, as

proposed by van de Ven and van Praag (1981).2 To do this, we have to make an assumption

on the joint distribution of the error terms of main and selection equation.

Assumption H: (ε, u) has a bivariate standard normal distribution with correlation

coefficient ρ, i.e. Pr(εi < a, ui < b|xi, wi) = Φ2(a, b; ρ) ∀i = 1, . . . , N , where Φ2(·, ·; ρ)

denotes the bivariate standard normal c.d.f. with correlation coefficient ρ.

The log-likelihood function for this model is given by

logL(β, γ) =
N∑
i=1

log(1− Φ(w′iγ))1(di = 0) +
N∑
i=1

log(Φ2(x
′
iβ, w

′
iγ; ρ))1(di = 1, yi = 1)

(5)

+
N∑
i=1

log(Φ2(−x′iβ, w′iγ;−ρ))1(di = 1, yi = 0), (6)

where Φ(·) denotes the univariate standard normal c.d.f. Maximization of the log-likelihood

function can be carried out as usual, giving estimates of β and γ which are consistent,

asymptotically normal and asymptotically efficient (provided Assumption H holds). For-

mally, we establish Theorem H:

Theorem H: Let θ = (β̂′, γ̂′)′. Under assumptions 1, 2, H and standard regularity

conditions as in Amemiya (1985, Theorems 4.1.2 and 4.1.3), we have that (a) θ̂−θ = op(1)

and (b)
√
N(θ̂ − θ) d−→ N (0, I(θ)−1), where I(θ) = N−1E

[
∂L
∂θ

∂L
∂θ′

]
.

Proof: Follows from standard maximum likelihood theory; see Amemiya (1985),

chapter 4.

�

We will denote the (parametric) maximum likelihood estimator of β by β̂H , where the

“H” is a shortcut for “Heckprob”, named after the STATA command for estimating a

probit model with sample selection.

2Also see Greene (2008), pp. 895-897.

6



As already raised in the introduction, the “Heckprob” estimator loses its (asymptotic)

optimality properties if the assumptions on the distribution of the error terms are not

satisfied. In the next section, we will consider semiparametric estimation procedures

which do not rely on strong parametric assumptions.

4 Semiparametric Estimation

In order to estimate the model set up in section 2 semiparametrically, we first have to

make an identifying assumption. Assumption 1 from section 2 is a necessary assumption

to identify the model parameters but it is not sufficient.3 Here we give two identifying

assumptions which give rise to different estimation strategies.

Assumption 4: Either

(a) Pr(yi = 1|di = 1, xi, wi) = E[1(εi > −x′iβ)|w′iγ] = G(x′iβ, w
′
iγ) with ∂G(u,v)

∂u
>

0 ∀i = 1, . . . , N or

(b) median[εi|di = 1, xi, wi] = median[εi|w′iγ] = g(w′iγ) ∀i = 1, . . . , N

holds with probability one.

Assumption 4 (a) allows to estimate the model parameters by semiparametric max-

imum likelihood. In particular, we propose to estimate β by Rothe’s (2009) extension

of the Klein and Spady (1993) semiparametric estimation procedure for binary choice

models. Note that the log-likelihood function of our observed sample is given by

logL(β|γ = γ̂) =
1

n

n∑
i=1

yi log(G(x′iβ, w
′
iγ̂)) + (1− yi) log(1−G(x′iβ, w

′
iγ̂)), (7)

where n < N is the number of observations for which the y is observable. Note that

we used a preliminary estimate of γ in the log likelihood function. In principle, we

could estimate the parameters of main and selection equation simultaneously which would

3Of course, Assumption 3 is needed for identification as well. We highlight Assumption 1 because it is
specific to sample selection models, whereas Assumption 3 is a more general assumption which is usually
required to hold in any point-identified econometric model.
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be efficient. However, two-stage estimators are often preferred due to a reduction of

dimensionality and computational issues regarding the stability of numerical optimization

routines. Consequently, we assume that the parameters in γ can be consistently estimated

by some first-stage estimation procedure:

Assumption 5: For the first-stage estimator of γ, it holds that γ̂ − γ = op(1).

However, the log-likelihood function cannot simply be maximized in order to yield

estimates of β since the function G(·) is unknown. Klein and Spady (1993) and Rothe

(2009) suggest to replace this function by kernel density estimates. More specifically,

Ĝ(x′iβ, w
′
iγ̂) =

1
n

∑n
j 6=i yj

1
hxhw

K(x′iβ/hx)K(w′iγ̂/hw)
1
n

∑n
j 6=i

1
hxhw

K(x′iβ/hx)K(w′iγ̂/hw)
, (8)

where K : R → R is a univariate kernel density function (e.g., the standard normal

probability density function) and hx and hw are bandwidth parameters satisfying hx → 0

and hw → 0 as n → ∞. Then, estimation can be performed as usual with G(·) in (7)

replaced by (8), i.e.,

β̂KS = arg max
β

1

n

n∑
i=1

yi log(Ĝ(x′iβ, w
′
iγ̂)) + (1− yi) log(1− Ĝ(x′iβ, w

′
iγ̂)). (9)

Since the coefficients of a binary choice model are only identified up to scale, we have

to put a restriction on β. A common choice is to set the first component of β equal to

one, i.e., β = (1, β̃′)′.

In order to prevent the log-likelihood function from becoming unbounded, one could

multiply the contribution of a single observation in the log-likelihood function with a

trimming factor τi, which excludes observations for which G(x′iβ, w
′
iγ̂) is close to one or

zero. Introducing trimming facilitates the derivation of the asymptotic distribution of the

estimator, but is usually ignored in practical applications.

Note that the selection index w′γ is estimated over the full set of observations N ,

whereas the log-likelihood function for the Klein and Spady estimator only includes n <

N , i.e., the selected observations. Typically, the rate of convergence of the first-stage
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estimator is faster than the convergence rate of the second-stage estimator, since the

former is based on more observations. This means we can asymptotically ignore the fact

that w′γ has been estimated. Formally, we strengthen Assumption 5:

Assumption 5’:
√
n(γ̂ − γ) = op(1).

Furthermore, we restate in slightly modified form the assumptions in Rothe (2009) used

to establish the consistency and asymptotic normality of his estimator. We summarize

these assumptions in Assumption 6:

Assumption 6:

a) There exists a unique interior point β̃ ∈ B such that the relationship E[y|x,w, d =

1] = E[y|x′β, w′γ] holds for (x,w) ∈ A, a set with positive probability.

b) The parameter space B is a compact subset of RK−1 and β̃ is an element of its

interior.

c) (i) For all β̃ ∈ B, the distribution of the random vector (x′β, w′γ) admits a density

function f(x′β, w′γ) with respect to Lebesgue measure.

(ii) For all β̃ ∈ B, f(x′β, w′γ) is r times continuously differentiable in its arguments

and the derivatives are uniformly bounded.

(iii) For all β̃ ∈ B, G(x′β, w′γ) is r times continuously differentiable in its argu-

ments and the derivatives are uniformly bounded.

(iv) f(x′β, w′γ) and G(x′β, w′γ) are twice continuously differentiable in β̃.

d) For X a compact subset of the support of (x,w), define T (X ) = {t ∈ R2 : ∃(x,w) ∈

X , β̃ ∈ B s.t. t = (x′β, w′γ)}. Then X is chosen such that:

(i) inft∈T (X ),β̃∈B f(x′β, w′γ) > 0

(ii) inft∈T (X ),β̃∈BG(x′β, w′γ) > 0 and supt∈T (X ),β̃∈BG(x′β, w′γ) < 1.
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e) The matrix

Σ = E

[
τ(∂G(x′β, w′γ̂)/∂β̃)(∂G(x′β, w′γ̂)/∂β̃)′

G(x′β, w′γ̂)(1−G(x′β, w′γ̂))

]

is positive definite.

f) The kernel function K : R→ R satisfies (i)
∫
K(z)dz = 1, (ii)

∫
K(z)zµdz = 0 for

all µ = 1, . . . , r − 1, (iii)
∫
|K(z)zµ|dz <∞ for µ = r, (iv) K(z) = 0 if |z| > 1, (v)

K(z) is r times continuously differentiable.

g) The bandwidths hx and hw satisfy: h = cn−δ, h ∈ {hx, hw} for some constant c > 0

and δ such that 1/(2r) < δ < 1/8.

We can now establish the following theorem:

Theorem 1: Under Assumptions 1-3, 4 (a), 5’ and 6, we have that (a) ˆ̃βKS−β̃ = op(1)

and (b)
√
n( ˆ̃β − β̃)

d−→ N (0,Σ−1Ψ1Σ
−1), where

Σ = E

[
τ(∂G(x′β, w′γ̂)/∂β̃)(∂G(x′β, w′γ̂)/∂β̃)′

G(x′β, w′γ̂)(1−G(x′β, w′γ̂))

]
(10)

and

Ψ1 =E[{[τ(∂G(x′β, w′γ̂)/∂β̃)− E[τ(∂G(x′β, w′γ̂)/∂β̃)|x′β, w′γ̂]]

[τ(∂G(x′β, w′γ̂)/∂β̃)− E[τ(∂G(x′β, w′γ̂)/∂β̃)|x′β, w′γ̂]]}/(G(x′β, w′γ̂)(1−G(x′β, w′γ̂))].

(11)

Proof: Our estimation approach is conceptually the same as in Rothe (2009). The

difference is that Rothe proposes a control function approach to control for endogeneity

of covariates instead of sample selectivity. In his derivations, a reduced form error term

(resulting from the reduced form equation of the endogenous explanatory variable) plays

the same role as w′γ does for our estimator. We can thus follow the arguments in Rothe

(2009), who derives consistency and asymptotic normality of his estimator (by checking
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whether the conditions in Chen, Linton and van Keilegom, 2003, are fulfilled). The only

modification which must be made for our estimator is that the estimation error due to esti-

mation of w′γ vanishes asymptotically since
√
n(γ̂−γ) = op(1). Therefore, the asymptotic

covariance matrix of our estimator does not include an additional term which captures the

uncertainty due to the estimation of w′γ, i.e., the Σ−1Ψ2Σ
−1 term in Theorem 3 of Rothe

(2009) vanishes.

�

As the asymptotic distribution provided in the Theorem requires knowledge of un-

known derivatives, an alternative way to conduct inference is to use the bootstrap. Rothe

(2009) argues in the same way.

Now we consider estimation when Assumption 4 (b) is valid. Assumption 4 (b) is

on the conditional median of ε. It allows to rewrite the (observable part of the) main

equation as

y∗i = x′iβ + g(w′iγ) + vi, i = 1, . . . , n, (12)

where vi ≡ εi−median[εi|w′iγ]. Since, by construction, v has a conditional median of zero,

we could apply Manski’s (1975) maximum score estimator to obtain parameter estimates.

Again, this is not feasible as the function g(·) is unknown. However, suppose we have two

individuals with the same value of w′γ. In that case, we can subtract equation (12) for

individual i from the equation for individual j, i.e.,

y∗i − y∗j = (xi − xj)′β + g(w′iγ)− g(w′jγ) + vi − vj (13)

= (xi − xj)′β + vi − vj. (14)

The differencing in equations (13) and (14) resembles the underlying idea of Manski’s

(1987) conditional maximum score approach for binary panel data. In the panel data

approach, an individual specific “fixed effect” is removed by differencing over time for a
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given individual, while in our case we have a cross sectional data set and use differencing

to remove an unknown function.

Moreover, Powell (1987) used the same strategy to estimate an ordinary sample selec-

tion with a continuous dependent variable. He also augmented the main equation with

a control function, which is a generalization of the inverse Mills ratio term occurring in

the ordinary Heckman selection model with normally distributed error terms. As in our

approach, Powell then combined “similar” observations, differenced the main equations,

thereby eliminating the unknown control function, and estimated the model parameters

using the differenced variables.4

Note that despite of the model transformation in equations (13) and (14) due to

differencing we are still able to identify the parameters in β. We simply combine only

observations for which yi 6= yj. Then, we have the following correspondence:

y∗i − y∗j


> 0 if yi = 1 ∧ yj = 0

< 0 if yi = 0 ∧ yj = 1

, (15)

which implies that the transformed model using only observations with yi 6= yj is again a

binary choice model. Since the conditional median of the differenced error terms is zero,

we can apply the maximum score estimator to the transformed model in order to obtain

an estimate of β.

In general, however, w′γ will assume a continuum of values rather than a finite num-

ber. Hence, it will be nearly impossible to find and combine observations with the same

value of the selection index w′γ. Instead, one may combine individuals with a “similar”

index value. This yields a maximum score estimator which puts most weight on pairs of

observations which have “close” selection indexes. More precisely, our proposed estimator

4This strategy has also been used by Ahn and Powell (1993). In their case, the control function depends
on the probability of being selected. On the contrary, in our and Powell’s (1987) approach, the control
function depends on the selection index w′γ. A further application of the strategy has been provided by
Kyriazidou (1997), who considered semiparametric estimation of a panel data sample selection model.
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of β is given by

β̂MS = arg max
β
− 2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

|ỹij − 1(x̃′ijβ > 0)|1
h
K(w̃′ij γ̂/h)1(yi 6= yj), (16)

where ỹij = 1(y∗i − y∗j > 0), x̃ij = xi−xj, w̃ij = wi−wj, K : R→ R is a univariate kernel

density function which is bounded, absolutely integrable and symmetric about zero, and

h is a bandwidth parameter which converges to zero when the sample size approaches

infinity. Note that the minimization problem in equation (16) uses only observations for

which yi 6= yj, and, for the same reasons as given above, preliminary estimates of γ.

Note further that K(·) serves as a weighting function. In particular, pairs of observa-

tions who are very similar in their selection index w′γ receive a relatively large weight,

whereas pairs of observations who differ substantially in w′γ take a weight which is close

to zero. In the limit, only pairs of observations with very close selection indexes receive a

positive weight. So in the limit it is possible to base estimation on pairs of observations

with roughly the same selection index, so that the impact of the control function van-

ishes (since it is completely differenced out) and we can consistently estimate the model

parameters.

However, since the objective function in (16) is not differentiable it may be difficult to

obtain parameter estimates. Horowitz (1992) proposes a smoothed maximum score esti-

mator which features a smooth objective function. Using that estimator, our estimation

problem may be written as

β̂SMS = arg max
β

2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

(2ỹij − 1)
1

hx
Φ(x̃′ijβ/hx)

1

hw
K(w̃′ij γ̂/hw)1(yi 6= yj),

(17)

where Φ(·) is a smooth function satisfying limu→−∞Φ(u) = 0 and limu→∞Φ(u) = 1, and

hx is a bandwidth parameter which converges to zero when the sample size approaches

infinity.

Note again that both the maximum score and the smoothed maximum score estimator

13



estimate β only up to scale. We will set the same identifying assumption as in the case

of the Klein and Spady estimator, hence β = (1, β̃′)′.

In order to establish consistency of ˆ̃βMS and ˆ̃βSMS we need some further assumptions

which lead to consistency of the maximum score and smoothed maximum score estimators

in general, i.e. without sample selectivity. We take these assumptions from Horowitz

(1992) and summarize them in Assumption 6:

Assumption 7:

a) 0 < Pr(ỹ = 1|x̃, w̃′γ = 0) < 1 for almost every x̃.

b) β1 6= 0, and for almost every (x̃2, . . . , x̃K), the distribution of x̃1 conditional on

(x̃2, . . . , x̃K) and w̃′γ = 0 has everywhere positive density with respect to Lebesgue

measure.

c) β1 = 1 and β̃ is contained in a compact subset of RK−1.

Moreover, we need an assumption on the marginal distribution of w̃′γ, which is taken

from Assumption R4 in Kyriazidou (1997):

Assumption 8: The marginal distribution of W ≡ w̃′γ is absolutely continuous, with

density function fW which is bounded from above on its support and strictly positive at

zero, i.e. fW (0) > 0.

We establish the following theorem:

Theorem 2: Under Assumptions 1-3, 4 (b), 5, 7 and 8 we have that ˆ̃βMS − β̃MS =

op(1) and ˆ̃βSMS − β̃SMS = op(1).

Proof: First, let

SMS = − 2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

|ỹij − 1(x̃′ijβ > 0)|1
h
K(w̃′ij γ̂/h)1(yi 6= yj)

and

SSMS =
2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

(2ỹij − 1)
1

hx
Φ(x̃′ijβ/hx)

1

hw
K(w̃′ij γ̂/hw)1(yi 6= yj).

14



denote the objective function whose maximization yields ˆ̃βMS and ˆ̃βSMS, respectively.

Combining Lemma A1 of Kyriazidou (1997) with a law of large numbers for U-statistics

(see Serfling, 1980, Theorem A, p. 190) and Lebesgue’s dominated convergence theorem

(see Billingsley (1995), Theorem 16.4.) to handle γ̂, we obtain that

SMS
p−→ S∗ uniformly

and

SSMS
p−→ S∗ uniformly,

where S∗ = −fW (0)E [|ỹ − 1(x̃′β > 0)|1(yi 6= yj)|w̃′γ = 0]
∫
K(v)dv. Uniform conver-

gence follows from the boundedness of the objective functions. The implied equivalence

of the probability limits of the maximum score and smoothed maximum score objective

functions has been proven by Horowitz (1992). To prove consistency of ˆ̃βMS and ˆ̃βSMS,

respectively, it remains to show that S∗ is uniquely maximized at β̃. To do this, we just

have to consider the expectation term in S∗ as the remaining terms are independent of

β̃, so S∗ is maximized when the expectation is minimized. Since the expectation in S∗ is

conditional on w̃′γ = 0, we just have the situation of an “ordinary” binary choice model

where there is no unknown function g(·). We just have a binary dependent variable ỹ

and a set of covariates x̃. Hence, the same arguments which are needed to show point-

identification of the maximum score estimator can be applied (see Manski, 1985, or Newey

and McFadden, 1994, p.2139) to show point-identification of β̃, which in connection with

the uniform convergence of SMS and SSMS towards S∗ implies convergence in probability

of ˆ̃βMS and ˆ̃βSMS towards β̃.

�

We do not provide asymptotic distribution theory for these estimators since in case of

the maximum score estimator the form of the asymptotic distribution is very complicated
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and not suitable for practical inference; as an alternative, Manski and Thompson (1986)

examined the performance of the bootstrap and found encouraging results. In case of the

smoothed maximum score estimator Horowitz (1992) derived the asymptotic distribution

and reported a relatively weak finite sample performance of the asymptotic theory, hence

he also proposes to use the bootstrap.

We follow these lines of reasoning and propose to use the bootstrap for obtaining

standard errors, too; for instance, the standard errors in our empirical example in section

6 have been obtained in that way.

5 Monte Carlo Evidence

In this section, we provide some (limited) Monte Carlo evidence on the finite sample

performance of our proposed estimators. We not only consider the behavior of the semi-

parametric estimators from section 3, but also the behavior of the parametric “Heckprob”

estimator from section 2. Our simulated model is given by

y∗i = β1qi + β2xi + εi (18)

d∗i = xi + wi + ui (19)

εi = ui + νi (20)

di = 1(d∗i > 0) (21)

yi =


1(y∗i > 0) if di = 1

“missing” otherwise

, (22)

i = 1, . . . , N , where β1 = β2 = 1, x ∼ U[0,1], q ∼ N (1, 1) and w ∼ N (1, 1).

For u and ν, we consider the following distributions:

(i) u ∼ N (0, 1), ν ∼ N (0, 5)

(ii) u ∼ N (0, 1), ν ∼ 0.8N (−1, 0.6) + 0.2N (4, 2)
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(iii) u ∼ N (0, exp(0.1 + 0.5(x+ w))), ν ∼ N (0, 5)

(iv) u ∼ N (0, 1), ν ∼ N (0, exp(0.1 + 0.5(q + x))).

Except for distribution (iii), these distributions have been taken from Rothe (2009). In

case of distribution (i) we have a normal distribution for which the parametric “Heck-

prob” estimator should yield consistent estimates. Distribution (ii) is a mixture of two

normal distributions. Its density is skewed to the right and bimodal (see Rothe, 2009).

Distribution (iii) aims to consider the effects of conditional heteroskedasticity in the se-

lection equation. In this case, all three semiparametric estimation procedures should

yield consistent estimates. On the other hand, distribution (iv) implies conditional het-

eroskedasticity in the main equation only. In this specification, only the Klein and Spady

estimator should yield consistent estimates.

Note that our proposed estimators each require a normalization. We implemented

such a normalization by setting β1 equal to its true value of one. That means, the only

parameter to be estimated in the main equation is β2.

For all our proposed estimators, we have to specify kernel-type functions and band-

widths. We made the following choice: For the Klein and Spady estimator (KS), we chose

the standard normal p.d.f. as the kernel function. Instead of specifying bandwidths in ad-

vance, we follow Rothe (2009) and let the bandwidth choice be a part of the optimization

problem. Put differently, our optimization routine simultaneously seeks for the optimal

parameter values and the optimal bandwidth values. Advantages of this procedure are

that (a) there is no subjectivity in bandwidth choice and (b) a very large value of hw

would indicate that sample selection bias is not relevant (see Rothe, 2009).

In case of the maximum score estimator (MS), we chose the standard normal p.d.f.

as the kernel function and selected a bandwidth according to the rule h = n−1/6.5. For

the smoothed maximum score estimator (SMS) we chose the standard normal c.d.f. for

Φ(·) and the standard normal p.d.f. for K(·). We set hx = hw = n−1/6.5. We also

normalized the arguments of the kernel functions to have unit variance, which justifies

the choice of the same bandwidth rule for both kernel functions. In contrast to the
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Klein and Spady estimator, the bandwidths are given ad hoc rather than being part

of the optimization problem. We did this because computation of the maximum score

and smoothed maximum score estimator is relatively difficult due to the presence of

local optima. Instead, we specified the bandwidths in advance so that there is only one

parameter, i.e. β2, over which optimization is performed. To find the optimal value of β̂2,

we performed a grid search over the interval [−1, 3] with a step length of 0.005.

We performed the Monte Carlo simulations for sample sizes of N ∈ {250, 500, 1000}

and used 100 replications. For each simulation we computed the mean of the estimates

over the replications, as well as the standard deviation and the root mean squared error

(RMSE). These measures of estimator performance are typically used in Monte Carlo

studies and should help to gauge the performance of the estimators under consideration.

At first we seek to analyze the performance of our three proposed estimators inde-

pendently of the first-stage estimation of the selection index w′γ. Recall that each of

our semiparametric estimators relies on first-stage estimates of the selection index. In

principle, we could use any first-stage estimator provided we use the same estimator for

all three second-stage estimators (so that we can reasonably compare the second-stage

estimates). We, however, refrain for the moment from estimating the selection index and

consider how the estimators perform in an “ideal” situation where the selection index is

known, so that estimation results of the second stage are not contaminated by estimation

error in the first stage.

Table 1 contains the results for distribution (i) and a known selection index. We

see from Table 1 that, in terms of RMSE, the estimators perform better as the sample

size increases (as expected). However, we also see that the mean of the estimates differs

slightly from the true value of one even for the relatively large sample size of N = 1000.

The reason is that the estimates exhibit a lot of variation, as indicated by the standard

deviations. Among the three estimators, the maximum score and the smoothed maximum

score estimator have lower RMSE’s then the Klein and Spady estimator due to lower

standard deviations, which means that these estimators seem to be slightly more precise.
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We will investigate if this property also holds true for the remaining distributions and in

case that the selection index is estimated rather than known in advance.

In Table 2, we reconsider distribution (i) but now the selection index is estimated.

For obtaining these estimates, we used the same type of estimator in the first stage as in

the second stage. That means, for the Klein and Spady estimator we used a Klein and

Spady estimator in the first stage, for the maximum score estimator we used a maximum

score estimator in the first stage and for the smoothed maximum score estimator we used

a smoothed maximum score estimator in the first stage. The idea is that in practice it

would seem a bit uncommon to use one semiparametric estimator in the first stage and

to use a different semiparametric estimator in the second stage, at least in principle. In

the empirical example in section 6 we will, however, provide a practical reason why using

different estimators in first and second stage might be sensible.

Note that Table 2 also contains results for the parametric “Heckprob” model from

section 2. Since distribution (i) implies a normal distribution of the error terms in main

and selection equations, one might expect that the “Heckprob” model should perform

quite well. Table 2 confirms this conjecture. We see that the estimators perform relatively

similar with respect to the standard deviation. The differing means are again a result of

the relatively great deal of variation of the estimators. When comparing these results to

those from Table 1 we see that there is not much difference in standard deviations. Hence

we may conclude that using the same type of estimator for first and second stage does

not lead to stark distortions between the estimators.

In Table 3 we consider the mixed normal distribution (ii). We can see that the “Heck-

prob” estimator performs surprisingly well, having the least bias and the least RMSE

among all estimators and for all sample sizes. The standard deviations of the estimators

are generally lower when compared to distribution (i), which is due to the fact that the

error term variance is smaller for distribution (ii). Among the semiparametric estimators,

the maximum score estimator has the least bias but the largest RMSE.

Table 4 contains results for distribution (iii) where we have conditional heteroskedas-
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ticity in the selection equation but not in the main equation. In this case, all three semi-

parametric estimators are consistent, whereas the “Heckprob” estimator is not. However,

from Table 4 we see that the “Heckprob” estimator performs very well. All estimators

exhibit a great deal of variation, which again explains the slight biases of these estimators.

Finally, we consider distribution (iv), where we have conditional heteroskedasticity in

the main equation but not in the selection equation. In this case, only the Klein and

Spady estimator is consistent. From Table 5 we see that not only the Klein and Spady

estimator but also the remaining semiparametric estimators perform relatively well. The

“Heckprob” estimator, however, exhibits a larger bias than one might have expected.

Nevertheless, the “Heckprob” estimator has the smallest RMSE among all estimators.

From these results, we can draw two major conclusions. First, in all considered designs

the estimators exhibit a lot of variation (as indicated by the standard deviations). More-

over, we also experienced considerable variation between the estimators. Hence, the first

major conclusion is that one needs substantial sample sizes to obtain precise estimates.

Second, the parametric “Heckprob” estimator performs relatively well even in situations

where it should be biased. Of course, these results may be an artifact of our simulation

designs and need not hold in general. However, especially in small sample sizes the para-

metric estimator may be a sensible alternative due to its favorable RMSE properties. At

least one could test the parametric estimator against a semiparametric alternative (at

least in a heuristic way, e.g. by considering whether the confidence intervals overlap).

When considering the standard deviations of the semiparametric estimators over the sim-

ulations, it seems relatively likely that results based on the parametric estimator would

not be rejected empirically. For large sample sizes, however, a semiparametric estimator

should be preferred as it relies on considerably fewer assumptions than the parametric

estimator. Put differently, the larger the sample size the more obvious it should be when

the parametric assumptions are not fulfilled.
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6 Empirical Example

In this section, we present an empirical example in order to illustrate the applicability

of our proposed estimators to real data. In this example, we seek to analyze whether

the number of children has an effect on a woman’s probability of (partly) working from

home. We are thus concerned with a situation where we have a binary dependent variable

(working from home: yes/no) which is only observable for women who are working. This

fact may constitute a sample selection bias.

Now we describe our empirical specification. Our main equation contains the number

of children and education attainment as explanatory variables. With regard to our depen-

dent variable, we expect the following effects: We conjecture that the number of children

has a positive effect on the probability of working from home, since a larger number of

children requires a higher amount of child care services. We also expect a positive effect

of education, since a better education may be correlated with “technology-affine” jobs in

which it is possible to work from home. For instance, working from home may require

the capability of getting along with electronic equipment (e.g., personal computers).

Since our dependent variable is only observable for those women who are working,

we have to specify a selection equation which governs the probability of working. We

selected the following explanatory variables: the number of children, education, age and

age squared. Since the selection equation contains more variables than the main equation,

we suppose that the exclusion restriction from Assumption 1 is satisfied.

Our data is taken from the German Socio-Economic Panel (GSOEP) for the year 2002.

Our sample consists of 989 married women aged 25 to 35 with German nationality. From

these women, 565 are working (57.1 %). Summary statistics of the variables are given in

Table 6.

We specify our estimators as in the last section. That means, in case of the Klein and

Spady estimator we selected the standard normal p.d.f. as the kernel function and let the

optimal bandwidth be obtained simultaneously with the parameters of interest; in case of

the maximum score estimator, we chose the standard normal p.d.f. as the kernel function
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and selected a bandwidth according to the rule h = n−1/6.5; for the smoothed maximum

score estimator we chose the standard normal c.d.f. for Φ(·) and the standard normal

p.d.f. for K(·). We set hx = hw = n−1/6.5.

However, for the estimation of the selection equation we employed the Klein and Spady

estimator irrespective of the second-stage estimator. The reason is that we have four

covariates. In this case, using the maximum score or smoothed maximum score estimator

is rather complicated since one needs a suitable optimization routine and optimization

results may be contaminated by the presence of local maxima. For these reasons, the

maximum score and the smoothed maximum score estimator have only seldom been used

in applied econometrics. On the contrary, the Klein and Spady estimator works well if

the number of covariates is moderate. Since semiparametric estimation of the selection

equation requires a normalization, we set the coefficient of education equal to one.

Table 7 contains the Klein and Spady estimates of the selection equation parameters.

As expected, the number of children has a negative impact on the probability of working.

For a woman’s age we get a U-shaped pattern which is plausible for the sample under

consideration, since women start working when they are young, then leave the labor

market to raise their children and return thereafter. Standard errors of these estimates

have been obtained by performing 100 bootstrap replications.

Table 8 contains the second-stage results for the Klein and Spady estimator (KS),

the maximum score estimator (MS) and the smoothed maximum score (SMS) estimator.

The coefficient of education has been set equal to one due to normalization. We also

provide estimates using the “Heckprob” estimator. Standard errors are again based on

100 bootstrap replications. As can be seen from Table 8, the coefficient of the number

of children is positive over all estimators. However, only in case of the “Heckprob” and

smoothed maximum score estimator the coefficient estimate is significantly different from

zero. We get the same picture as in the Monte Carlo simulations from the last section: The

semiparametric estimates exhibit a lot of variation and relatively large standard errors.

However, the semiparametric estimates also indicate that the effect of the number of

22



children on the probability of working from home may be larger than the estimate of the

“Heckprob” model. Although it is unlikely that the parametric “Heckprob” model would

be rejected by the data when compared to one of these semiparametric alternatives, the

semiparametric estimates at least hint that the parametric estimates may be biased, i.e.

that the effect of the number of children is larger than the parametric estimate indicates.

Finally, we conducted a small robustness check. While in case of the Klein and Spady

estimator the bandwidth is selected optimally by being part of the optimization problem,

the bandwidths for the maximum score and smoothed maximum score estimator have been

selected ad hoc. We, thus, provide some robustness analysis by varying these bandwidths.

From Table 9 we see that variations of the bandwidths alter the estimates for the maximum

score and smoothed maximum score estimator to some extent, but the differences are

relatively small. We conclude that estimation results are not very sensitive with respect

to bandwidth choice.

7 Endogenous Covariates

In empirical applications, one may often be confronted with variables in the main and

selection equation which may be endogenous. In that case, our proposed estimators are

inconsistent in general. However, our control function framework easily allows to take

endogeneity of covariates into account. To see this, let xe be an endogenous explana-

tory variable appearing in the main equation and possibly in the selection equation, too.

Moreover, let the reduced form equation for xe be

xei = z′iα + ηi, (23)

where z is a vector of instrumental variables and η is an error term. We can now modify

Assumption 4 to take the endogeneity into account:

Assumption 4’: Either

(a) Pr(yi = 1|di = 1, xi, wi, zi, ηi) = E[1(εi > −x′iβ)|w′iγ, ηi] = G(x′iβ, w
′
iγ, ηi) with ∂G(u,v,w)

∂u
>
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0 ∀i = 1, . . . , N or

(b) median[εi|di = 1, xi, wi, zi, ηi] = median[εi|w′iγ, ηi] = g(w′iγ, ηi) ∀i = 1, . . . , N

holds with probability one.

We can once again implement the estimators proposed above. In case of Assumption

4’ (a), we choose a modified Klein and Spady estimator such that

β̂eKS = arg max
β

1

n

n∑
i=1

yi log(Ĝ(x′iβ, w
′
iγ̂, η̂i)) + (1− yi) log(1− Ĝ(x′iβ, w

′
iγ̂, η̂i)), (24)

where

Ĝ(x′iβ, w
′
iγ̂, η̂i) =

1
n

∑n
j 6=i yj

1
hxhwhη

K(x′iβ/hx)K(w′iγ̂/hw)K(η̂i/hη)
1
n

∑n
j 6=i

1
hxhwhη

K(x′iβ/hx)K(w′iγ̂/hw)K(η̂i/hη)
. (25)

Note that the only difference between equation (23) and equation (8) above is that we

have to take the (estimated) reduced form error term of our endogenous variable into

account, so that we need an additional kernel function. It is obvious that augmenting the

function G(·) with more kernel functions requires large sample sizes to produce reliable

estimation results. This problem is even more severe when we have several endogenous

explanatory variables. In that case, estimation results might be contaminated by the

curse of dimensionality.

If Assumption 4’ (b) is true, we can again choose between the maximum score estimator

and the smoothed maximum score estimator. In the first case, our proposed estimator of

β is given by

β̂eMS = arg min
β
− 2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

|ỹij − 1(x̃′ijβ > 0)|1
h
K(w̃′ij γ̂/h)

1

hη
K(˜̂ηij/hη)1(yi 6= yj),

(26)
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while in the second case

β̂eSMS = arg max
β

2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

(2ỹij − 1)
1

hx
Φ(x̃′ijβ/hx)

1

hw
K(w̃′ij γ̂/hw)

1

hη
K(˜̂ηij/hη)1(yi 6= yj),

(27)

where ˜̂ηij = η̂i − η̂j and hη is a bandwidth parameter which converges to zero as the

sample size tends to infinity.

Note, once again, that these estimators are based on first-stage estimates not only of

the selection index, but of the reduced form error term as well. The reduced form error

term can be naturally obtained by an ordinary least squares regression of the endogenous

explanatory variable on the instrumental variables. For a consistent estimation of the

selection index, it matters whether the endogenous explanatory variable is included in

the selection equation as well. If not, the selection index can be estimated as before,

using one of the available semiparametric procedures already considered in this paper.

However, if the endogenous covariate is included in the selection equation, an application

of these procedures would produce inconsistent estimates as the endogeneity is not taken

into account. In that case, one must apply estimators for binary choice models which

control for endogeneity. Such estimators have been proposed by Blundell and Powell

(2004) and Rothe (2009), for instance.

8 Conclusion

In this paper, we proposed three semiparametric estimators to estimate a sample selection

model with a binary dependent variable. We conducted some Monte Carlo simulations

and found that estimates based on these estimators exhibit a lot of variation and come

along with large root mean squared errors. On the contrary, the parametric “Heckprob”

estimator which is based on a joint normality assumption performs quite well and has

sometimes relatively low root mean squared errors.
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The conclusions from these findings are that (a) one should use the semiparametric

estimators in case of large sample sizes and (b) in small samples, the parametric estimator

may be preferred if it is successfully tested against a semiparametric alternative. The

reason for preferring parametric estimates is that coefficient estimates, especially in small

samples, are estimated with higher precision. However, in large samples it may become

obvious that the parametric model is misspecified, hence a semiparametric estimation

procedure should be chosen.

As our empirical example has shown, semiparametric estimates, though subjected to

a lot of variability, can nevertheless be used to gauge and to improve on parametric esti-

mates. More specifically, our example indicates that the effect of the number of children

on the probability of working from home is underestimated if one chooses the parametric

“Heckprob” estimator. Indeed, if sample sizes become larger, a semiparametric estimator

should clearly be preferred in order to avoid inconsistencies resulting from a misspecified

parametric model.

We also outlined an extension of our semiparametric estimators to the case of en-

dogenous covariates. Endogeneity may be a concern in many empirical applications, and

not accounting for endogeneity will lead to inconsistent parameter estimates in general.

Extending our estimators to handle endogenous covariates is quite straightforward. How-

ever, given the variability of the semiparametric estimators shown in section 4 (which do

not control for endogeneity), we conjecture that this problem may be even more severe if

our estimation procedures also have to account for endogeneity. This indicates that one

needs even larger sample sizes to obtain reliable estimates.

From the three proposed semiparametric estimators, the Klein and Spady estimator is

the most promising and most likely to be used in applications. This is due to the fact that

the maximum score and smoothed maximum score estimator require a rather complicated

optimization procedure which should also account for the presence of potentially many

local maxima. On the other hand, the Klein and Spady estimator can be obtained quite

easily (if the number of covariates is moderate) and has already been used successfully in
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applied econometrics in order to estimate binary choice models.
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Appendix

Table 1: Design I - normal + known index
Mean Std.dev. RMSE

N=250 KS 0.9549 0.9384 0.9395
MS 1.1426 0.9181 0.9292
SMS 1.1029 0.8803 0.8864

N=500 KS 0.8715 0.6840 0.6961
MS 0.9535 0.6789 0.6806
SMS 0.9938 0.6774 0.6774

N=1000 KS 0.9704 0.5877 0.5885
MS 1.0264 0.5306 0.5312
SMS 1.0448 0.5298 0.5317

Table 2: Design I - normal + unknown index
Mean Std.dev. RMSE

N=250 KS 0.9935 0.9049 0.9050
MS 1.0921 0.9315 0.9361
SMS 1.1539 0.8183 0.8328
Heckprob 1.2045 0.9478 0.9699

N=500 KS 1.0829 0.6524 0.6577
MS 0.9542 0.7621 0.7635
SMS 1.0918 0.7194 0.7252
Heckprob 1.0415 0.7188 0.7200

N=1000 KS 0.9235 0.5576 0.5629
MS 1.0349 0.5536 0.5547
SMS 1.1381 0.5437 0.5611
Heckprob 1.1075 0.5278 0.5387
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Table 3: Design II - mixed normal
Mean Std.dev. RMSE

N=250 KS 0.9582 0.7122 0.7135
MS 1.0270 0.7139 0.7144
SMS 1.2323 0.6327 0.6744
Heckprob 1.0819 0.6016 0.6072

N=500 KS 0.8736 0.4902 0.5064
MS 0.9370 0.4960 0.5000
SMS 1.1107 0.4486 0.4621
Heckprob 1.0143 0.4181 0.4184

N=1000 KS 0.9061 0.3551 0.3675
MS 0.9591 0.3853 0.3875
SMS 1.0873 0.3199 0.3317
Heckprob 1.0112 0.3009 0.3011

Table 4: Design III - heteroskedasticity in selection equation
Mean Std.dev. RMSE

N=250 KS 0.9161 0.9395 0.9432
MS 0.9237 1.0451 1.0479
SMS 0.9356 0.8893 0.8916
Heckprob 0.9739 1.1096 1.1099

N=500 KS 0.8329 0.8355 0.8522
MS 1.0303 0.8617 0.8623
SMS 1.0601 0.8266 0.8288
Heckprob 0.9152 0.8227 0.8271

N=1000 KS 0.9278 0.6498 0.6539
MS 0.9673 0.5557 0.5567
SMS 1.0467 0.5290 0.5311
Heckprob 0.9637 0.5093 0.5106
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Table 5: Design IV - heteroskedasticity in main equation
Mean Std.dev. RMSE

N=250 KS 0.8518 0.8785 0.8910
MS 0.9777 0.9164 0.9167
SMS 1.1839 0.8249 0.8453
Heckprob 0.8827 0.7572 0.7664

N=500 KS 0.8211 0.6351 0.6601
MS 0.9931 0.8260 0.8261
SMS 1.1176 0.7913 0.8001
Heckprob 0.7617 0.5831 0.6304

N=1000 KS 0.9288 0.5548 0.5594
MS 1.0700 0.6632 0.6670
SMS 1.1745 0.5800 0.6059
Heckprob 0.7868 0.4517 0.5000
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Table 6: Summary statistics
Mean Std. Min Max

hoffice 0.156 0.363 0 1
children 1.499 1.068 0 5
educ 12.213 2.272 7 18
age 31.624 2.848 25 35

No. of obs. 989
No. of obs. working 565

Table 7: Estimates of selection equation parameters

children -0.7721
(0.2027)

age -0.6471
(0.6392)

age2 0.0117
(0.0104)

educ 1
(-)

Note: Standard errors in parentheses. Standard errors are based on 100 bootstrap replications.
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Table 8: Estimation results
Heckprob KS MS SMS

children 0.4565 0.9059 0.835 1.725
(0.0477) (3.0815) (1.4042) (0.4826)

educ 0.0441 1 1 1
(0.0253)

const -1.2384 - - -
(0.4013)

Note: Standard errors in parentheses. Standard errors are based on 100 bootstrap replications.

Table 9: Varying the bandwidth
h = n−1/6.5 h = n−1/6 h = n−1/7 h = n−1/8

ms 0.835 0.835 0.875 0.9
sms 1.725 1.61 1.825 2

35


