
Scheduling resource-constrained projects with a flexible project

structure

Carolin Kellenbrink, Stefan Helbera

Department of Production Management
Leibniz Universität Hannover

Königsworther Platz 1, D-30167 Hannover, Germany
carolin.kellenbrink@prod.uni-hannover.de, +49 511 7628002

stefan.helber@prod.uni-hannover.de, +49 511 7625650

aCorresponding author

Abstract

In projects with a flexible project structure, the activities that have to be scheduled are

not completely known beforehand. Instead, scheduling such a project includes the decision

whether to carry out particular activities at all. This also effects precedence constraints

between the finally implemented activities. However, established model formulations and

solution approaches for the resource-constrained project scheduling problem (RCPSP)

assume that the project structure is given in advance. In this paper, the traditional

RCPSP is hence extended by a highly general model-endogenous decision on this flexible

project structure. This is illustrated by the example of the aircraft turnaround process

at airports. We present a genetic algorithm to solve this type of scheduling problem and

evaluate it in an extensive numerical study.

Keywords: Project scheduling, Genetic algorithms, RCPSP, Flexible projects

March 4, 2013

1. Introduction

In the classical resource-constrained project scheduling problem (RCPSP), the project

structure is given exogenously, i.e., all activities as well as all precedence constraints are

known and all activities have to be implemented. In this paper, the RCPSP is extended

by a model-endogenous decision on the project structure. In case of projects with a

flexible project structure, scheduling includes the decisions whether to implement specific

optional activities at all and to impose the related precedence constraints.

Due to these constraints, any predecessor activity has to be finished before a directly

succeeding activity can be started. In addition, resource constraints must be considered

for renewable and/or non-renewable resources. Renewable resources, e.g., machines or

human resources, are available with a given quantity in each period. In contrast, non-

renewable resources can be consumed once over the entire planning horizon. An example

of this latter kind of resource is a budget that can be spent for the whole project. The

typical aim of the RCPSP is to create a schedule which minimizes the total makespan

of the project, i.e., the completion time of the last activity. The established multi-mode

extension of the RCPSP (MRCPSP, cf., e.g., Talbot (1982)), can be interpreted as a

special case of the problem studied in this paper. In the MRCPSP, each activity can be

performed in one or more alternative modes out of which one has to be chosen while all

the precedence constraints have to be respected irrespective of the chosen activity modes.

In our approach, we would introduce a specific activity corresponding to each mode of

the MRCPSP and impose the same set of precedence constraints. For this reason, the

MRCPSP is included in the problem studied in this paper. However, as will be seen below,

the modeling flexibility achieved by our approach notably exceeds those of the MRCPSP.

The remainder of this paper is organized as follows: In Section 2 the assumptions

for the resource-constrained project scheduling problem with model-endogenous decision

on the project structure (RCPSP-PS) are stated and a practical example is given. In

Section 3, we develop a mathematical model for the RCPSP-PS. The genetic algorithm

to solve the problem is presented in Section 4. We report numerical results in Section 5.

The paper ends with some conclusions and suggestions for further research in Section 6.

2. Problem statement

2.1. Projects with a flexible project structure

In projects with a flexible project structure, decisions have to be made whether to

implement specific activities and to impose specific precedence constraints. This leads to

the question on how to model this flexibility of the project structure.

Even in flexible projects, some activities as well as the precedence constraints between

those activities may be mandatory, i.e., they have to be implemented in any case, as in a

classical RCPSP. In addition, in order to develop the RCPSP-PS, we assume that

2

(i) choices between alternative activities have to be made, (eventually)

(ii) causing the (non-)implementation of further activities, and/or

(iii) activating further choices.

Note that due to assumption (ii) and (iii), such a RCPSP-PS with a flexible structure

differs from the multi-mode MRCPSP with its rigid project structure. In the RCPSP-PS,

a set of potential precedence constraints is defined in the same manner as the precedence

constraints in the RCPSP. However, such a potential precedence constraint is only en-

forced if both the preceding and the succeeding activity connected via this constraint are

actually implemented in a schedule. In this schedule, the starting and finishing times of

the implemented activities are determined. Thus, the timing of the implemented activities

and the decision on the project structure depend on each other. In addition, the decision

about the project structure addressing topics (i) to (iii) can itself have a combinatorial

character. Therefore, it is not reasonable to separate these two planning steps from each

other. Instead, the decision about the project structure as well as the timing of activities

should be made model-endogenously and simultaneously.

Such flexible projects can describe, e.g., the passenger aircraft turnaround process at

an airport, which is explained in the next subsection in order to illustrate the problem from

a practical perspective. However, flexible projects can also be found in other fields like the

often highly individual regeneration of complex capital goods such as aircraft engines. For

a given wear pattern, alternative regeneration processes may be legally possible within the

regulations of the airworthiness authorities and the engine manual of the engine producer.

This leads to a flexible project structure in which alternative activities reflect alternative

ways to regenerate the aircraft engine.

2.2. Practical example: The aircraft turnaround process

The aircraft turnaround process consists of the steps a passenger aircraft passes

through between its arrival at an airport and its next departure. This turnaround pro-

cess can be interpreted as a (small) project and it can be organized in different ways, cf.

Kuster et al. (2009).

Table 1 presents a strongly simplified version of the flexible turnaround process. Some

activities are mandatory, e.g., cleaning the aircraft, catering and boarding. There is a

choice between alternative arrival options, which affects the (de-)boarding of the aircraft.

The aircraft can arrive either at the apron of the airfield or at the terminal. If the aircraft

arrives at the terminal, this choice activates two other activities: First, the deboarding

of passengers has to be carried out by a bridge. Second, a push-back operation has to

be performed by a tow vehicle in order to transport the aircraft back to the airfield.

If, by contrast, the aircraft arrives at the apron, this causes another choice related to

the deboarding: After leaving the aircraft via stairs, the passengers can (in principle)

3

Modeling aspect Example(s)

Mandatory implementa-
tion of some activities

Cleaning the aircraft

Catering

Boarding

Choices between alterna-
tive activities

Arrival at the apron of the airfield or at the terminal

Deboarding by foot or by bus

Fueling with or without fire fighters

Activities caused by
choices made

Arrival at the terminal causes deboarding by bridge

Arrival at the terminal causes push-back

Choices caused by choices
made

Arrival at the apron of the airfield causes choice on deboard-
ing mode

Precedence constraints
caused by optional activi-
ties

Fueling without supervision by fire fighters must be com-
pleted before boarding can start

Table 1: Modeling aspects of the flexible project structure for a turnaround

either walk to the terminal building or be transported by a bus. Finally, there is a choice

concerning the fueling. If fire fighters supervise the fueling, passengers may board the

aircraft while it is being fueled. Without the supervision of fire fighters, fueling has

to be completed before passengers may board the aircraft. (To simplify the example, we

intentionally abstract from the different boarding operations or possible aircraft relocation

operations.) This tiny and simplified example of a flexible project already contains all

the problem aspects introduced in Subsection 2.1. We will come back to the example in

Subsection 3.1.

2.3. Related literature

A broad body of literature on resource-constrained project scheduling exists. An

extensive literature survey is given by Hartmann & Briskorn (2010) as well as Kolisch

& Padman (2001) and Brucker et al. (1999). Thus, only the most important research

publications regarding alternative modes of implementation of activities are addressed

here.

In the multi-mode extension of the RCPSP, the MRCPSP (cf., e.g., Talbot (1982)),

different modes of implementation can be available for an activity. While the capacity

load and the duration of the activity vary over these different modes, each activity still

has to be implemented. Thereby, the precedence relations are fixed as well as the set

of activities to be implemented, i.e., the project structure itself does not vary in the

MRCPSP. Another difference to the RCPSP-PS studied in this paper is the fact that the

4

modes of the MRCPSP are chosen independently, i.e., a mode chosen for one activity does

not imply a specific mode for another activity.

Tiwari et al. (2009) extended the MRCPSP by rework activities. Rework is necessary

if the original activity is implemented in a specific predefined mode. In this approach,

rework always consists of only a single activity, which is a direct successor of the original

activity causing the rework activity. That makes the project structure vary indeed, but

only to a very limited extent as only single rework activities can be activated.

Belhe & Kusiak (1995) present a so-called “design activity network” in order to in-

clude logical dependencies among some activities. In case of a logical “or”-dependency, a

decision has to be made which branch in the network is implemented. Čapek et al. (2012)

also examine alternative process plans. In contrast to the RCPSP-PS, these approaches

assume that a logical dependency between activities always goes along with a precedence

constraint between these activities. By the means of their design activity network, Belhe

& Kusiak (1995) generate all possible precedence networks and analyze them separately

via a (potentially time-consuming) full enumeration.

The notion of the project structure not being known in advance has also be treated in

the context of stochastic project networks, cf. Neumann (1990). There, and in contrast to

this paper, the decision on the implementation of activities depends on random exogenous

influences. Therefore, the developed methods for stochastic project networks consider a

problem class different from the RCPSP-PS treated in this paper.

Kuster et al. (2009) and Kuster et al. (2010) address disruption management problems

at airports with alternative process implementation paths. The basic assumptions are

similar to the RCPSP-PS. However, their approach only treats the rescheduling problem,

but does not address the question of how to create a new schedule in the first place,

given the flexibility of the project structure. Furthermore, the authors do not present a

mathematical model to precisely describe their problem setting.

To the best of our knowledge, the RCPSP-PS has not be treated in the literature

before. However, it appears to contain several of the problem settings described above as

special cases. A prelimenary introduction to this scheduling problem has been presented

in Kellenbrink (2013), but without a formal model or the details of the algorithm as well

as the numerical analysis presented in this paper.

3. Formal description of the RCPSP-PS

3.1. Basic assumptions and elements of the modeling approach

The resource constrained project scheduling problem with a flexible project struc-

ture (RCPSP-PS) generalizes the established modeling approach of the RCPSP (cf., e.g.,

Pritsker et al. (1969)). The RCPSP as well as our RCPSP-PS is modeled as an activity-

on-node network and built around a central binary variable xjt for activity j ∈ J and

period t ∈ T . This variable indicates whether activity j is finished in period t, i.e., xjt = 1,

5

or not, i.e., xjt = 0. Using this established variable, the structural decision whether or

not to implement an activity at all can also be described implicitly: If an activity j is

not implemented at all, the correspondent binary variable xjt is 0 for each period t. For

this reason, we can expand the modeling flexibility of the RCPSP without introducing

new decision variables. Instead, we use indices and sets of indices to model the project

structure flexibility introduced in Subsection 2.1 and exemplified in Table 1 as follows:

• We denote with e ∈ E all choices that may have to be made.

• The activities j, i ∈ J are ordered topologically such that for any pair of activities

i and j with i < j, there must not be a constraint enforcing activity j to precede

activity i.

• The subset V ⊆ J contains all activities that are mandatory, i.e., that have to be

implemented in any case. The other activities are non-mandatory or optional.

• Each choice e consists of the selection of exactly one activity j out of several optional

activities We ⊆ J \ V . Each optional activity can belong to at most one set We.

• Each choice e is connected to a triggering activity a(e). If the triggering activity a(e)

is mandatory (as is the dummy ‘start’ activity i = 1), choice e is also mandatory,

i.e., a(e) = 1, and one optional activity j ∈ We has to be implemented. However,

the triggering activity a(e) may itself be optional. In this case, it has to be among

the optional activities related to exactly one (earlier) choice e′, i.e., a(e) ∈ We′ for

one e′. In this latter case, it is possible that choice e is not triggered and hence none

of the optional activities j ∈ We is implemented. Each optional activity j ∈ We can

trigger at most one other decision.

• An optional activity j ∈ We may have a set of (dependent) optional activities

Bj ⊆ J \ V all of which have to be implemented if the optional activity j itself is

implemented. Note that k ∈ Bj implies j < k, i.e., the dependent activity cannot

precede its own trigger activity j.

Each optional activity either belongs to one set We or to one set Bj with j ∈ We.

• Any choice e can only be triggered by an activity a(e) which must not have to

succeed the optional activities j ∈ We in order to avoid cycles of cause and effect.

In this case, the topological ordering of the activities can be such that the condition

a(e) < j holds for each choice e and each optional activity j ∈ We.

• Like the activities, the choices e are also ordered topologically such that for any pair

of choices e′ and e with e′ < e, choice e must not trigger choice e′.

• A precedence constraint is implemented whenever it connects two implemented ac-

tivities.

6

begin

ter-

minal

apron

bridge

by foot

by bus

fueling

(with fire

fighters)

fueling

clean-

ing

cate-

ring

board-

ing

push-

back

end

choices

caused activities

W1

a(1) = begin

W2

a(2) = apron

W3

a(3) = begin

Bterm. Bterm.

Figure 1: Project network for a simplified turnaround at an airport

We use the example introduced in Subsection 2.2 to show the use of these sets and

indices. To this end, we also introduce a specific graphical representation based on an

activity-on-node network. Each choice e is represented as an oval around its optional

activities j ∈ We. Activities caused by other activities are specifically marked. Note that

the established graphical representations of project networks are not suitable to represent

projects with a flexible project structure, cf. Kuster et al. (2009), p. 244. Even the

graphical evaluation and review technique (GERT, cf., e.g., Neumann (1990), pp. 17-

19) used for stochastic project networks is not appropriate, because it is not possible to

represent logical dependencies and precedence constraints independently. In contrast to

the RCPSP-PS, a logical dependency between activities in a GERT network always goes

along with a precedence constraint between these activities.

The project network for the turnaround example is presented in Figure 1. The

set of mandatory activities is V = {begin, cleaning, catering, boarding, end}). Choice 1

is the mandatory choice between alternative activities concerning the arrival (W1 =

{terminal, apron}). As it is mandatory, choice e = 1 is triggered by the beginning ac-

tivity, i.e., a(1) = ’begin’. The arrival at the terminal causes deboarding by bridge and

the push-back (Bterminal = {bridge, push-back}). The optional choice 2 is caused by

the decision to arrive at the apron a(2) = ’apron’ and determines how to transport de-

boarding passengers from the apron to the terminal. The optional activities for e = 2 are

W2 = {by foot, by bus}. Finally, there is a mandatory choice e = 3 with a(3) = ’begin’

concerning the fueling (W3 = {fueling(with fire fighters), fueling}).

7

Indices and (ordered) sets

a(e) single activity causing choice e
i ∈ Bj activities caused by activity j, with i, j /∈ V
e ∈ E choices, with e = 1, ..., E
j, i ∈ J topologically ordered activities, with j, i = 1, ..., J
r ∈ N non-renewable resources
i ∈ Pj predecessors of activity j
r ∈ R renewable resources
t, τ ∈ T periods, with t, τ = 1, ..., T
j ∈ V mandatory activities, including (dummy) activities 1 and J
j ∈ We optional activities of choice e

Parameters

dj duration of activity j
kjr capacity consumption of resource r by activity j
Kr capacity of resource r

Decision variable

xjt

{
1, if activity j is finished in period t
0, otherwise

Table 2: Notation of the RCPSP-PS

3.2. Mathematical model

The presented modeling approach of introducing new sets E , V , We and Bj as well

as indices without changing the decision variable xjt has the effect that only limited

modifications of the RCPSP are necessary to formally establish the RCPSP-PS, cf. Klein

(2000), pp. 79-80. It is presented below using the notation in Table 2.

Model RCPSP-PS

min Z =
T∑
t=1

t · xJt (1)

subject to

T∑
t=1

xjt = 1 j ∈ V (2)

∑
i∈We

T∑
t=1

xit =
T∑
t=1

xa(e),t e ∈ E (3)

T∑
t=1

xit =
T∑
t=1

xjt e ∈ E ; j ∈ We; i ∈ Bj (4)

8

T∑
t=1

t · xit ≤
T∑
t=1

(t− dj) · xjt + T · (1−
T∑
t=1

xjt) j ∈ J ; i ∈ Pj (5)

J∑
j=1

kjr ·
t+dj−1∑
τ=t

xjτ ≤ Kr r ∈ R; t ∈ T (6)

J∑
j=1

kjr ·
T∑
t=1

xjt ≤ Kr r ∈ N (7)

In the objective function (1), the completion time of the last activity J and hence the

makespan of the project is minimized. Constraints (2) - (5) model the flexible project

structure. Equation (2) declares that each mandatory activity j ∈ V has to be imple-

mented once.

Equation (3) reflects the choices e ∈ E on the project structure. If choice e is triggered

by the implementation of an activity a(e), exactly one activity i ∈ We has to be chosen

for implementation. Note that none of the optional activities i ∈ We is implemented if

choice e is not triggered. Equation (4) treats the implemented non-mandatory activities

caused by other implemented non-mandatory activities. If activity j ∈ We of choice e is

implemented, each activity i ∈ Bj has to be implemented as well.

Constraint (5) states that a predecessor i ∈ Pj has to be finished before the imple-

mentation of the successive activity j can be started. Due to the second summand on the

right-hand side of the constraint, this constraint can only be binding if both predecessor

i as well as successor j are implemented.

Constraint (6) ensures that the capacity consumption kjr of all activities that affect

period t does not exceed the available capacity Kr of any renewable resource r ∈ R.

In addition, constraint (7) states the capacity constraints of the non-renewable resources

r ∈ N .

Note that in the standard RCPSP with its exogenous project structure, it is possible to

determine earliest and latest starting and ending times of all activities via simple forward

and backward recursions by ignoring capacity constraints. In the context of our RCPSP-

PS, this is not easily possible as the project structure is not known beforehand. For this

reason, the summations, e.g., in the objective function (1), run over all periods t = 1, ...T .

If the set E of choices is empty, constraints (3) and (4) disappear and the classical RCPSP

results.

3.3. Structural characteristics of the RCPSP-PS

We introduce in Figure 2 a simple project consisting of 10 activities. In this project, a

mandatory choice has to be made between the implementation of activity 4 and activity

5. If (and only if) activity 4 is chosen, activity 9 is implemented. If (and only if) activity

5 is chosen, decision 2 is triggered. The optional choice 2 is about the implementation of

activity 7 or activity 8.

9

Three different project structures with specific sets of implemented activities A =

{1, 2, 3,4, 6,9, 10}, B = {1, 2, 3,5, 6,7, 10}, and C = {1, 2, 3,5, 6,8, 10} exist for this

project. In addition to the mandatory activities 1, 2, 3, 6, and 10, in project structure A

the optional activities 4 and 9 are implemented. In project structures B and C the optional

activity 5 is chosen in the mandatory decision 1 and thereby decision 2 is triggered. In

this decision, in project structure B, activity 7 is implemented and in project structure

C, activity 8 is chosen.

Activity

Activity

Activity

Activity

Activity

Activity

Activity

Activity

Activity

Activity

1

2

3

4

5

6

7

8

9

10

W1

a(1) = Act. 1

W2

a(2) = Act. 5

BAct. 4

Figure 2: Example of a flexible project

j 1 2 3 4 5 6 7 8 9 10

dj 0 3 4 3 5 6 4 2 2 0

kj1 0 3 7 5 2 8 6 5 4 0

Table 3: Data for the example project

In Table 3, the duration and resource consumption of a single renewable resource is

given. Non-renewable resources do not exist.

We present in Figure 3 the variation of the optimal makespan of this project depending

on the capacity of the renewable resource K1. An increase of K1 leads to a decrease of

the makespan as well as to a change of the optimal project structure. Similar effects can

be shown for non-renewable resources.

These characteristics show that the decision on the project structure should be treated

together with the scheduling decision since the capacity restrictions affect the selection of

the optimal project structure.

3.4. RCPSP-PS vs. full enumeration over multiple RCPSP

For each given decision on the project structure, the RCPSP-PS reduces to the RCPSP,

so that this problem can in principle be solved via a full enumeration over all possible

10

A A

C C A/C
C C C C C C C C

4

6

8

10

12

14

16

18

0

2

4

6 8 10 12 14 16 18 20
Capacity K1

M
ak
es
p
an

Figure 3: Optimal makespan depending on the capacity of the renewable resource

0%

5%

10%

15%

20%

25%

30%

40 41 42 43 44 45 46 47 48 49

R
el
a
ti
v
e
fr
eq
u
en
cy

Value of the objective function

Figure 4: Relative frequency of the values of the objective function for all possible project
structures

project structures. However, this does not appear to be a very efficient approach. We

experimented with a somewhat larger but still small example with only 30 activities, but

already 12 alternative project structures due to a few endogenous choices.

The computation time to solve the problem RCPSP-PS to optimality was only about

9% of the time required to optimally solve all 12 RCPSPs with given project structure.

Furthermore, Figure 4 presents the distribution of the optimal objective function values

over those 12 different project structures, determined using CPLEX. The variance is

apparently large, so it is important find the optimal project structure.

11

4. Genetic algorithm

4.1. Concept and representation of solutions

The RCPSP-PS includes as a special case the RCPSP, which is already known to

be NP-hard, see Blazewicz et al. (1983), p. 21. For this reason, we have to resort to

heuristic approaches in order to solve large problem instances. Among the most powerful

algorithms for RCPSPs are genetic algorithms and we hence present a genetic algorithm

for this new problem class.

Genetic algorithms mimic evolutionary processes in biology. Evolution is seen as the

attempt of any species to adapt to its environment by letting members of its population

mate with one another in order to produce potentially “fitter” offspring with modified

characteristics and better chances of survival. This process is interpreted as a general

population-based approach to solve an optimization problem that can be mimicked to solve

mathematical optimization problems. In this solution approach, each individual within

the population represents a solution of the underlying problem. The genetic algorithm

starts with the initialization of a start population. Afterwards, over the course of several

generations of populations, new individuals are generated by crossover, mutation and

selection, cf. Goldberg (1989).

The genetic algorithm for the RCPSP-PS is a modification and generalization of the

genetic algorithm for the MRCPSP presented in Hartmann (2001). In order to extend that

approach by the model-endogenous decision on the project structure, the representation

of the individuals, the initialization of the population, the crossover and the mutation as

proposed in Hartmann (2001) had to be generalized and modified. As it is the basis for

all further modifications, we start with the explanation of the representation of individual

solutions of the RCPSP-PS.

Any solution of the RCPSP-PS consists of two components. The first one addresses the

chosen structure of the implemented network of activities, i.e., the ensemble of actually

implemented optional activities j ∈ We for all the choices e ∈ E as well as the mandatory

activities j ∈ V and the related precedence constraints. The second component eventually

determines the actual schedule of those activities that are actually implemented based on

those former choices on the structure. To represent a solution, we hence use a combination

of a choice list α to reflect the chosen structure and an activity list λ supplemented by an

implementation list ν to (indirectly) determine the actual schedule. The general structure

for an individual I

I =

(
Choice list α Activity list λ

Auxiliary information Implementation list ν

)

is detailed as follows:

12

I =

(
α1 α2 ... αE λ1 λ2 ... λJ

a(1);W1 a(2);W2 ... a(E);WE νλ1 νλ2 ... νλJ

)

The choice list α = (α1, α2, ..., αE) contains for each of the choices e the selected op-

tional activity j ∈ We, if any (in case of optional choices). The auxiliary information

below the choice list only serves expository purposes in this paper to explain the exam-

ples, it is not actually implemented in our algorithm. For each choice e, it contains the

triggering activity a(e) as well as the set of optional activities j ∈ We. (Remember that

any mandatory choice is triggered by the start activity.)

The activity list λ = (λ1, λ2, ..., λJ) contains all activities in the sequence of their treat-

ment in the process of creating a schedule by the means of the serial schedule generation

scheme, cf. Kelley (1963), pp. 352-353 or Kolisch & Hartmann (1999), p. 152. Note,

however, that due to the choices on the project structure, some optional activities on the

activity list are not implemented at all. For this reason, the activity list is supplemented

by an implementation list ν = (νλ1 , νλ2 , ..., νλJ). The elements of the implementation list

are coded binary. If the associated activity on the activity list is implemented, the ele-

ment of the implementation list equals 1, otherwise 0. Note that there is a redundancy of

information between the choice list α and the implementation list ν which we deliberately

use here to facilitate the explanation of the algorithm.

An activity list is feasible if the sequence of activities on the activity list does not

contradict any of the active precedence constraints of the project. If an implemented

activity i has to precede another implemented activity j due to the precedence constraints,

this activity i also has to precede activity j in the activity list. A feasible activity list can

be decoded to a unique schedule. In the serial schedule generation scheme, each active

element of the activity list is scheduled as early as possible considering the available

capacity of renewable resources and the precedence constraints. This method creates

a so-called active schedule in which no activity can be started earlier without delaying

another activity, cf. Kolisch (1996), p. 325.

In order to explain all central elements of the genetic algorithm, we refer to the example

of a flexible project introduced in Subsection 3.3. We consider the second possible project

structure with the set B = {1, 2, 3,5, 6,7, 10} of implemented activities, which is also

shown in Figure 5 (using solid arrows and boxes for implemented activities and precedence

constraints). One possible solution to the remaining scheduling problem for this structure

is represented by the following individual denoted as IM :

IM =

(
5 7 1 3 6 4 2 8 5 7 9 10

1; {4, 5} 5; {7, 8} 1 1 1 0 1 0 1 1 0 1

)

13

Activity

Activity

Activity

Activity

Activity

Activity

Activity

Activity

Activity

Activity

1

2

3

4

5

6

7

8

9

10

W1

a(1) = Act. 1

W2

a(2) = Act. 5

BAct. 4

Figure 5: Example of a flexible project with a chosen project structure

The choice list indicates that in the mandatory choice 1, activity 5 is selected. As the

optional choice 2 is triggered by activity 5, either activity 7 or 8 has to be implemented

and activity 7 is chosen. The implementation list contains the (derived) information that

activities 4, 8, and 9 are not implemented. The activity list shows that the implemented

activities are treated (within the scheduling process) in the sequence 1, 3, 6, 2, 5, 7, and 10.

It should be noted that the feasibility of an activity list depends on the content of

the choice list and the corresponding implementation list. Assume that in choice 1, the

activity 4 had been chosen instead of activity 5. In this case, it would have been necessary

to consider an (indirect) precedence relation between activities 2 and 6, cf. Figure 5. The

current activity list would violate this constraint and hence be infeasible.

4.2. Fitness computation

Fitness values are computed only for individuals with a feasible activity list. If (ac-

cording the implementation list) the individual is also feasible with respect to the non-

renewable resources, its fitness value is simply the makespan of the project. The lower

this fitness value is, the better is the individual. However, if the implemented activities

exceed the available capacity of the non-renewable resources, the individual does not rep-

resent a capacity-feasible schedule, irrespective of its makespan. In this case, the fitness

value is computed as the sum of the length of the planning horizon T =
∑J

j=1 dj plus the

additionally required capacity of the non-renewable resource(s), as in Hartmann (2001).

Therefore, individuals representing infeasible schedules always have a higher and hence

worse fitness value than feasible individuals.

To illustrate the fitness computation, we come back to the example introduced in

Subsection 3.3. We assume that no non-renewable resource and only one renewable re-

source with a capacity K1 = 10 is needed and use the additional data in Table 3. The

scheduling sequence 1, 3, 6, 2, 5, 7, 10 from the activity list lead to the schedule in Figure 6.

14

2 4 6 8 10 12 14
time

K1

capacity

Activity 2

Activity 3

Activity 5

Activity 6
Activity 7

Figure 6: Schedule for IM

(Note that activities 1 and 10 are “dummy” activities with zero duration and capacity

consumption.) Activity 3 is scheduled first starting at time 0 and consumes 7 units of the

renewable resource. Due to the limitation of the renewable resource to 10 units, it is not

possible to start activity 6 with a consumption of 8 units prior to the completion of activ-

ity 3 at time 4. Afterwards, activity 2 is considered. The capacity constraints as well as

the precedence constraints allow to start this activity at time 0. The precedence relation

between activities 3 and 5 allows to start activity 5 after the end of activity 3 at time 4.

The precedence constraints furthermore allow activity 7 to start after the completion of

activity 5. However, at this time, there are not enough resource units available and the

start of activity 7 has to be postponed until time 10. The makespan of the project and

hence the fitness value F (IM) is 14.

4.3. Generation of the initial population

At the beginning of the genetic algorithm, N I individuals are generated as a start

population. For each individual, a choice list, an activity list as well as an implementation

list are determined randomly but consistently. The procedure is shown in Algorithm 1.

Due to the fact that the feasibility of the activity list depends on the choice list and, hence,

the implementation list, the initialization of the individuals begins with the decision on

the structure of the network, i.e., the choice of the optional activities.

First of all, all mandatory activities are activated (νj := 1, j ∈ V). All other activities

are—at least initially—deactivated (νj := 0, j /∈ V). Next, each choice e ∈ E is considered

in the sequence of the topological ordering of the choices. If choice e is triggered by

the mandatory start activity or an already selected optional activity (νa(e) = 1), one

activity j ∈ We is randomly selected (αe := j) and activated (νj := 1). Eventually, all

those activities i which are triggered by activated optional activities are activated as well

(νi := 1, i ∈ Bj with νj = 1).

The procedure to determine the choice list and, hence, the implemented activities (in

Part I of the algorithm) is demonstrated below using the example project introduced in

15

/* Part I: Determine activities to be implemented */
repeat

Activate all mandatory activities (νj := 1, j ∈ V)
Deactivate all optional activities (νj := 0, j /∈ V)
for each choice e ∈ E do

if choice e is triggered (νa(e) = 1) then
Randomly select one activity j ∈ We and set αe := j
Activate the selected activity (νj := 1)

end

end
for each active activity j (νj = 1) do

Activate all triggered activities i (νi := 1, i ∈ Bj)
end

until Capacity constraint is kept for each r ∈ N or Trialmax is reached

/* Part II: Determine sequence of activities */
Place dummy activity 1 at the first position of the activity list
for positions 2 to J − 1 of the activity list λ do

for each not yet included (active and inactive) activity except the dummy
activity J do

if all active predecessors are already included on the activity list then
Add the activity to the set of eligible activities

end

end
Randomly select one eligible activity considering the latest start times
Place the selected activity at the current position of the activity list

end
Place dummy activity J at the last position of the activity list

Algorithm 1: Initialization of a new individual

Subsection 3.3. Now a new individual IF is generated. Firstly, the mandatory activities

1, 2, 3, 6, and 10 are activated (νF1 = νF2 = νF3 = νF6 = νF10 := 1) and all optional activities

are deactivated (νF4 = νF5 = νF7 = νF8 = νF9 := 0). In the mandatory decision 1, activity 4

is chosen randomly (αF1 := 4; νF4 := 1). Therefore, choice 2 is not triggered (νF5 = 0) and

none of the optional activities 7 and 8 is activated. Eventually, activity 9 is triggered by

the activation of activity 4 (νF9 := 1).

Given the information of the activities to be implemented, the capacity consumption of

the non-renewable resources can now be computed. If the available capacity is exceeded for

any non-renewable resource, a new project structure has to be determined. If the number

of trials to compute a feasible selection of activated optional activities exceeds Trialmax,

the procedure continues with the infeasible selection of activated optional activities (and

a prohibitively poor fitness value).

In Part II of the algorithm, the activity list is finally determined. For each position

on the activity list, the set of those activities is determined that are eligible to be placed

at this position. In this set of eligible activities, implemented as well as not implemented

16

activities are considered alike. An activity is eligible if it has not yet been placed on the

activity list and if all its active predecessors have already been placed on the activity list.

A probabilistic dispatching procedure, see Baker (1974), p. 204, as well as Appendix Ap-

pendix A, is used to randomly choose one activity from this set for the current position

on the activity list.

One possible combination of choice list, activity list and implementation list for the

choices described above leads to the following individual IF :

IF =

(
4 − 1 2 3 7 4 5 6 8 9 10

1; {4, 5} 5; {7, 8} 1 1 1 0 1 0 1 0 1 1

)

The corresponding schedule (not shown here) has a makespan of 13 time units.

4.4. Crossover

In the crossover operation of the genetic algorithm, two parent individuals IM

(“mother”) and IF (“father”) are combined in order to create two new child individ-

uals ID and IS, such that each new individual possesses traits of both parent individuals.

The new individuals always combine elements of two distinct individuals from the pre-

vious generation. Each individual from the parent generation is chosen exactly once as

a mother or a father for the two children. In Algorithm 2, we show how a daughter ID

inherits from (mother) IM and (father) IF . A son IS is created analogously. Only the

roles of the mother and the father in the algorithm are exchanged.

As in the initial population, all mandatory activities of the daughter are initially

activated (νDj := 1, j ∈ V) and all optional activities are—initially—deactivated (νDj :=

0, j /∈ V). A crossover parameter cα is determined randomly (1 ≤ cα ≤ |E|). The

first cα choices are inherited from IM , which affects both the choice list αD and the

implementation parameter (νDj := νMj , j ∈ We). The remaining choices are inherited from

IF . Note that a choice e inherited from the mother (e ≤ cα) can trigger another choice

e′ with cα < e′ to be inherited from the father. If that decision e′ is not (also) triggered

for IF , the choice αe′ and the implementation state is inherited from the mother IM as

well (νDj := νMj , j ∈ We′). Finally, all possibly triggered activities are activated if the

triggering activity is implemented (νDi := 1, i ∈ Bj if νDj = 1).

The crossover of the activity list λ is taken from Hartmann (2001). Firstly, the

crossover parameter for the activity list cλ is randomly determined (1 ≤ cλ ≤ J). The

cλ first activities are inherited from the mother’s activity list λM . The sequence of the

remaining activities is inherited from the father’s list λF .

We apply the crossover to the example from Subsection 3.3 with assumed crossover

parameters cα = 1 and cλ = 4 and create the daughter ID. The first choice e is inherited

from IM , i.e., activity 5 is activated (αD1 := αM1 = 5 and νD5 := 1). The second decision

17

/* Part I: Determine activities to be implemented */
Activate all mandatory activities (νDj := 1, j ∈ V)

Deactivate all optional activities (νDj := 0, j /∈ V)

Determine a random crossover position 1 ≤ cα ≤ |E|
for choices e = 1, ..., cα do

/* Inherit from the mother */
αDe := αMe
for all j ∈ We do

νDj := νMj
end

end
for the remaining decisions e = cα + 1, ..., |E| do

if choice e is triggered for the daughter (νDa(e) = 1) then

if choice e is triggered for the father (νFa(e) = 1) then

/* Inherit from the father */
αDe := αFe
for all j ∈ We do

νDj := νFj
end

else
/* Inherit from the mother */
αDe := αMe
for all j ∈ We do

νDj := νMj
end

end

end

end
for each active activity j (νDj = 1) do

Activate all triggered activities i (νDi := 1, i ∈ Bj)
end

/* Part II: Determine sequence of activities */
Determine a random crossover position 1 ≤ cλ ≤ J
Inherit the cλ first activities from the mother’s activity list λM

for each activity j in the order of the father’s activity list λF do
if j is not yet placed on the daughter’s activity list then

Append activity j to the daughter’s activity list λD

end

end

Algorithm 2: Crossover of IM and IF for the generation of ID

should (in principle) be inherited from IF . However, this is not possible because it is

not triggered for the father, while it is triggered for the daughter. Therefore, the choice

as well as the implementation state is taken from the mother, i.e., activity 7 is chosen

(αD2 := αM2 = 7 and νD7 := 1). No further activities are triggered. In the activity list, the

four (cα = 4) first activities (1, 3, 6, 4) are inherited from the mother λM and the order

18

of the remaining activities (2, 7, 5, 8, 9, 10) from the father λF .

For the son IS the first decision is inherited from IF , i.e., activity 4 is activated

(αS1 := 4 and νS4 := 1). The second decision is not triggered for the son. Therefore, no

value is assigned to αS2 . The choice to implement activity 4 triggers the implementation

of activity 9 (νS9 := 1). In the activity list, the first four activities (1, 2, 3, 7) are inherited

from λF and the order of the remaining activities (6, 4, 8, 5, 9, 10) stems from λM .

IM =

(
5 7 1 3 6 4 2 8 5 7 9 10

1; {4, 5} 5; {7, 8} 1 1 1 0 1 0 1 1 0 1

)

IF =

(
4 − 1 2 3 7 4 5 6 8 9 10

1; {4, 5} 5; {7, 8} 1 1 1 0 1 0 1 0 1 1

)

ID =

(
5 7 1 3 6 4 2 7 5 8 9 10

1; {4, 5} 5; {7, 8} 1 1 1 0 1 1 1 0 0 1

)

IS =

(
4 − 1 2 3 7 6 4 8 5 9 10

1; {4, 5} 5; {7, 8} 1 1 1 0 1 1 0 0 1 1

)

Note that the implementation list ν of the newly created daughter ID and son IS

reflects its respective choice list αD or αS. The activity list λD or λS of the new individual

may be inconsistent with the possibly new project structure and may require a repair.

This problem is handled in the next subsection along with the mutation operation.

4.5. Mutation, repair and selection

The mutation operation aims at creating some random diversity in the population

of solutions. The objective is to make such spaces of the solution space accessible that

cannot be reached by combining elements of already known solutions via the crossover.

To this end, individual elements of the solution are occasionally changed (or mutated)

at random. In our context, this affects on the one hand the structure of the project

(as expressed via the choice list α and the corresponding implementation list ν) and on

the other hand the schedule (as determined via the activity list λ). Systematic repair

operations may be necessary to ensure that the content of the different lists is consistent

and feasible. Note that the crossover operation may have already led to an activity list λ

that is infeasible. For this reason, we use a three-step approach to mutate and to repair.

In the first step, mutation is applied to the choice list α. In the second step, the activity

list λ which may now be infeasible is repaired. This leads to a consistent and feasible

combination of choice list α, activity list λ and implementation list ν. In the final third

step, the activity list λ is mutated in such a way that only feasible solutions result. The

procedure is shown in Algorithm 3.

For the mutation of the choice list α and implementation list ν (in the first of the

three steps), each decision is considered. If a (due to the crossover) now triggered choice e

19

/* Part 1: Mutate choice list */
for choices e = 1, ..., E do

if choice e is currently triggered (νa(e) = 1) then
if choice e was previously not triggered (αe = n/a) then

Randomly select one activity j ∈ We

νj := 1; αe := j

else
Determine a realization m of a U(0; 1)-distributed random variable
if m ≤ mα then

Randomly select one activity j ∈ We

if j 6= αe then
ναe := 0; νj := 1; αe := j

end

end

end

else
if choice e was previously triggered (αe 6= n/a) then

ναe := 0; αe := n/a
end

end

end
for each choice e do

Update triggered activities i (νi := νj, j ∈ We, i ∈ Bj)
end

/* Part 2: Repair the activity list */
if the activity list λ violates the precedence constraints then

Create a copy λ∗ of the infeasible activity list (λ∗ := λ)
Delete all elements from the activity list λ
for each position of the activity list λ do

Select the first activity j in λ∗ which is not included in λ yet and for which
all active predecessors are already included in λ
Append the selected activity j to the activity list λ

end

end

/* Part 3: Mutate the activity list */
for each activity j in the activity list λ which is implemented (νj = 1) do

Determine a realization m of a U(0; 1)-distributed random variable
if m ≤ mλ then

Determine the next implemented activity i in the activity list λ
if j is no predecessor of i (j /∈ Pi) then

Exchange the positions of j and i in the activity list λ
end

end

end
Algorithm 3: Mutation and repair

20

was previously not triggered, one activity j ∈ We is selected at random and choice list α

as well as implementation list ν are updated. Otherwise, with a low mutation probability

mα, an activity j ∈ We is selected at random to replace the previous activity αe if it

differs from j. If choice e is currently not triggered, but was previously triggered, it has

to be deactivated. Finally, all dependent activities i ∈ Bj for each j ∈ We are updated

(νi := νj).

We use the individuals ID and IS from Subsection 4.4 to demonstrate the mutation of

the implementation list. For ID, we assume that a mutation occurs in the second choice

e = 2. Instead of activity 7, activity 8 is activated (α2 := 8; νD7 := 0, νD8 := 1). No

further adjustments are necessary for ID.

In the case of IS, we assume that due to a mutation of the first choice e = 1, activity 5

is implemented instead of activity 4 (α1 := 5; νS4 := 0, νS5 := 1). Thereby, the second

decision is triggered. Activity 7 is chosen randomly from W2 (νS7 := 1). Due to the

deactivation of activity 4, activity 9 is not triggered any longer and has to be deactivated

(νS9 := 0).

ID =

(
5 8 1 3 6 4 2 7 5 8 9 10

1; {4, 5} 5; {7, 8} 1 1 1 0 1 0 1 1 0 1

)

IS =

(
5 7 1 2 3 7 6 4 8 5 9 10

1; {4, 5} 5; {7, 8} 1 1 1 1 1 0 0 1 0 1

)

The second step of the algorithm is only performed if the activity list λ is infeasible

because a pair (i, j) of activities exists that are both active (νi = νj = 1) and exhibit a

precedence constraint i ∈ Pj, while activity j precedes activity i on the activity list λ.

The activity list is re-sequenced by placing activity j behind i on the activity list for all

such conflicting pairs.

For the individual ID of our example, no repair of the activity list λ is necessary: All

precedence constraints are met. For the individual IS, however, the precedence relation

between activity 5 and activity 7 is violated. This requires the postponement of activity 7

until activity 5 has been placed on the activity list. The sequence of the remaining

activities does not have to be changed. This leads to the following (preliminary) result:

IS =

(
5 7 1 2 3 6 4 8 5 7 9 10

1; {4, 5} 5; {7, 8} 1 1 1 1 0 0 1 1 0 1

)

The mutation of the activity list in the third step is implemented analogously to

Hartmann (2001). With a low probability mλ, an activity j is selected to be exchanged

with the next implemented activity i in the activity list. This exchange is only feasible

and therefore implemented if activity j is not a predecessor of activity i (j /∈ Pi).

21

In our example, a mutation of activity λ7 = 5 is tried for ID. The next active activity

is activity λ8 = 8. Due to the precedence relation between these activities, the mutation

is not feasible. For IS, an exchange of activity λ4 = 6 with the next implemented activity

(λ7 = 5) is intended. This exchange is feasible and therefore the positions of these

activities are exchanged (λ7 := 6, λ4 := 5), with the following result:

IS =

(
5 7 1 2 3 5 4 8 6 7 9 10

1; {4, 5} 5; {7, 8} 1 1 1 1 0 0 1 1 0 1

)

After the mutation, the generation of new individuals is finished. For each individual,

the fitness can be computed and the best N I individuals out of the parent and the children

generation are selected as the parent generation for the next iteration of the genetic

algorithm. The procedures crossover, mutation and selection of the genetic algorithm

are applied again until NG generations are created and evaluated. Afterwards, the fittest

individual and its corresponding best schedule of the last generation is chosen as a solution

of the underlying problem.

For the presented example, the fitness F of the individuals is F (IS) = 14, F (IM) = 14,

F (IF) = 13 and F (ID) = 12, as can be seen if schedules for the individuals IF , ID, and

IS are generated similar to IM in Figure 6. The individuals ID and IF would be selected

as parent generation for the next iteration of the genetic algorithm if a population size of

2 were used (which would be too small in a realistic attempt to use a genetic algorithm).

5. Numerical analysis

5.1. Test design

In order to evaluate the genetic algorithm with respect to speed and solution quality,

it was necessary to generate adequate test instances. We enhanced the instance generator

ProGen (cf. Kolisch et al. (1995)) to create problem instances with a flexible project

structure. Four different problem classes with 30, 60, 90, and 120 non-dummy activities

were generated, cf. Appendix Appendix B. Each class consisted of 1536 test instances

out of which some were infeasible due to limited non-renewable resources.

The genetic algorithm was implemented in Delphi XE and executed on a 2.66 GHz

Intel Core2 Quad machine with 4 GB of RAM using a single thread. Each generation of

the genetic algorithm consisted of N I = 80 individuals (and hence schedules). In order

to show the improvement of the solutions over the generations, we present results for 13,

63, and 125 generations NG, i.e., after generating 1,040, 5,040, and 10,000 schedules. The

mutation parameters were set to mα = 3% and mλ = 10%, respectively.

We used CPLEX 12 on a 2.00 GHz Intel Xeon machine with 110 GB of RAM and

four threads within a central compute cluster at Leibniz Universität Hannover, cf. http:

//www.rrzn.uni-hannover.de/clustersystem.html to determine reference values. The

22

reference values represent optimal solutions (for the first problem class with 30 non-

dummy activities) or upper bounds (for the problem classes with 60 or more non-dummy

activities). It was not possible to solve the test instances with 60 activities or more to

optimality within reasonable time. Therefore, we limited the CPLEX CPU time per

instance to one hour. Those test instances required a maximum of 25 GB of RAM.

The new genetic algorithm found a feasible solution for each instance for which CPLEX

either found at least a feasible solution or was unable to decide on (in)feasibility of the

instance within a given time limit. Out of the 1536 test instance of each class, CPLEX

found optimal or at least feasible solutions for 1166, 1072, 1046, and 1040 instances,

respectively. Those instances were used evaluate the genetic algorithm.

In order to compute additional reference values, we systematically enumerated over

all the possible project structures per instance for all the instances with 30, 60, and 90

non-dummy activities. To solve all the resulting RCPSPs (with fixed structure) in this

structure enumeration approach, we again used a genetic algorithm, but with a lower

number of individuals or schedules for each possible project structure (N I = 50) and only

10 generations (NG = 10), i.e., 500 schedules per project structure. Due to the large

number of possible project structures and the substantial computational effort, we were

unable to determine reference values with this method for problem class 4 with the largest

number of non-dummy activities.

5.2. Results

We present the numerical results in Tables 4 - 7. They show consistently that the

presented genetic algorithm is very fast. Even for the problem class with the largest

number of 120 non-dummy activities, it requires only about one second to generate 10,000

different schedules, see Table 7. Furthermore, the solution quality appears to be very high.

For the first problem class with 30 non-dummy activities, the average deviation of the

makespan from the optimal values is only 0.24%, see Table 4. For the remaining three

classes we report the deviations from the best known solutions. The genetic algorithm

always outperforms both CPLEX and the structure enumeration approach both with

respect to accuracy and speed. It usually finds better solutions than the other approaches,

in particular for larger instances and a larger number of generations. We conclude that the

presented algorithm is a powerful instrument to schedule flexible projects with resource

constraints.

6. Conclusions and outlook

In this paper we analyzed the problem to schedule projects with a flexible structure.

We introduced the concepts of both mandatory and optional choices, of optional activities,

and of dependent activities. These concepts substantially increase the power and flexibility

to model real-world resource-constrained project scheduling projects. We furthermore

23

Genetic Algorithm CPLEX Structure

1,040 5,040 10,000 optimal enumeration

schedules schedules schedules solutions approach

deviation 0.42 % 0.26 % 0.24 % 0 % 0.31 %

optimal 88.4 % 92.2 % 92.6 % 100 % 90.5 %

time 0.02 s 0.07 s 0.13 s 1214.01 s 0.37 s

Table 4: Results for the test instances with 30 activities

Genetic Algorithm CPLEX Structure

1,040 5,040 10,000 upper enumeration

schedules schedules schedules bounds approach

deviation 1.19 % 0.50 % 0.44 % 1.17 % 0.73 %

best known 69.9 % 84.0 % 86.7 % 89.1 % 77.2 %

time 0.04 s 0.18 s 0.34 s 609.70 s 14.51 s

Table 5: Results for the test instances with 60 activities

Genetic Algorithm CPLEX Structure

1,040 5,040 10,000 upper enumeration

schedules schedules schedules bounds approach

deviation 1.39 % 0.36 % 0.26 % 3.83 % 0.71 %

best known 69.4 % 86.2 % 92.3 % 80.1 % 76.2 %

time 0.09 s 0.34 s 0.64 s 914.25 s 378.75 s

Table 6: Results for the test instances with 90 activities

Genetic Algorithm CPLEX Structure

1,040 5,040 10,000 upper enumeration

schedules schedules schedules bounds approach

deviation 1.31 % 0.24 % 0.11 % 10.40 % n/a

best known 69.0 % 86.3 % 96.5 % 73.8 % n/a

time 0.14 s 0.53 s 1.01 s 1,099.80 s n/a

Table 7: Results for the test instances with 120 activities

24

presented a formal decision model and developed a genetic algorithm to solve the model

for a given problem instance. The model itself is a generalization of the well-established

RCPSP. It also covers the multi-mode RCPSP. A comprehensive numerical study showed

that the presented algorithm is both fast and accurate.

In application fields such as the regeneration of complex capital goods such as jet en-

gines, alternative project structures often go along with varying quality characteristics or

functional features. The different project structures typically affect both cost and revenues

of the project, which can have a major effect on the eventually chosen project structure

and schedule. The presently discussed version of the problem, however, attempts to min-

imize the makespan of the project and does not consider those aspects. Future research

should address these topics. If both cost and revenues additionally depend on time, the

problem structure changes substantially and it may be economically efficient to deliber-

ately delay an activity, for example, to avoid overtime costs. This will require substantial

modifications of the algorithm, but also open important new fields of application.

Acknowledgments

The authors thank the German Research Foundation (DFG) for the financial support

of this research project in the CRC 871 ‘Regeneration of complex durable goods’.

References

Baker, K. R. (1974). Introduction to sequencing and scheduling . New York: John Wi-

ley & Sons.

Belhe, U., & Kusiak, A. (1995). Resource Constrained Scheduling of Hierarchically Struc-

tured Design Activity Networks. IEEE Transactions on Engineering Management , 42 ,

150–158.

Blazewicz, J., Lenstra, J. K., & Rinnooy Kan, A. H. G. (1983). Scheduling subject to

resource constraints: Classification and complexity. Discrete Applied Mathematics , 5 ,

11–24.

Brucker, P., Drexl, A., Möhring, R., Neumann, K., & Pesch, E. (1999). Resource-

constrained project scheduling: Notation, classification, models, and methods. Eu-

ropean Journal of Operational Research, 112 , 3–41.

Čapek, R., Š̊ucha, P., & Hanzálek, Z. (2012). Production scheduling with alternative

process plans. European Journal of Operational Research, 217 , 300–311.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learn-

ing . Reading, Massachusetts: Addison-Wesley Publishing Company.

25

Hartmann, S. (2001). Project Scheduling with Multiple Modes: A Genetic Algorithm.

Annals of Operations Research, 102 , 111–135.

Hartmann, S., & Briskorn, D. (2010). A survey of variants and extensions of the resource-

constrained project scheduling problem. European Journal of Operational Research,

207 , 1–14.

Kellenbrink, C. (2013). First results on resource-constrained project scheduling with

model-endogenous decision on the project structure. In Operations Research Proceedings

2012 . Springer Verlag. In press.

Kelley, J. E. (1963). The Critical-path Method: Resources Planning and Scheduling. In

J. F. Muth, & G. L. Thompson (Eds.), Industrial Scheduling (pp. 347–365). Englewood

Cliffs: Prentice-Hall.

Klein, R. (2000). Scheduling of Resource-Constrained Projects . Boston: Kluwer Acadamic

Publishers.

Kolisch, R. (1996). Serial and parallel resource-constrained project scheduling methods

revisited: Theory and computation. European Journal of Operational Research, 90 ,

320–333.

Kolisch, R., & Hartmann, S. (1999). Heuristic algorithms for the resource-constrained

project scheduling problem: classification and computational analysis. In J. Wȩglarz

(Ed.), Project Scheduling: Recent Models, Algorithms and Applications (pp. 147–178).

Boston: Kluwer Academic Publishers.

Kolisch, R., & Padman, R. (2001). An integrated survey of deterministic project schedul-

ing. Omega, 29 , 249–272.

Kolisch, R., Sprecher, A., & Drexl, A. (1995). Characterization and Generation of a

General Class of Resource-Constrained Project Scheduling Problems. Management

Science, 41 , 1693–1703.

Kuster, J., Jannach, D., & Friedrich, G. (2009). Extending the RCPSP for modeling and

solving disruption management problems. Applied Intelligence, 31 , 234–253.

Kuster, J., Jannach, D., & Friedrich, G. (2010). Applying Local Rescheduling in response

to schedule disruptions. Annals of Operations Research, 180 , 265–282.

Neumann, K. (1990). Stochastic Project Networks . Berlin: Springer-Verlag.

Pascoe, T. L. (1966). Allocation of resources C.P.M. Revue française de recherche opera-

tionelle, 38 , 31–38.

26

Pritsker, A. A. B., Watters, L. J., & Wolfe, P. M. (1969). Multiproject scheduling with

limited resources: A zero-one programming approach. Management Science, 16 , 93–

108.

Talbot, F. B. (1982). Resource-constrained project scheduling with time-resource trade-

offs: The nonpreemptive case. Management Science, 28 , 1197–1210.

Tiwari, V., Patterson, J. H., & Mabert, V. A. (2009). Scheduling projects with heteroge-

neous resources to meet time and quality objectives. European Journal of Operational

Research, 193 , 780–790.

Appendix A. Probabilistic dispatching procedure

Following Hartmann (2001), the choice of one out of the set J ∗ of eligible activities to

be placed on the activity list λ takes the latest start times of the activities into account.

The idea is that the probability gi to select an activity i ∈ J ∗ for the next position on

the activity list should be high if it has to be started early, i.e., has a small latest start

time LSTi. To this end, we calculate the probabilities gi as follows:

gi =
1

LSTi∑
j∈J ∗

1
LSTj

i ∈ J ∗ (A.1)

However, it is not clear how to assign a “latest start time” LSTi to an activity that

is not implemented (for the currently considered project structure). In our approach, we

first determine a potentially weak upper bound UB on the makespan as follows:

UB =
∑
j∈J

dj (A.2)

This leads to a “raw” latest start time LST J = UB − dJ of the final activity J . In a

backward recursion we then determine “raw” latest start times

LST i = min
{
LST j|i ∈ Pj ∧ νj = 1

}
− di i ∈ J (A.3)

for each activity i, considering only precedence relations to currently implemented activ-

ities j (with νj = 1). We finally determine fictive latest start times LSTi > 0 from these

raw values as follows:

LSTi = LST i −min
{
LST j|j ∈ J

}
+ 1 (A.4)

These values are then used to determine dispatching probabilities gi in Equation (A.1).

27

Problem class Non-dummy
activities

NE NC

1 30 {2; 4} {1; 2}
2 60 {3; 6} {2; 4}
3 90 {4; 8} {3; 6}
4 120 {5; 10} {4; 8}

Table B.8: Parameters for the 4 different classes of test instances

Parameter # Values

|N | 1 2

|R| 1 2

NE 2 see Table B.8

NW
e 2 2 4

NC 2 see Table B.8

NB
j 2 1 3

RFR 2 0.50 1.00

RSR 4 0.25 0.50 0.75 1.00

RFN 2 0.50 1.00

RSN 2 0.75 1.00

NC 3 1.5 1.8 2.1

Table B.9: Parameters for each class of test instances

Appendix B. Test design for the numerical analysis

Four different classes of test instance with different numbers of non-dummy activities

were generated, cf. Table B.8. In each class, the parameters related to the flexibility of

the project structure were varied in order to create instances of different complexity. In

problem class 1 with 30 activities, the number of choices NE equals either 2 or 4. The

number of activities NC which may cause further activities is either 1 or 2. Note that

problem classes 2 - 4 not only contain more non-dummy activities, but also more choices

and dependent activities, and hence a higher flexibility of the project structure.

In addition to these values, further parameters were systematically varied within each

class, cf. Table B.9, to create a full-factorial test bed with 2 · 2 · 2 · 2 · 2 · 4 · 2 · 2 · 3 = 1536

instances for each class. However, not all test instances were feasible due to the limited

non-renewable resources.

In each test instance two non-renewable and two renewable resources are considered

28

(|N | = |R| = 2). The number of optional activities per choice e is NW
e while NB

j is the

number of dependent activities that are caused by such an optional activity.

The other parameters are defined according to Kolisch et al. (1995). The resource

factor RFR (cf. Pascoe (1966), p. 35 and Kolisch et al. (1995), p. 1697) is computed as

follows:

RFR =
1

J

1

|R|
J∑
j=1

∑
r∈R

{
1, if kjr > 0

0, else
(B.1)

A value RFR = 1 means that each activity uses all types of renewable resources and

for a value of RFR = 0 no renewable resources are used, i.e., the problem is unconstrained

with respect to renewable resources, cf. Kolisch et al. (1995), p. 1697. The resource factor

for the non-renewable resources RFN is defined analogously.

The resource strength RSR for the renewable resources RSR is used in order to deter-

mine the resource availability, cf. Kolisch et al. (1995), pp. 1698-1699. It is computed as

a convex combination of the minimal and the maximal required capacity per period with

RSR as a scaling parameter:

Kr = Kmin
r + round

(
RSR ·

(
Kmax
r −Kmin

r

))
r ∈ R (B.2)

The maximal capacity demanded by a single activity Kmin
r is determined as follows:

Kmin
r = max {kjr | j = 2, ..., J − 1} r ∈ R (B.3)

Denote with J Ct = {j|STj + 1 ≤ t ≤ CTj} the set of activities being performed at

time t in a particular schedule and assume that an earliest start schedule is given for a

related problem in which there are i) no capacity constraints and in which ii) all activities

are implemented and all precedence constraints are respected which leads to these times

STj and CTj. Then the maximal period capacity Kmax
r can be computed as follows:

Kmax
r = max

{ ∑
j∈JCt

kjr t = 1, ..., T
}

r ∈ R (B.4)

We used a similar approach to define the resource strength for the non-renewable

resources RSN based on the assumption that all activities were implemented to determine

the capacity Kr of the non-renewable resources:

Kr = RSN ·
J∑
j=1

kjr r ∈ N (B.5)

The value RSN = 1 means that the problem is not constrained concerning the non-

renewable resources.

The network complexity NC is defined as the average number of arcs per node, cf.

Pascoe (1966), p. 34 and Kolisch et al. (1995), p. 1696:

29

NC =
Number of Arcs

Number of activities (incl. dummy activities)
(B.6)

This ratio is computed based on all the potentially implemented activities and prece-

dence relations. Due to the choice on the structure, some activities as well as related

precedence relations will eventually be dropped while additional precedence constraints

will be added to make sure that each implemented activity is either directly or indirectly

connected to the dummy start and end activity.

30

