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Abstract

The transportation processes for patients, personnel, and material in large and

complex maximum-care hospitals with many departments can consume significant

resources and thus induce substantial logistics costs. These costs are largely deter-

mined by the allocation of the different departments and wards in possibly multiple

connected hospital buildings. We develop a hierarchical layout planning approach

based on an analysis of organizational and operational data from the Hannover

Medical School, a large and complex university hospital in Hannover, Germany.

The purpose of this approach is to propose locations for departments and wards for

a given system of buildings such that the consumption of resources due to those

transportation processes is minimized. We apply the approach to this real-world or-

ganizational and operational dataset as well as to a fictitious hospital building and

analyze the algorithmic behavior and resulting layout.

Keywords: Hospital layout planning, quadratic assignment problem, fix-and-optimize

heuristic
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1 Introduction

Large hospitals often consist of many highly specialized departments with correspond-

ing wards. The allocation of these organizational units (OUs) within the hospital build-

ings determines the distances and travel times between those OUs. In the daily oper-

ation of a hospital, patients, medical personnel, and material must travel or be trans-

ported between these OUs. The resource consumption due to travel and transportation

processes depends on the chosen location of the different facilities within the hospital.

Allocating those facilities is a highly complex problem that is rarely solved in a for-

mal and systematic approach. It is also a challenging problem from a mathematical

perspective, as it contains the quadratic assignment problem (QAP), which is difficult

to solve to optimality. In addition, a substantial number of important real-world con-

straints and problem aspects must be considered to develop a formal hospital facility

layout planning approach.

To develop such an approach, we decompose the problem in a hierarchical manner

into two planning stages. In the Stage I problem, we assign OUs to locations considering

various factors, such as space requirements. Based on this assignment, we then make

more detailed decisions regarding the internal location of the selected OUs within those

locations in the Stage II problem. Despite the hierarchical problem decomposition, the

Stage I problem is still numerically difficult to solve via standard solvers for mixed-

integer programs. Thus, we also present a fix-and-optimize heuristic decomposition

approach to solve the Stage I problem. We then apply the developed facility layout

planning system to a real-world dataset of departments, wards, and travel intensities.

We consider a fictitious system of connected hospital buildings, for which distances can

be computed in a systematic and transparent manner. For this system of buildings, we

determine an allocation of the OUs to minimize the consumption of resources due to

transportation processes.

The remainder of the paper is structured as follows. In Section 2, we present the

problem in more detail and discuss the related literature. The hierarchical modeling

approach is explained in Section 3. Section 4 contains the fix-and-optimize heuristic

for the Stage I problem. The case study for the real-world organizational dataset is

presented in Section 5, and conclusions are provided in Section 6.
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2 The hospital facility layout problem (HFLP)

2.1 Problem aspects

When hospitals are designed, extended, or re-organized, the locations of different OUs

within the hospital building(s) must be determined. This is a complex task for large

maximum-care hospitals with numerous highly specialized departments and sub-departments.

This task determines the spatial location of the numerous medical departments, such as

• Accident and emergency

• Anesthesia

• Diagnostic imaging

• General surgery

• Gynecology

• Oncology

• ...

as well as the location of other (non-medical) service units. Many of the medical depart-

ments have corresponding wards, where the patients stay until they are ready to leave

the hospital. In a large hospital, more than 1,000 beds can be distributed over those

wards. Due to their size and high degree of specialization, such large hospitals often

also serve as teaching hospitals to train future physicians or are even part of, or associ-

ated with, a university. In this case, such hospitals also provide research and teaching

facilities as well as numerous administrative and social facilities.

The spatial distances between the different departments and between departments

and wards can be significant in these large hospitals. A substantial staff can be necessary

in the hospital’s transportation service to transport patients. Furthermore, transports

of numerous types of materials, such as beds, food, and medical supplies, are also

necessary. Transporting patients can range from guiding people (who might otherwise

become lost) to pushing wheelchairs or beds. As the fraction of patients with extreme

obesity increases, an increasing fraction of transport tasks require two members of the

transportation service to transport a bed with a single obese patient. In addition, the

medical staff (physicians and nurses) can spend an economically relevant part of their

working time merely traveling from one location to another within the hospital. For
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Figure 1: Site plan of the Hannover Medical School, Source: Medizinische Hochschule
Hannover (MHH)

those reasons, the highly heterogenous transportation processes are a major concern in

hospital facility layout planning.

As a practical example regarding organizational and operational aspects, we con-

sider the case of the MHH, one of Germany’s leading medical schools. Figure 1 presents

the spatial dimensions and complexity of this maximum-care hospital. A computer-

ized dispatching system for transportation jobs was installed at the MHH several years

ago. The archive of those past transportation jobs can be used to determine the trans-

portation intensity between different OUs, such as functional departments or wards. In

Oucherif (2012, p. 7), almost 630,000 records of patient transportation jobs for the

12-month period from May 2011 to April 2012 were analyzed to determine those trans-

portation intensities. In addition, data on the currently used space of the different OUs

were collected in Oucherif (2012). This real-world dataset is useful for highlighting the

organizational and operational aspects of the HFLP due to its size and complexity.
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This paper does not seek to reoptimize the current MHH layout. If the MHH build-

ings were to be rebuilt today given the MHH’s current scale and scope, a more compact

and logistically efficient structure of the buildings would most likely be chosen. Instead,

we address the general HFLP at a more abstract level and develop a decision support

system. However, to evaluate this system, we use the MHH dataset to create a test bed

by combining it with a fictitious system of buildings.

A decision support system for hospital layout planning must consider the following

factors:

• Organizational units differ with respect to their space requirements. To the ex-

tent possible, they should be locally concentrated in a compact manner to mini-

mize internal transportation processes.

• Some OUs may require particular locations or locations that have a specific rel-

evant feature. For example, the Emergency Department or Emergency Room

should be accessible by ambulances, and thus, an allocation at ground level is

typically necessary. Similarly, specific technical requirements may enforce or elim-

inate certain allocations of OUs to locations.

• There may be considerations that prohibit a direct neighborhood of two specific

units; for instance, patients that recently underwent a surgical procedure should

be protected from infectious areas. In contrast, there may be cases where a direct

neighborhood is highly desirable for operational purposes. For example, medical

personnel may have to move routinely back and forth between a specific medical

department’s functional installations and the department’s wards.

We address all these features in the model system presented below. One might argue

that this facility layout problem cannot be solved in reality, as the transportation data

will only be available if the hospital has already been in operation for some time, i.e.,

after all the facility layout decisions have been made. Although this is generally true,

it is possible to establish standardized datasets for transportation processes of different

types of hospitals. Analyzing a dataset for a hospital with a similar organizational struc-

ture to obtain an estimate of the future transportation volume may still be helpful for

determining reasonable layout proposals for a new or redesigned hospital.

2.2 Related literature

In the research literature, the general facility layout problem is mainly discussed with

respect to manufacturing systems. However, the related methodology is highly relevant
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for the allocation of departments in hospitals. Drira et al. (2007) have recently con-

ducted a literature review on facility layout problems. The authors classify the existing

literature according to numerous criteria, such as a static versus dynamic problem set-

ting, continuous or discrete decision variables, and the type of problem formulation.

Levary and Kalchik (1985) summarize the main characteristics of the most frequently

used solution procedures. Kusiak and Heragu (1987) present and compare different

formulations of the facility layout problem and corresponding algorithms to solve the

presented problem. Hassan (1994) have conducted a literature review focused on the

machine layout problem.

Facility layout problems typically contain a QAP. Loiola et al. (2007) have surveyed

the literature on the QAP. The authors present selected QAP formulations and discuss

theoretical resources used to define lower bounds for exact and heuristic algorithms.

Burkard et al. (1991) summarize the main QAPs and establish a library of problem

instances for the QAP. Many studies on the QAP are related to fields other than the hos-

pital layout problem. For instance, Steinberg (1961) addresses the problem of placing

computer elements on the mainboard, Hillier and Connors (1966) examine the problem

of assigning locations to indivisible facilities and its relation to the QAP, and Burkard

and Offermann (1977) consider the allocation of keys on a computer keyboard. Many

heuristics have been proposed for the QAP because the QAP is one of the most difficult

problems in the NP-hard class and has a wide area of applications. Hahn et al. (2010)

and Hahn et al. (2012) used the reformulation-linearization technique to solve QAP.

Additional methods have been proposed by Glover and Woolsey (1974), Armour and

Buffa (1963), Foulds (1983), Adams and Sherali (1986), and Oral and Kettani (1992).

Heragu and Kusiak (1991) present two linearizations for the facility layout problem.

Bozer et al. (1994) develop an approach to consider facilities with multiple floors by

extending an existing facility layout algorithm. Bozer and Meller (1997) compare ba-

sic modeling approaches for the facility layout problem. Barbosa-Póvoa et al. (2001)

propose a mixed-integer linear model to find the optimal two-dimensional layout. In a

subsequent study, Barbosa-Póvoa et al. (2002) extend their model to consider a three-

dimensional space.

A relatively limited body of research has been published with respect to layout plan-
ning in hospitals. Elshafei (1977) formulates the problem of locating hospital depart-

ments as a QAP to minimize the total distance traveled by patients. Hahn and Krarup

(2001) outline the history of a facility layout problem that arose in 1972 when designing

another large German Hospital, Klinikum Regensburg. The problem was formulated as

a QAP, solved in 1972, and included in the QAP library of Burkard et al. (1991). Butler
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et al. (1992) consider the facility layout and bed allocation problems in a two-stage ap-

proach. In the first stage, an optimization model for the facility layout is solved, and in

the second stage, a simulation-optimization procedure for bed allocation is performed.

Vos et al. (2007) evaluate a hospital building design with the focus on ensuring that the

design supports the efficient and effective operating of care processes. The authors eval-

uate different scenarios in a discrete-event simulation. Hahn et al. (2010) formulate the

multi-story space assignment problem, which is particularly relevant in hospital layout

planning. However, we are not aware of a hospital facility layout planning approach

that can handle large and heterogeneous dataset as well as the numerous real-world

aspects of the problem, as reported in Oucherif (2012).

3 A hierarchical modeling approach

3.1 Conceptual starting point: The QAP

To develop a formal decision support system for the HFLP, we assume that a planned

or existing building or system of buildings is given. Within these buildings, spatial

areas that will house OUs must be identified. In our context, OUs are in particular

medical departments with their functional installations and wards. The spatial areas are

divided into locations. The distances between different locations k and l are denoted as

dkl. Similarly, transport processes with a number mi j of transports per time unit occur

between different OUs i and j (in either direction). It is sufficient to consider transport

relations with i < j because the direction of the traffic is not relevant.

A natural starting point to formally model the HFLP is the QAP (see Koopmans and

Beckmann (1957)). The QAP aims at assigning OUs i, j ∈I to locations k, l ∈K such

that each OU is assigned to exactly one location, whereas each location houses at most

one OU, and the total transport cost is minimized. The central decision variable Xik

equals 1 if OU i is assigned to location k and 0 otherwise. The QAP can be stated as

follows:

Min Z =
I−1

∑
i=1

I

∑
j=i+1

K

∑
k=1

K

∑
l=1
k 6=l

dkl mi j Xik X jl (1)
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s.t.
I

∑
i=1

Xik ≤ 1 k ∈K (2)

K

∑
k=1

Xik = 1 i ∈I (3)

Xik ∈ {0,1} i, j ∈I ; k, l ∈K (4)

The QAP is a quadratic problem due to the product Xik ·X jl of decision variables in the

objective function. It can be linearized by introducing a new variable X̃ik jl. This binary

variable equals 1 if OU i is assigned to location k and OU j is assigned to location l. It

substitutes the product Xik ·X jl in the objective function, which subsequently becomes

Min Z =
I−1

∑
i=1

I

∑
j=i+1

K

∑
k=1

K

∑
l=1
k 6=l

dkl mi j X̃ik jl. (5)

The following additional constraint ties the Xik variables to the X̃ik jl variables:

Xik +X jl− X̃ik jl ≤ 1 i, j ∈I ; i < j;k, l ∈K ;k 6= l (6)

With this linearization, a standard mixed-integer linear programming (MILP) solver

can theoretically solve the QAP. However, the problem is still difficult to solve for even

small instances. The number of variables X̃ik jl and the number of constraints (6) rapidly

become prohibitively large when addressing even relatively small problem instances. In

addition, the QAP does not begin to approach the real-world complexities of allocating

the OUs of a hospital. However, the QAP is a useful conceptual starting point to formally

consider those complexities in a hierarchical problem decomposition.

3.2 Hierarchical problem decomposition

Large maximum-care hospitals are often distributed over various buildings, each of

which may have several levels. Thus, the distances between two locations k and l have

both a horizontal and vertical component (dH
kl and dV

kl, respectively). These components

are defined by floors and the location of elevators or staircases, as illustrated in Fig-

ure 2. The distances reflect the structure of the given or planned building(s) and are

exogenously given in our modeling perspective.

In the basic version of the QAP presented in Section 3.1, we assume that each loca-

tion can theoretically house each of the OUs and that each OU is assigned to a maximum
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of one location. In reality, the space requirements of the different OUs of a hospital can

differ by a factor of 10, i.e., a relatively small fraction of the OUs can account for a rela-

tively large fraction of the total space requirement. Thus, a large OU may require mul-

tiple (possibly adjacent) locations, whereas other locations may house multiple small

OUs. Thus, we assume that an OU i ∈ I can consist of multiple OU elements e ∈ Ei.

The space requirement aie for such an OU element e of OU i should not exceed the size

of those locations Ki that are candidates to house the respective OU. The analysis in

Oucherif (2012) for the MMH indicates that a large number of the OUs are relatively

small with respect to their space requirements in relation to the available space at the

locations. For each of those OUs, only one such OU element e needs to be defined

because a single location suffices to house that OU.

Furthermore, the transportation tasks differ considerably with respect to the tolera-

ble transportation time. For non-critical transport types, such as the transport of used

beds, a long transportation time due to a large distance only leads to high transporta-

tion costs for the required personnel. However, a long travel time between, for instance,

the helicopter landing pad and cardiology department may be extremely undesirable.

Consider the case of transporting an urgent patient with a myocardial infarction (“heart

attack”). For this type of transport, there may be a maximum tolerable travel time. Due

to this reason, different types b of transport with maximum travel times tmax
b must be

defined. The different transport types b may also differ with respect to the horizon-
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tal and vertical transportation speeds (vH
b and vV

b , respectively). These are examples

of real-world complexities that must be reflected in a potentially useful decision sup-

port system, in addition to the problem aspects already outlined in Section 2.1. These

aspects complicate the HFLP from both managerial and mathematical perspectives.

Thus, we developed a two-stage decision support system based on the principles

of aggregation and decomposition to reduce the conceptual complexity and numerical

burden of proposing a layout.

We assumed that each of the OUs to be allocated represents an aggregation of objects

that are similar in function and structure and that have tight internal organizational

ties. For example, several wards belonging to the same medical department may be

aggregated to a single care area. This aggregation reduces the number of OUs that have

to be considered. Furthermore, we assume that a location is a larger spatial area, such

as the entire floor of a larger building. Each of these locations could house multiple

OUs. Thus, this aggregation approach limits both the number of OUs and locations to

be considered.

Figures 3 and 4 illustrate the concept of the proposed approach. In the Stage I
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problem treated in Figure 3, we assign the elements e ∈ Ei of all the OUs i ∈ I to the

locations k ∈K . For example, OU 3 consists of two elements, 3/1 and 3/2, which are

assigned to locations 6 and 5, respectively. Whereas OU element 3/1 is sufficiently large

that it requires an entire floor of the right building, OU element 3/2 is substantially

smaller and can hence share a floor with OU elements 5/1 and 6/1 in location 5. This

Stage I problem contains, among other components, a QAP. Due to the reduced number

of aggregate objects, solving this problem is demanding but feasible. In addition to or

as a variation of the QAP, we make the following additional assumptions for the Stage

I problem:

• A location has a spatial capacity constraint and can host multiple OU elements.

• There may be upper limits on the desired travel time for a given type of transport.

• If an OU consists of multiple elements, these elements should be assigned to im-

mediately adjacent locations.

• It should be possible to impose a limit on the total dispersion of multi-element

OUs over different locations.

The Stage II problem then considers the Stage I planning results and treats each

location separately. The aim of this stage is to place the possibly multiple OU elements

assigned to a location within that location. To explain the approach, we consider the

case of location 5, to which the OU elements 3/2, 5/1, and 6/1 were assigned, in Fig-

ure 4. We assume that the spatial area of each location can be divided into rectangular

raster elements, which may reflect the technical construction of the building. The space

requirement for the possibly multiple elements e of OU i that are assigned to the given

location is converted into the number qi of raster elements required for those elements

of OU i. In Figure 4, eight raster elements are required for OU elements 3/2 and 5/1,

whereas six raster elements are required for OU element 6/1. In the Stage II problem,

these required raster elements must be placed within the currently considered location

5. In this problem, we aim to cohesively place the raster elements within each location.

Furthermore, the OUs that need to use elevators most often should be placed close to

the elevators. These OUs exhibit high traffic intensity to and from OUs at other loca-

tions. The following two sections describe the models for both stages in detail. The

models contain elements developed in Böhme (2013).
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Table 1: Notation for the Stage I model

Indices and sets
b ∈B Transport types b = 1, . . . ,B
i, j ∈I Organizational units (OU) i, j = 1, . . . , I
e, f ∈ Ei Elements of OU i
k, l ∈K Locations k, l = 1, . . . ,K
Ki ⊆K Locations that can house the elements of OU i
Nk ⊆K Locations that are immediate neighbors of location k

Parameters
aie Space requirement of element e of OU i
Ak Available space at location k
dH

kl , dV
kl Horizontal/vertical distance between locations k and l

dcH
k , dcV

k Horizontal/vertical distance between location k and the spatial
center of the hospital

G Maximum aggregated number of additional locations used by
multi-element OUs

mie j f b Number of transports between element e of OU i
and element f of OU j for transport type b

Loc+i j =

{
1 if OE i and OE j must be assigned to the same location
0 otherwise

Loc−i j =

{
1 if OE i and OE j cannot be assigned to the same location
0 otherwise

pcb Penalty “cost” for exceeding the time limit for transport type b
tmax
b Maximum tolerable transport time for transport type b

vH
b Horizontal transport speed of transport type b

vV
b Vertical transport speed of transport type b

Variables

X I
iek =

{
1 if element e of OU i is assigned to location k
0 otherwise

X̃ I
iek j f l =


1 if element e of OE i is assigned to location k and

element f of OU j to location l
0 otherwise

Uiek j f lb Exceedance of the travel time limit

Yik =

{
1 if any element of OU i is assigned to location k
0 otherwise

Wi Number of locations housing at least one element of OU i
ZI Stage I objective function value (total transport workload)
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3.3 Stage I: Assigning elements of OUs to locations

With the notation given in Table 1, we now define the Stage I model as follows:

Min. Z =
I−1

∑
i=1

∑
e∈Ei

∑
k∈Ki

I

∑
j=i+1

∑
f∈E j

∑
l∈K j
l 6=k

B

∑
b=1

mie j f b

((
dH

kl
vH

b
+

dV
kl

vV
b

)
X̃ I

iek j f l + pcbUiek j f lb

)
(7)

subject to

I

∑
i=1

∑
e∈Ei

aieX I
iek ≤ Ak k ∈K (8)

∑
k∈Ki

X I
iek = 1 i ∈I ,e ∈ Ei (9)(

dH
kl

vH
b
+

dV
kl

vV
b

)
X̃ I

iek j f l ≤ tmax
b +Uiek j f lb i, j ∈I , i < j,e ∈ Ei,k ∈Ki, f ∈ E j, l ∈K j,

k 6= l,b ∈B (10)

X I
iek = X I

j f k i, j ∈I ,k ∈Ki,Loc+i j = 1,e ∈ Ei, f ∈ E j (11)

X I
iek +X I

j f k ≤ 1 i, j ∈I ,k ∈Ki,Loc−i j = 1,e ∈ Ei, f ∈ E j (12)

X I
iek +X I

j f l− X̃ I
iek j f l ≤ 1 i, j ∈I , i < j,k ∈Ki, l ∈K j,k 6= l,

e ∈ Ei, f ∈ E j (13)

X I
iek ≤ X I

i,e+1,k + ∑
l∈Nk∩Ki

X I
i,e+1,l i ∈I ,e ∈ Ei,e < |Ei|,k ∈Ki (14)

∑
e∈Ei

X I
iek ≤ |Ei| ·Yik i ∈I , |Ei|> 1,k ∈Ki (15)

∑
k∈Ki

Yik =Wi i ∈I , |Ei|> 1 (16)

∑
i∈I
|Ei|>1

(Wi−1)≤ G (17)

X I
iek, X̃iek j f l,Yik ∈ {0,1} i, j ∈I ,k ∈Ki, l ∈K j,e ∈ Ei, f ∈ E j (18)

Wi ∈ {0,1,2, ....} i ∈I (19)

The objective function (7) aims to minimize the total transportation time consider-

ing both the distances between locations and the number of transports between OUs.

It further penalizes any exceedance of the travel time limit. Constraint (8) is the spa-

tial capacity constraint for the locations. Constraint (9) is used to assign each element

e ∈ Ei of OU i to one location out of the set Ki that can house that OU. Any exceedance

of the maximum tolerable travel time is detected in constraint (10). When a pair (i, j)
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of OUs must be assigned to the same location, this requirement is enforced for all re-

spective elements e and f via constraint (11). Similarly, constraint (12) prohibits the

joint assignment of the elements of two incompatible OUs to the same location. In con-

straint (13), the linearization is performed as in (5). The use of the decision variable

X̃ik jl induces symmetry in the model because X̃ik jl = 1 describes the same decision as

X̃ jlik = 1. Thus, the definition domain in constraints (10) and (13) and the summation

in objective function (7) can be restricted to pairs (i, j) with i < j. If an OU i consists of

multiple elements e, constraint (14) ensures that those elements are assigned to either

the same location i or an immediate neighbor location l ∈Nk. This constraint enforces a

connected placement of the possibly multiple elements of an OU. Constraints (15) and

(16) determine the number of locations occupied by multi-element OUs. Constraint

(17) limits the extent to which the elements of multi-element OUs are spread over mul-

tiple locations.

Because the Stage I problem contains a computationally challenging QAP, we de-

scribe a heuristic math programming algorithm to solve the problem below.

3.4 Stage II: Detailed positioning within a location

The model for the Stage II problem is solved for each location k separately. The location

is divided into uniformly sized raster elements r ∈Rk. The space requirement for all el-

ements e ∈ Ei of OU i ∈I k assigned to location k is expressed in terms of the number of

raster elements qi needed for elements of OU i that must be placed within that location.

Two often conflicting objectives are considered in the model. We want to place those

OUs that have heavy traffic to and from other locations l 6= k close to the elevators. This

preference is controlled via a binary assignment variable X II
ir , which indicates whether

raster element r is used by an element of OU i. However, we also want to achieve com-

pact allocations of those raster elements used by a particular OU i∈I k. To this end, we

use the integer variable Yir, which denotes the number of raster elements immediately

next to raster element r that house the same OU i. Maximizing this quantity induces

a compact allocation of the OUs within the currently considered location. Using the

notation shown in Table 2, detailed positions for OUs within the locations can be found

via the following model:

Minimize ZII = α ∑
i∈I k

∑
r∈Rk

mLi f t
i dLi f t

r

qi
X II

ir − ∑
i∈I k

∑
r∈Rk

Yir (20)
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Table 2: Notation of the Stage II model for location k

Indices and sets

i ∈I k Organizational units i with elements e ∈ Ei assigned to location k
r, p ∈Rk Raster elements of location k
Nr ⊆Rk Set of raster elements that are immediate neighbors of raster ele-

ment r

Parameters

α Weight and normalization factor
dLi f t

r Distance between raster element r and the nearest elevator
mLi f t

i Number of transports between OU i and OUs at other locations
(and hence via the elevator)

qi Number of raster elements required for OU i ∈I k

Variables

X II
ir =

{
1 if raster element r is used by OU i
0 otherwise

Yir Number of neighbors of raster element r that are used by OU i
ZII Objective function value

subject to

Yir ≤ qi ·X II
ir i ∈I k,r ∈Rk (21)

Yir ≤ ∑
p∈Nr

X II
ip i ∈I k,r ∈Rk (22)

∑
r∈Rk

X II
ir = qi i ∈I k (23)

∑
i∈I k

X II
ir ≤ 1 r ∈Rk (24)

X II
ir ∈ {0,1},Yir ∈ {0,1,2,3, ...} i ∈I k,r ∈Rk (25)

In objective function (20), the transportation effort to the elevator(s) is minimized

and the internal compactness of the set of raster elements assigned to OU i is maximized

via the sum of the neighborhood relationships. The parameter α serves two purposes.

First, it harmonizes the different dimensions of the two components of the objective

function. Second, it balances the compactness of the solution against the transportation

effort to the elevator(s). Constraint (21) allows for positive values of the variable Yir
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only if OU i uses raster element r. The number of raster elements in the immediate

neighborhood of raster element r that are also used by OU i is considered in constraint

(22) through the optimization direction of the objective function. Each OU i seizes the

required number of qi raster elements using equation (23). Constraint (24) prohibits

the assignment of more than one OU to each raster element r.

The Stage II problem can easily be solved for each location k in isolation using stan-

dard mixed-integer linear programming software. The solution may be subject to man-

ual fine-tuning by human planers considering additional aspects that are not considered

in the Stage II model.

4 A fix-and-optimize heuristic for the Stage I problem

4.1 Finding an initial feasible solution

The Stage I problem presented in Section 3.3 is a computationally challenging NP-hard

optimization problem because it includes the QAP as a special case (see Garey and

Johnson (2009, p. 218)). We developed an iterative improvement heuristic to solve

the problem. Below, we first describe two different approaches to construct an initial

solution. We then demonstrate how this initial solution can be improved iteratively.

The Stage I problem is difficult due the “quadratic component” reflected in the possi-

bly large number of X̃iek j f l variables. Thus, we construct the initial solution by avoiding

this variable and optimize over the Xiek variables only, which also forces us to omit

constraints (10) and (13) temporarily. In other words, we start by solving a relatively

straightforward assignment problem. The two different methods of constructing a fea-

sible starting solution differ slightly with respect to the objective function. The first

approach (denoted as approach “A”) that appears to suggest itself is to place the ele-

ments of heavy-traffic OUs close to the spatial center of the layout and the remaining

low-traffic OUs somewhere in the periphery. This solution can be modeled very easily

based on the horizontal and vertical distances of location k to this spatial center of the

hospitals (dcH
k and dcV

k , respectively) using the following objective function:

Minimize ZA = ∑
i∈I

∑
e∈Ei

∑
j∈J
j 6=i

∑
f∈E j

∑
k∈Ki

B

∑
b=1

mie j f b

(
dcH

k
vH

b
+

dcV
k

vV
b

)
X I

iek (26)

The objective function (26) is linear. Minimizing this function subject to restrictions (8),

(9), (11), (12), and (14) to (19) is less computationally demanding than solving the
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original Stage I model presented in Section 3.3. This solution leads to a first feasible

assignment of OUs i to locations. For this or any other solution, the non-zero values of

the X̃iek j f l variables of the original Stage I model can be easily calculated from the given

values of the X I
iek variables. Furthermore, any exceedance Uiek j f lb of the travel time

limit tmax
b can be easily determined via constraint (10). Hence, one can easily determine

the objective function value of the original Stage I model for the starting solution. A

second approach “B” to find a starting solution is to use the same weight for all decision

variables X I
iek according to the following modified objective function:

Minimize ZB = ∑
i∈I

∑
e∈Ei

∑
j∈J
j 6=i

∑
f∈E j

∑
k∈Ki

B

∑
b=1

X I
iek (27)

In preliminary tests, approach A, with the objective function (26), led to a better initial

solution than approach B, with the objective function (27), for the initial (QAP-type)

Stage I problem. Furthermore, use of the initial solution from approach B can also be

more time consuming. However, this solution tends to lead to better final solutions, so

we used and compared both approaches below. Regardless of which approach is used,

the result is an initial set of values for the current (incumbent) solution. This set is

stored as the parameter XSI
iek, i.e., we perform an initial assignment

XSI
iek := X I

iek, i ∈I ,e ∈ Ei,k ∈Ki (28)

to remember the current solution.

4.2 Iterative improvement of the feasible solutions

We use an iterative fix-and-optimize heuristic decomposition to improve the incumbent

solution (see Sahling (2010) or Helber and Sahling (2010)). In this approach, we first

split the set of OUs I into two subsets I opt and I fix = I \I opt. The set I fix denotes

all OUs for which the allocation of their elements e ∈ Ei remains fixed to their XSI
iek

values in the current Stage I subproblem. Hence, only the location of elements of OUs

within the set I opt can be optimized. Similarly, we split the set of locations K into

two subsets, K opt and K fix = K \K opt. To this end, we also add the following two

constraints to the Stage I model as formulated in Section 3.3:

X I
iek = XSI

iek i ∈I fix,e ∈ Ei,k ∈Ki (29)

X I
iek = XSI

iek i ∈I ,e ∈ Ei,k ∈K fix (30)
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/* Part I: Determine an initial feasible solution */
Maximize (26) or (27) subject to (8), (9), (11), (12), (14) - (19)
Set XSI

iek := X I
iek to store incumbent solution

Determine initial objective function value ZI,best via (7) and (10) for the
incumbent solution
/* Part II: Improve feasible solutions via partial optimization */
Set RoundsWithoutImprovement := 0
while RoundsWithoutImprovement < LimitRoundsWithoutImprovement and
TimeLimitNotExceeded do

RoundsWithoutImprovement := RoundsWithoutImprovement +1
/* Optimize over the random selection of OUs and all locations */
Determine the random set I opt ⊆I with #OUopt elements
Set I fix := I \I opt

K fix := {}
Solve the augmented Stage I model (7) - (19), (29), and (30)
if ZI < ZI,best then

Set XSI
iek := X I

iek to store the improved solution
Set RoundsWithoutImprovement := 0
Set ZI,best := ZI

end
/* Optimize over the random selection of locations and all OUs */
Determine the random set K opt ⊆K with #Locopt elements
Set K fix := K \K opt

I fix := {}
Solve the augmented Stage I model (7) - (19), (29) and (30)
if ZI < ZI,best then

Set XSI
iek := X I

iek to store the improved solution
Set RoundsWithoutImprovement := 0
Set ZI,best := ZI

end
end

Algorithm 1: Fix-and-optimize algorithm for the Stage I problem
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After finding an initial solution, as described in Section 4.1, we first set K fix := {} and

determine a random set I opt and a corresponding set I fix. In the next step, we solve

the Stage I problem augmented by constraints (29) and (30), which may lead to an

improved solution. We then optimize over the locations. To this end, we set I fix := {}
and determine a random set K opt as well as a corresponding set K fix. We again solve

the Stage I problem augmented by constraints (29) and (30). The process is repeated

until no improvement is obtained over a specified number of consecutive iterations. The

number of X̃iek j f l variables in each of the augmented Stage I problems is reduced con-

siderably by adding constraints (29) and (30). Any solution to the augmented problem

is also a solution to the original Stage I problem, although the objective function value

of the augmented problem is only an upper bound on the optimal objective function

value of the Stage I problem.

The detailed description of the procedure is presented in Algorithm 1. The behav-

ior of this algorithm is controlled through the numbers #OUopt = |I opt| and #Locopt =

|K opt| of OUs and locations over which we optimize simultaneously within the sub-

problems. The behavior of the algorithm is also controlled by the stopping conditions.

We stopped the algorithm when a time limit of two hours was exceeded or when 100

consecutive iterations of the “while”-loop in Algorithm 1 did not lead to an improved

solution. The solution quality and computation times increase as the values of #OUopt

and #Locopt and the number of repetitions increase. The algorithm was implemented

in GAMS 24.0.1, and we used CPLEX 12.5.0.0 to solve the models numerically. We

used the CPLEX MipStart feature to start each optimization with the current solution

to avoid unnecessary computations. In the CPLEX preprocessing step, a large fraction

of the rows and columns of the matrix can typically be eliminated due to constraints

(29) and (30). Thus, the small remaining sub-problems can be solved to optimality

more rapidly, provided that the numbers #OUopt and #Locopt are sufficiently small. The

algorithm terminates with a sub-optimal solution of the original problem (without the

constraints (29) and (30)).

5 Case study for a fictitious building based on real-world

organizational data

To evaluate the developed approach, we tested it on the real-world dataset from the

MMH, Germany (see Figure 1). In Oucherif (2012), approximately 630,000 records for

patient transportation jobs between May 2011 and April 2012 are analyzed to deter-
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Figure 5: Schematic design of a hypothetical hospital building

Table 3: Aggregated description of the test case

Object type Number Size range [m2] Total size [m2]
Wards 63 [245 ; 1,176] 37,779
Functional units 42 [49 ; 6,517] 44,051
Locations (Building C) 2 6,762 13,524
Locations (other) 26 3,381 87,906

mine the number of transports between any two of its OUs. In addition, the current

space requirements of those units had been determined. With respect to the locations

housing the different OUs, we decided against attempting to hypothetically relocate

them within the MHH building structure for several reasons. First, we observed that

modern maximum-care hospital buildings tend to be designed in a more compact man-

ner than the one shown in Figure 1 for the MHH. Second, the current layout of the

MHH reflects its history of growth and development rather than a coherent design from

a logistical perspective. Finally, it would be difficult to divide this aged structure into

locations for planning purposes and determine distances in a transparent manner. Thus,

we designed the hypothetical hospital building shown in Figure 5. Its 28 locations re-

flect entire floors of specific buildings. Examples of this type of connected multi-level

buildings include the General Hospital in Vienna, Austria, or the university hospital of

the Martin-Luther-Universität Halle, Germany.

Table 3 provides the aggregated features of the dataset. The number of OUs (both

wards and functional units, such as “Diagnostic imaging” or ”Accident and Emergency

Department”) exceeds the number of locations considerably. Thus, a typical location

has to house (elements of) several OUs. However, some OUs are sufficiently large that

they must be split up into multiple elements to be allocated to a location.
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Figure 6: Development of the Stage I objective function value over time

We used an Intel i7-2600 PC with four cores, 3.4 GHz, and 16 GB running under

Windows 7, 64 bit, for our computations. The Stage I problem (as formulated in Sec-

tion 3.3) could not be solved directly for this dataset. Due to the high number of X̃ I
iel j f k

variables, the size of the matrix GAMS provided to CPLEX was in the range of giga-

bytes, and the initial linear programming relaxation for a branch-and-bound process

required approximately 1 h. However, an initial solution could be easily obtained us-

ing the approaches explained in Section 4.1, in which we omitted the large number of

X̃ I
iel j f k variables that reflect the QAP aspect of the Stage I problem. The fix-and-optimize

heuristic presented in Section 4.2 was successfully able to iteratively improve the initial

solutions from either approach A or B in Section 4.1.

Figure 6 presents a typical development of the objective function value as the solu-

tion was iteratively improved. The graph illustrates that the idea of approach A to place

heavy-traffic OUs close to the center of the hospital leads to a better initial solution

than the arbitrary assignment via approach B for this example. However, the solution

from approach B outperforms approach A after several iterations. We observed this be-

havior frequently and conjecture that beginning with an essentially random allocation

avoids premature convergence to a local optimum. The graph also illustrates that the

difference in the transportation effort between the initial and improved solutions can be

substantial. Unfortunately, the optimal objective function value or any other reference
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Table 4: Parameter settings and results for Stage I

Run Approach #Locopt #OUopt OFV
1 A 4 16 492,490
2 B 4 16 467,857
3 A 6 20 508,161
4 B 6 20 492,527
5 A 8 24 469,230
6 B 8 24 465,624
7 A 10 28 475,134
8 B 10 28 471,731
9 A 12 30 515,625

10 B 12 30 491,596
11 B 5 10 497,096
12 B 3 9 470,803
13 B 8 20 467,812
14 B 10 20 474,644
15 B 8 28 474,931
16 B 7 22 466,885
17 B 7 24 481,094
18 B 4 24 499,457
19 B 7 23 479,736
20 B 8 26 461,946
21 A 8 26 476,076

methodology with which to compare our results are unavailable.

In Table 4, we report a series of 21 different runs of the fix-and-optimize algorithm

for the Stage I problem. We experimented with approaches A and B to determine an ini-

tial solution and different numbers of locations and OUs over which to optimize within

each of the sub-problems of the fix-and-optimize heuristic. In each case, the total time

limit for the Stage I algorithm was set to two hours. The time limit to solve sub-problems

to optimality was set to 60 seconds. The results for runs 1 to 10 indicate that the initial

solution of approach B consistently outperforms that of approach A. Furthermore, it is

sufficient to limit the optimization within each subproblem to a relatively small number

of 7 or 8 OUs, provided that the number of locations is relatively large.

We then attempted to solve the Stage II problem using the best solution obtained

for the Stage I problem. In the formulation of the model for the Stage II problem, we

used the parameter α to balance two competing objectives. One objective was to place

the required raster elements for an OU element close to the elevator if the respective

OU element will use that elevator often The other objective was to achieve a cohesive

assignment of the raster elements. Values of α between 0.0001 and 0.00001 and a
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Figure 7: Selection of results for Stage II

computation time limit of 1,800 seconds were required to achieve adequate and largely

cohesive solutions.

In Figure 7, we present a selection of results for four out of the 28 different loca-

tions of our hypothetical hospital. The results are driven by a logistical perspective on
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Figure 8: Development of the optimality gap for selected Stage II models

the problem. This perspective suggests a structure in which wards (indicated by station

numbers) and functional units (indicated by abbreviations) are mixed within the loca-

tions. If such a structure is not desired, it can easily be avoided by adjusting the set Ki

of those locations, to which the elements of an OU i can be assigned at all.

Figure 8 illustrates how the optimality gap for selected Stage II models evolved

over time during the first 60 seconds of the optimization. Whereas models for certain

locations could be solved to optimality rather quickly, others were more difficult to solve.

We stopped the optimization for a Stage II problem of a single location when a time limit

of 1,800 seconds was reached without finding an optimal solution. The output of the

Stage II models must be considered as a starting point for a manual fine-tuning process.

The most important output of the proposed planning system is the solution to the

Stage I problem. The results presented in Figure 6 and Table 4 clearly indicate that

due to the highly inhomogeneous traffic between the different OUs of a maximum-

care hospital, the layout can have a tremendous impact on the resources required for

transportation processes. Establishing an efficient layout is clearly a non-trivial task.

The modeling system presented here can support a planner facing that task.
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6 Conclusion

We have analyzed and modeled the problem of assigning the different OUs of a large

maximum-care hospital within a given building structure that is sufficiently large to host

those units. We considered the space requirements and other real-world aspects with

the aim of obtaining a solution for the layout problem that minimizes the transportation

effort. To this end, we developed a hierarchical modeling system and a decomposition

algorithm that enabled us to solve problem instances with real-world characteristics de-

spite the computationally challenging underlying QAP. The computational burden of the

approach appears to be acceptable given the enormous planning effort to design such a

large maximum-care hospital. Although the proposed approach is neither intended nor

suited to fully automate the process of generating a solution for the layout problem, it

can systematically support this process.
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