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Abstract

Under the Basel II regulatory framework non-negligible statistical problems arise

when backtesting risk measures. In this setting backtests often become infeasible

due to a low number of violations leading to heavy size distortions. According to

Escanciano and Olmo (2010, 2011) these problems persist when incorporating esti-

mation and model risk by adjusting the asymptotic variance of the test statistics. In

this paper, we analyze backtests based on hit and duration sequences in a univari-

ate framework by running a simulation study in order to identify the problems of

backtests that examine the adequacy of Value at Risk measures. One main finding

indicates that backtests of all classes show heavy size distortions. These problems for

the relevant Basel II set-up, however, cannot be alleviated by modifying backtests

in a way that accounts for estimation risk or misspecification risk.
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1 Introduction

Backtesting provides an instrument to analyze whether a model used for calculating risk mea-

sures is accurate. It is at the core of supervisory activity regarding the resilience of financial

institutions in alleviating the impact of financial crisis as the accuracy of risk measures has

implications for the solvency capital that financial institutions have to calculate.

BCBS [1996] regulations state that the calculation of a financial institutions’ market capital

requirement for preventing losses resulting from adverse market conditions be the maximum

of either the 0.01% Value at Risk (VaR) or the average VaR reported during the previous 60

days multiplied by a factor depending on the sum of VaR violations during the reporting period

(traffic-light approach). Thus, the accuracy of the VaR model is closely linked to the regulatory

framework. An accurate VaR model satisfies two properties as defined by Kupiec [1995] and

Christoffersen [1998].

Firstly, the unconditional coverage property, formally

Pr(I(α) = 1) = α, (1)

where {It} is the hit sequence indicating if a violation occurred or not, claims that the probability

of violations during the reporting period equals the α level set for VaR calculation. The VaR

model is deemed inaccurate in the sense of failing to be able to account for the incurred risk if the

number of violations exceeds the number of expected losses. The risk model is too conservative

if the VaR model yields less violations than to be expected.

A second claim is the independence of elements of the hit sequence. If the violations occur in

a cluster, the financial institution might not be able to tackle the losses in contrast to a situation

where the violations are spread out evenly over the reporting horizon. An accurate VaR model

is therefore characterized by satisfying the property of unconditional coverage as well as the

independence property,

It(α)
iid∼ Ber(α), (2)

ie the hit sequence is identically and independently distributed with probability α.

Backtests are statistical tests designed for determining the accuracy of VaR models. While

several tests have been proposed for each of the two properties, joint tests determine whether

the VaR model is entirely accurate in the sense of fulfilling both (1) and (2). However, joint

tests are not to be gauged as being universally preferable to mono-property tests as the ability

to detect the violation of one of the two properties is decreasing (Campbell [2005]).

A type I error arises when an accurate model with a coverage of 99% is erroneously rejected.

When the VaR model is inaccurate with lower coverage, eg 2% type II error is the probability that



2

the inaccurate model is not rejected. If the power of the backtest is low, then the probability

of classifying an inaccurate model as accurate (not rejecting the null) is comparatively high.

Backtests should not be over- or undersized and possess high power. In a Monte Carlo study

we analyze the problems of common backtest procedures. The main result of this paper will be

that even when accounting for model risk, regulation sets restrictions to backtesting.

The paper is organized as follows: the next section describes relevant backtesting categories.

It serves a starting point for further derivations of multivariate backtests which will be suggested

as a mean to overcome problems resulting from supervisory restrictions. In the third chapter we

conduct a Monte Carlo study and analyze the problems that arise when conducting univariate

backtests in the course of regulation aspects. Finally, the last section provides a conclusion.

2 Overview of backtests

Backtests can be distinguished into frequency-based as well as size-based tests. While the former

tests examine the sequence obtained from the exceedance of VaR above the realized profit and

losses series, the latter tests are constructed from the size of the exceedance conditioned on

the violations. As the regulatory framework is based upon the violations and not on their size,

size-based tests are relatively rare to be found in the literature due to regulatory constraints

(Lopez [1999]).

The most basic backtests for testing the unconditional coverage property, the time until first

failure (TUFF) test and its generalization, the proportion of failures (POF) test, were suggested

by Kupiec [1995]. As shown in Kupiec [1995] the simplicity of the TUFF test ignores the total

number of failures since the start of monitoring, the POF test should always be run to verify

potential loss estimates in place or in addition. In contrast to the TUFF framework, where only

the elapsed time until the first failure is considered, the POF uses the entire information. To

this (and all further analyses) consider a hit sequence {It}nt=1 of size n, where ∀t : It ∈ {0, 1},

n1 denotes the number of hits (ie It = 1) and n0 = n− n1 (ie n0 = ♯(It = 0)). The probability

of observing n1 hits in a sample of size n is given by the the probability function of the binomial

distribution,

Pr(♯(It = 1) = n1) =

(
n

n1

)
(1− α)n0 αn1 .

For the null hypothesis of the POF test, H0 : α = Π̂ with Π̂ = n1
n , the associated test is a

Likelihood Ratio (LR) test and its test statistics is given by

K = −2 log
(
L(α)/L(Π̂)

)
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where α denotes the failure probability under the null and L(·) is the corresponding Likelihood

function.

However, if the sample size is relatively small, both tests appear to have poor ability to distin-

guish between the underlying failure probability in the null hypothesis and failure probabilities

that are slightly higher (see Kupiec [1995]). Thus, these frameworks might not be adequate for

the analysis of the accuracy of VaR estimates covering only one trading year. Furthermore, a

frequently arising problem consists in the non-existence of violations during the reporting pe-

riod. This issue becomes most important when VaR models with a small failure probability are

evaluated. In these cases the Kupiec tests are not computable.

When testing the iid hypothesis of the hit sequence the autocorrelation of the sequence itself or

the equidistance of the time span between consecutive violations is examined. These tests require

complete specification of the alternative hypotheses in the sense that the way how violation

clusters occur has to be specified exactly. Autocorrelation-based tests can be constructed by

testing the autocorrelation structure in the hit sequence itself, {It}, or in the demeaned sequence,

{It − α}, which forms a sequence of martingale difference summands (Berkowitz et al. [2009]).

The test by Christoffersen [1998] was the first test of this kind. The basic idea behind this LR-

type test consists in the following comparison: If there is no dependence between two consecutive

observations, then the probability of monitoring no violation on the day after a violation took

place should be equal to the probability of monitoring no violation when no violation was

observed on the day before, too.

As in Kupiec [1995] the LR framework is used and built on Markov chains. The independence

of the observations of the hit sequence is tested under the null against the alternative of a

first-order Markov chain where the stochastic matrix

Π1 =

 π00 π01

π10 π11


represents the transition matrix and πi,j = P (It = j|It−1 = i) , i, j ∈ {0, 1} the transition

probabilities. Let nij be the number of observations with value i and previous value j. Then

the likelihood function for the hit sequence {It} yields

L(Π1) := L(Π1; {It}) = πn00
00 π

n01
01 π

n10
10 π

n11
11

This is the likelihood under validness of the alternative model while the likelihood for the null

model can be computed by considering the stochastic matrix

Π2 =

 1− π2 π2

1− π2 π2

 .
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Employing this model under the null it is easy to see that the independence of the hit sequence

is tested by this means since the rows have all the same entries. Under the null previous obser-

vations do not influence the probability of monitoring a violation. Matrix entries π2 represent

the probability of a violation and according to this the number of observations are aggregated

over index j as the past value j has no influence on the present value i, π2 = n01+n11
n00+n01+n10+n11

.

Thus,

L(Π2) := L(Π2; {It}) = (1− π2)
(n00+n10)πn01+n11

2

indicates the likelihood function under the null model.

Using L(Π1) and L(Π2) the LR test statistic for the Christoffersen test of independence is

given by

LR.IND = −2 log

(
L(Π1)

L(Π2)

)
which is χ2 distributed with one degree of freedom. Note that the Christoffersen [1998] test

provides no possibility for testing conditional coverage as LR.IND does not depend on the true

coverage probability α. A joint test for both testing the independence and the conditional

coverage property as well is provided below.

A problem which arises when using this backtest is that the Christoffersen test of independence

only examines for dependence between two consecutive observations. Campbell [2005] notes the

possibility that the probability of monitoring a violation today is not influenced by yesterday’s

observation but indeed could be influenced by prior observations.

Next to the test for proving independence of observations of the hit sequence Christoffersen

[1998] introduced a test of unconditional coverage, testing E[It] = α against its alternative

E[It] ̸= α. The joint test of conditional coverage and independence by Christoffersen [1998]

combines those tests to examine whether both properties of a VaR measure are jointly fulfilled.

The basic idea is as simple as for the independence test: First, if the unconditional cover-

age property is fulfilled, then n00+n10
n00+n01+n10+n11

= α must hold implying that the proportion of

observed violations matches with the hit probability α. Furthermore, as stated previously, the

probability of a non-violation following a previous hit equals the probability of a non-violation

following a previous non-violation, i.e. n00
n00+n01

= n10
n10+n11

, when the independence property is on

hand. Combining this, if the VaR measure fulfils the independence property, these probabilities

should match the total proportion of non-violations. Thus, provided the unconditional property

is valid, this leads to

n00
n00 + n10

=
n10

n10 + n11
=

n00 + n01
n00 + n01 + n10 + n11

= α
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which denotes the tested hypothesis under the null. In terms of the LR framework the likelihood

of the null of the unconditional coverage test is tested here against the alternative of the inde-

pendence test, forming a test of conditional coverage in effect. Thus, the test statistics results

in

LR.CC = −2 log

(
L(α)

L(Π1)

)
.

Christoffersen [1998] shows that the limiting distribution of the joint test is χ2(2). However,

even if running a joint test might seem always preferable over running the unconditional coverage

test and the independence test separately, one has to note that joint tests dismiss VaR measures

that violate only one property. As a result, the joint test may detect the violation of either

unconditional coverage or independence in less cases than a test which covers only one of these

properties. According to Campbell [2005] the employment of a test which comprises only a sole

property might be preferable when prior information about the VaR measure is available.

Escanciano and Olmo [2010] provide a test of unconditional coverage as well as a test of

conditional coverage. Their analysis bases on a Monte Carlo study, where the unconditional and

the conditional coverage tests are compared to a corrected version of these tests. The corrected

versions account for the impact of estimation risk arising when forecasts are carried out. All

tests are based on the demeaned hit sequence {It − α}.

The test of unconditional coverage is derived from the validity of E[It] = α under the null

model. Its test statistics is presented by

SP =
1√
n

P∑
t+R=1

(It − α)

and is predicated on the unconditional coverage tests by Kupiec [1995] and Christoffersen [1998].

It can easily be checked that 1
σSP converges against a standard normal distribution, where

σ =
√
α (1− α) is nothing else than the standard deviation of the binomial distribution for It.

This holds as SP marks the standardized version of {It} with

1

σ P− 1
2

SP =
1
P

∑P
t+R=1(It − α)

σ P− 1
2

=
1√
P σ

P∑
t+R=1

(It − α) −→ N(0; 1).

When adjusting σ for estimation risk it can be shown that the term of the estimated standard

deviation gets the form

σcorr =
(
α (1− α) + π Â V̂ Â′

)− 1
2

when the applied forecast scheme is set fixed and the underlying DGP is a GARCH process

of order (1,1). Note that Escanciano and Olmo [2010] also provide adjusted tests for rolling
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and recursive forecast schemes. For πÂV̂ Â′ = 0 the impact of estimation risk is asymptotically

irrelevant.

The parameter π = lim
n→∞

P
R denotes the relation between the length P of the out-of-sample

series and the first R observations which are used to estimate the process parameters. It is

quiet intuitive that for a large value of R in relation to P (and, thus, a relatively long in-

sample series) the influence of estimation risk becomes negligibly small. The matrix V is of

dimension (3 × 3) and contains the variances and covariances of the data generating process,

while A denotes a (3 × 1)-vector containing the first derivations of the DGP wrt the GARCH

parameters, respectively, and Â and V̂ denote consistent estimators for A and V . For a detailed

derivation of A and V see Appendix. The resulting test statistics

S̃P =
1√

nσcorr

n∑
t=1

(It − α)

follows an N(0; 1) distribution for n→ ∞.

The leadoff duration-based backtesting approach was proposed by Christoffersen and Pelletier

[2004] with the motivation to overcome the pitfall of small power of backtests existing by then

in small sample sizes and to uncover not only first order Markov dependencies as given by the

independence test by Christoffersen [1998]. This approach is justified by the authors by the

existence of no-hit periods which are either relatively short by reason of high market volatility

or relatively long when the market is calmed down. For this, we define di = ti− ti−1, i = 1, . . . , I

as the duration between the hit number i−1 and i occurring at dates ti−1 and ti (t ∈ {1, . . . , n}),

respectively.

To construct the test that emanates from the independence of the durations and thus, from

a correct specified VaR model, a memoryless probability distribution is needed to model the

durations. The only continuous distribution which accounts for a constant failure probability α

is given by the exponential distribution with the density

fExp(d) = α exp(−αd).

Note that the corresponding hazard function for the exponential distribution is λExp(d) = α

which can be interpreted as the probability of observing a violation at date d after the last hit

took place under the condition of having waited for d− 1 days is constantly α and independent

from d, ie memoryless. Thus, the null of independence checks whether the durations di come

from an exponential distribution with likelihood function

lnL(α) = n ln(α)− αd̄.
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For the alternative model a duration distribution with a non-constant hazard rate is required.

The simplest case represents the Weibull distribution with density

fW (d) = αb b db−1 exp(−(αd)b)

where b ∈ R>0 is a shape parameter. Note that the exponential distribution is nested by the

Weibull distribution for b = 1. The hazard rate can easily be obtained by

λW (d) = αb b db−1.

For b < 1 the Weibull hazard rate is decreasing. Transferred to financial market analysis a

decreasing λW indicates the tendency of the market to more extreme durations, i.e. periods of

relatively short or relatively long duration. The log-likelihood function under the alternative is

then given by

lnL(α; k) = lnλ+ ln k + (k − 1)
∑
i

ln di − λ
∑
i

dki .

Thereby, the pair of hypotheses can be reformulated in terms of the shape parameter b by

H0 : b = 1 versus H1 : b ̸= 1.

The null of independence can be tested by a Likelihood ratio test by evaluation of

LRDur = −2
lnL(α)

lnL(α; b)

which follows a χ2 distribution with two degrees of freedom.

In order to conduct the test, it is necessary to transform the hit sequence {It} into a duration

sequence {di}Ii=1. When enforcing the transformation it has to be kept into account that the

first and last duration is possibly censored, ie the duration of the first no-hit period is longer

than d1 as there is no data available before. Of course, the only exception consists in the case

that the first observation is already a hit. Likewise, the last duration could be longer than dI if

the last observation of {It} displays no hit.

In the above spanned framework it is possible to model dependencies of higher order than

the Markov-type test. However, this test contains no information about the exact order of

dependence, but could only be captured by the EACD framework by Engle and Russell [1998].

Another test of independence that does not exploit the hit sequence directly, but the properties

of the durations between consecutive hits, was recently proposed by Candelon et al. [2011]. The

major motivation behind the construction of this test is to overcome the drawback of low power

in realistic sample sizes when conducting backtests.

The idea behind this test is as follows: To each distribution which belongs to the Pearson

family of distributions an orthonormal polynomial can be associated. Orthonormal polynomials
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build a sequence of polynomials in which each two polynomials are pairwise orthonormal under

the L2-inner product. Considering the duration sequence {di} as being discrete, the orthonormal

polynomial associated with the geometric distribution can be employed.

Define the number of employed polynomials h, the orthonormal polynomial associated to the

memoryless geometric distribution follows the recursion

Mh =Mj+1(d;α) =
(1− β)(2j + 1) + β(j − d+ 1)

(j + 1)
√

(1− β)
Mj(d;α)−

j

j + 1
Mj−1(d;β)

for any j ∈ N0, ∀d ∈ N0, d := di ∀i ∈ {1, . . . , I} and initial values M−1(d;α) = 0, M0(d;β) = 1.

Using the method of moments to estimate the parameters of this polynomial regression efficient

and consistent estimates can be obtained. Thus, under the null of conditional coverage the

moment condition

H0 : E[Mj(d;α)] = 0

is tested. Here, the duration sequence follows a geometric distribution with hit probability α,

meaning that there is no correlation between two consecutive hits as the geometric distribution

provides the only memoryless discrete probability distribution.

In contrast to the duration-based test by Christoffersen and Pelletier [2004], this framework

allows to test separately for unconditional coverage and the independence hypothesis. The

reasoning is straightforward: As the expectation of a geometric distributed random variable

with parameter α is equal to 1
α , it is easily shown that this is equivalent to the condition for the

orthonormal polynomial of order h = 1 that is tested under H0 of unconditional coverage:

E[M1(d;α)] = E

[
1− αd√
1− α

]
=

1− α 1
α√

1− α
= 0 for E [d] =

1

α

The usage of orthonormal polynomials enables to run the test within the GMM framework

with known asymptotic covariance matrices. The test statistics employing the polynomial order

h is

CG
CC(h) =

(
1√
n

n∑
i=1

Mj(di;α)

)′(
1√
n

n∑
i=1

Mj(di;α)

)

which follows a χ2 limiting distribution with h degrees of freedom and j = 1, . . . , h. Note that

for the special case of unconditional coverage and h = 1 the test statistics becomes

CG
CC(1) = CG

UC =

(
1√
n

n∑
i=1

M1(di;α)

)2

.
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When presuming that {dt} is continuous the tests are run with the same conditions adjusted

for the exponential distribution and its corresponding orthonormal polynomials following the

recursion

Lh = Lj+1(d;α) =
1

n+ 1
[(2n+ 1− αd)Lj(d;α)− nLn−1(d;α)]

with initial values L−1 = 1 and L1 = 1 − αd and L being polynomials of the Laguerre family.

The test statistics for the continuous case and the orthonormal polynomials associated with the

exponential distribution is then given by

CExp
CC (h) =

(
1√
n

n∑
i=1

Lj(di;α)

)′(
1√
n

n∑
i=1

Lj(di;α)

)
which again following a χ2(h) distribution under the null.

3 Simulation Study

The following simulation studies aim at detecting the problems arising from conducting backtests

with univariate time series. For this purpose we simulate GARCH(1,1) processes

Yt = σtεt

σ2t = θ0 + θ1Y
2
t−1 + θ2σ

2
t−1.

with parameter vector θ′ = (θ0, θ1, θ2) = (0.1, 0.1, 0.85) and different lengths of in-sample period

R and out-of-sample horizon P . The in-sample period with R = (250, 500, 750, 1000, 1500)

is used for the estimation of the respective parameters and the out-of-sample period P =

(250, 500, 750, 1000, 1500) is used for the evaluation of the backrest. The VaR for the respec-

tive series with confidence level of α = 0.01 is calculated in the next step. Following this, the

hit sequence {It} is computed. In order to test the accuracy of the VaR computations the test

statistics of the aforementioned backtests are calculated. The procedure is replicated 5000 times.

Table 1 shows the results of the Monte Carlo study. For each combination of in-sample and out-

of-sample length, the respective empirical size is calculated from the computed test statistics

and the nominal coverage is chosen as amounting to α = 0.05. The first three columns sum-

marize the results for the Kupiec test and the tests suggested by Christoffersen (independence

and conditional coverage test), while the remaining columns show size results for duration-based

backtests for which the sequence {dt} of the time span between the respective hits of sequence

{It} has been taken into account. While tests (4) to (6) are based on the null of a geometric

distribution with h = 1, 3, 5, tests (7) to (9) report the results for the tests where the distribution

under the null is supposed to be continuous with the same number of orthogonal polynomials

as under the discrete assumption.
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P (1) (2) (3) (4) (5) (6) (7) (8) (9)

R=250 250 0.0930 0.0322 0.0808 0.0486 0.0512 0.0334 0.0138 0.0134 0.0118

500 0.2240 0.0428 0.1208 0.1758 0.1020 0.0730 0.0344 0.0390 0.0366

750 0.2262 0.0578 0.1832 0.1840 0.1696 0.1392 0.0718 0.0746 0.0660

1,000 0.2786 0.0684 0.2286 0.2396 0.2016 0.1660 0.0962 0.0952 0.0816

1,500 0.3452 0.0756 0.3148 0.3454 0.2828 0.2426 0.1472 0.1458 0.1224

R=500 250 0.0664 0.0328 0.0622 0.0350 0.0388 0.0246 0.0066 0.0080 0.0072

500 0.1682 0.0412 0.0802 0.1250 0.0682 0.0468 0.0224 0.0270 0.0250

750 0.1612 0.0640 0.1300 0.1198 0.1128 0.0936 0.0470 0.0574 0.0524

1,000 0.2138 0.0652 0.1712 0.1746 0.1454 0.1192 0.0666 0.0698 0.0600

1,500 0.2472 0.0694 0.2296 0.2478 0.1834 0.1500 0.0872 0.0854 0.0744

R=750 250 0.0628 0.0368 0.0582 0.0314 0.0348 0.0236 0.0056 0.0064 0.0074

500 0.1576 0.0414 0.0680 0.1102 0.0610 0.0456 0.0168 0.0234 0.0252

750 0.1460 0.0605 0.1216 0.1065 0.0998 0.0849 0.0399 0.0514 0.0448

1,000 0.1973 0.0621 0.1502 0.1581 0.1247 0.1000 0.0523 0.0589 0.0507

1,500 0.2058 0.0748 0.2104 0.2064 0.1550 0.1260 0.0652 0.0764 0.0628

R=1,000 250 0.2058 0.0748 0.2104 0.2064 0.1550 0.1260 0.0652 0.0764 0.0628

500 0.1430 0.0424 0.0634 0.1036 0.0556 0.0412 0.0166 0.0222 0.0230

750 0.1300 0.0556 0.1076 0.0956 0.0918 0.0734 0.0378 0.0466 0.0394

1,000 0.1678 0.0690 0.1440 0.1366 0.1096 0.0968 0.0568 0.0574 0.0508

1,500 0.1877 0.0757 0.1941 0.1877 0.1522 0.1208 0.0673 0.0743 0.0625

R=1,500 250 0.1678 0.0690 0.1440 0.1366 0.1096 0.0968 0.0568 0.0574 0.0508

500 0.1404 0.0378 0.0624 0.1000 0.0534 0.0384 0.0160 0.0224 0.0236

750 0.1206 0.0620 0.1058 0.0890 0.0844 0.0674 0.0316 0.0402 0.0358

1,000 0.1486 0.0604 0.1188 0.1152 0.0952 0.0822 0.0444 0.0494 0.0434

1,500 0.1652 0.0752 0.1856 0.1656 0.1318 0.1062 0.0622 0.0678 0.0558

Table 1: Results - Size, α = 0.01

The first observation to be made is that the majority of the backtests are oversized and hence

reject the null too often. Thus, even if the null is true, the backtests classify the VaR to be

inaccurate. However, some of the duration-based backtests tend to be undersized especially if

P and R are both small. Secondly, the smaller the ratio π = P/R of out-of-sample length to

in-sample length, the lower is the distortion, that is the difference between the empirical and

nominal size. For example, for R = 250 the Kupiec test is distorted by 29.52% for P = 1, 500

and the lower the in-sample period the smaller is the distortion. When the out-of-sample length

is reduced to P = 250 the size is distorted by 4.3%. This is due to the reason that the smaller

the amount of data available for estimation of parameters in comparison to P the higher is

the estimation risk involved which leads to less accurate projections of VaR. Duration-based
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backtests tend to have lower size distortions in general.

Acknowledging model risk, Escanciano and Olmo [2010] provided tests corrected for estima-

tion risk. When correcting the variance of the backtest by Kupiec and taking into account the

demeaned hit sequence {It} the test should not be rejected as often as is the case with the uncor-

rected test. Therefore, it should be expected that the size distortions decrease by applying the

estimation risk corrected backtest by Escanciano and Olmo [2010]. We again conduct a Monte

Carlo experiment as outlined above with 500 replications and R,P = (250, 500, 750, 1000) and

computed SP and S̃P . Size results are reported in Table 2.

R = 250 R = 500

P 250 500 750 1,000 250 500 750 1,000

SP 0.138 0.182 0.250 0.268 0.108 0.154 0.228 0.194

S̃P 0.088 0.096 0.082 0.118 0.074 0.078 0.092 0.074

R = 750 R = 1,000

P 250 500 750 1,000 250 500 750 1,000

SP 0.128 0.142 0.228 0.184 0.100 0.090 0.180 0.156

S̃P 0.090 0.098 0.084 0.064 0.084 0.062 0.078 0.084

Table 2: Results

For each combination of R and P the effect of the variance correction results in a much lower

empirical coverage for S̃P and for low π empirical and nominal coverage do hardly deviate from

each other.

In Figure 1, the density of the true asymptotic distribution of SP and S̃P , ie the normal

distribution, as well as the kernel density estimation of the test statistic SP as well as S̃P of

the corrected test for R = 250 and P = 500 and α = 0.05 are plotted. Whereas the density of

SP deviates considerably from its asymptotic distribution, the kernel density of the corrected

backtest comes much closer to it.
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Figure 1: Density of normal distribution (µ = 0, σ = 1) (black), Kernel density estimate of SP

(blue), Kernel density estimate of S̃P (gray) for R = 250, P = 500 and α = 0.05

However, for the Basel II relevant period length of R = 250 and the VaR level of α = 0.01 size dis-

tortions remain at a considerable level of about 3%. The problem therefore remains that the test

rejects too often. Looking at the size distortions of the tests proposed by Escanciano and Olmo

[2010] we can see that even when accounting for estimation risk the problem prevails. In their

follow-up paper for including misspecification risk in their backtest, Escanciano and Olmo [2011]

acknowledge that their modified test still suffers from problems of high size distortions also in

case of very small in-sample lengths. To put it in a nutshell, all classes of univariate backtests

proposed (although duration-based backtests to a lesser extent) have problems when it comes

to short in-sample horizons.

Although the corrected backtests result in a reduction of the size distortion, the tests tend to

reject too often. Even though the correction for estimation risk has been conducted the problem

especially prevails in the Basel II scenario for R = 250 and VaR confidence level of α = 0.01. In

this set-up duration-based backtests with orthonormal approximation of the distribution under

the null seem to be the most promising alternative.
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4 Conclusion

In our paper we analyze the problems of backtests that have been suggested so far. Backtests

based on hit and duration sequences in a univariate framework show heavy size distortions.

A solution for this is to account for model risk and correct the asymptotic variance of the

backtest and thereby reduce the distortion. The problems of univariate backtesting resulting in

considerable size distortions for the relevant Basel II set-up, however, cannot be alleviated by

modifying backtests in a way that accounts for estimation risk or misspecification risk. When

financial institutions conduct backtesting, they face restrictions from the regulation side where

the in-sample length is set to R = 250. A reduction of the out-of-sample length does not suffice

to reduce the empirical size. Using inaccurate backtests has severe implications and higher

risk-based capital results as the factor for its calculation of directly linked to the number of hits.

A solution suggested by Danciulescu [2010] as well as Berkowitz et al. [2009] is to conduct

multivariate backtesting as a mean to overcome these problems. They argue that the sample size

is thereby increased and information is more efficiently used for this purpose. In our Monte Carlo

study backtests based on orthonormal polynomials performed best. Extending these backtest

in a multivariate surrounding would therefore be an alternative to the common approaches.

Backtesting with multivariate orthonormal polynomials includes the assumption that under the

null the duration sequences follow a respective discrete or continuous multivariate distribution

and that this distribution is approximated by Laguerre polynomials in the continuous case. The

idea of multivariate backtesting with Laguerre polynomials is a topic to be pursued in further

research.
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Appendix

Quasi-Maximum-Likelihood estimation of GARCH(1,1)

As in Francq and Zaköıan [2004] and Escanciano and Olmo [2007].

Model is a pure GARCH(1,1) Yt = µ+σtεt with σ
2
t = θ0+θ1Y

2
t−1+θ2σ

2
t−1 with µ = 0, innovation

εt = Yt/σt
iid∼ t(ν) and parameter vector θ = (θ0, θ1, θ2).

Asymptotic normality of QMLE:

√
T (θ̂ − θ)′

d−→ N(0, V )

V = J−1IJ−1

Conditional Gaussian quasi-log-likelihood:

L =
∑ 1√

2πσ2t
exp

(
−Y

2
t − µ

2σ2t

)
l̃t = −1

2
log(2π)− 1

2
log(σ2t )−

1

2

Y 2
t

σ2t
= −1

2

{
log(2π) + log(σ2t ) +

Y 2
t

σ2t

}

Score:

∂l̃t
∂θ

= −1

2

{
∂(log(σ2t ))

∂θ
+
∂(

Y 2
t

σ2
t
)

∂θ

}
= −1

2

{
1

σ2t

∂σ2t
∂θ

− Y 2
t

σ4t

∂σ2t
∂θ

}
= −1

2

{
1− Y 2

t

σ2t

}{
1

σ2t

∂σ2t
∂θ

}
= −1

2
{1− ε2t }

{
1

σ2t

∂σ2t
∂θ

}

Hessian:

∂2 l̃t
∂θ∂θ′

= −1

2

{
−Y 2

t

∂σ−2
t

∂θ

1

σ2t

∂σ2t
∂θ

+

(
1− Y 2

t

σ2t

)(
∂σ−2

t

∂θ

∂σ2t
∂θ

+
1

σ2t

∂2σ2t
∂θ∂θ′

)}
= −1

2

{
−Y 2

t

∂σ−2
t

∂θ

1

σ2t

∂σ2t
∂θ

+

(
1− Y 2

t

σ2t

)(
∂σ−2

t

∂θ

∂σ2t
∂θ

)
+

(
1− Y 2

t

σ2t

)(
1

σ2t

∂2σ2t
∂θ∂θ′

)}
= −1

2

{
∂σ−2

t

∂θ

∂σ2t
∂θ

[
−Y

2
t

σ2t
+

(
1− Y 2

t

σ2t

)]
+

(
1− Y 2

t

σ2t

)(
1

σ2t

∂2σ2t
∂θ∂θ′

)}
= −1

2

{
− 1

σ4t

∂σ2t
∂θ

∂σ2t
∂θ

(
1− 2

Y 2
t

σ2t

)
+

(
1− Y 2

t

σ2t

)(
1

σ2t

∂2σ2t
∂θ∂θ′

)}
= −1

2

{(
1− Y 2

t

σ2t

)(
1

σ2t

∂2σ2t
∂θ∂θ′

)
+

(
2
Y 2
t

σ2t
− 1

)
1

σ4t

∂σ2t
∂θ

∂σ2t
∂θ

}
= −1

2

{
(1− ε2t )

(
1

σ2t

∂2σ2t
∂θ∂θ′

)
+ (2ε2t − 1)

1

σ4t

∂σ2t
∂θ

∂σ2t
∂θ
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Expected value of Hessian, J :

J = E

[
−1

2

{
(1− ε2t )

(
1

σ2t

∂2σ2t
∂θ∂θ′

)
+ (2ε2t − 1)

1

σ4t

∂σ2t
∂θ

∂σ2t
∂θ

}]
=

1

2

{
E

[
1

2
(2ε2t − 1)

]
E

[
1

σ4t

∂σ2t
∂θ

∂σ2t
∂θ

]}
=

1

2
(2E(ε2t )− 1)E

[
1

σ4t

∂σ2t
∂θ

∂σ2t
∂θ

]
=

1

2
E

[
1

σ4t

∂σ2t
∂θ

∂σ2t
∂θ′

]

Expected value of squared score, I:

I = E

[
−1

2
(1− ε2t )

∂σ2t
∂θ

1

σ2t

(
−1

2
(1− ε2t )

∂σ2t
∂θ

1

σ2t

)′]
= E

[
1

4
(1− ε2t )

2

]
E

[
1

σ4t

∂σ2t
∂θ

∂σ2t
∂θ′

]
=

1

4
(E(ε4t ) + 1− E(ε2t ))E

[
1

σ4t

∂σ2t
∂θ

∂σ2t
∂θ′

]
=

1

4
(E(ε4t )− 1)E

[
1

σ4t

∂σ2t
∂θ

∂σ2t
∂θ′

]
=

1

2
(E(ε4t )− 1)

1

2
E

[
1

σ4t

∂σ2t
∂θ

∂σ2t
∂θ′

]
=

1

2
(E(ε4t )− 1)J

Hence, asymptotic covariance matrix of QMLE, V :

V = J−1 1

2
(E(ε4t )− 1)JJ−1 = J−1 1

2
(E(ε4t )− 1)

=
1

2
(E(ε4t )− 1)2

[
E

[
1

σ4t

∂σ2t
∂θ

∂σ2t
∂θ′

]]−1

= (E(ε4t )− 1)E

[
1

σ4t

∂σ2t
∂θ

∂σ2t
∂θ′

]−1

Consistent estimate of V :

V̂ = (κ− 1)

[
P−1

n∑
t=R+1

1

σ4t

∂σ2t
∂θ

∂σ2t
∂θ′

]−1

where

∂σ2t
∂θ

∂σ2t
∂θ′

=


ψ2 ψ

∑∞
j=1 θ

j−1
2 Y 2

t−j ψ
∑∞

j=1 θ
j−1
2 σ2t−j

ψ
∑∞

j=1 θ
j−1
2 Y 2

t−j

(∑∞
j=1 θ

j−1
2 Y 2

t−j

)2 ∑∞
j=1 θ

j−1
2 Y 2

t−j

∑∞
j=1 θ

j−1
2 σ2t−j

ψ
∑∞

j=1 θ
j−1
2 σ2t−j

∑∞
j=1 θ

j−1
2 Y 2

t−j

∑∞
j=1 θ

j−1
2 σ2t−j

(∑∞
j=1 θ

j−1
2 σ2t−j

)2


with ψ ≡ (1− θ2)

−1 and where κ is the unstandardized kurtosis.

Consistent estimate of A:

Â = f(F−1
ε )F−1

ε

1

P

∑
(
1

σt

∂σt
∂θ

=f(F−1
ε )F−1

ε

1

P

∑


1
2σ2

t (1−θ

1
σ2
t

∑∞
j=1 θ

j−1y2t−j

1
σ2
t

∑∞
j=1 θj − 1σ2t−j




