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Abstract

In this paper the performance of different information criteria for simultaneous model

class and lag order selection is evaluated using simulation studies. We focus on the ability

of the criteria to distinguish linear and nonlinear models. In the simulation studies, we

consider three different versions of the commonly known criteria AIC, SIC and AICc.

In addition, we also assess the performance of WIC and evaluate the impact of the

error term variance estimator. Our results confirm the findings of different authors that

AIC and AICc favor nonlinear over linear models, whereas weighted versions of WIC

and all versions of SIC are able to successfully distinguish linear and nonlinear models.

However, the discrimination between different nonlinear model classes is more difficult.

Nevertheless, the lag order selection is reliable. In general, information criteria involving

the unbiased error term variance estimator overfit less and should be preferred to using

the usual ML estimator of the error term variance.

JEL-Numbers: C15, C22

Keywords: Information Criteria · Nonlinear Time Series · Threshold Models ·

Monte Carlo

∗The authors are grateful to the participants of the Statistische Woche in Hannover for helpful com-
ments. Financial support by the Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged.

1Corresponding Author. Leibniz University Hannover, School of Economics and Manage-
ment, Institute of Statistics, Königsworther Platz 1, D-30167 Hannover, Germany. E-Mail:
sibbertsen@statistik.uni-hannover.de. Phone: +49-511-762-3783. Fax: +49-511-762-3923.

- 1 -

http://www.dfg.de/index.jsp


1 Introduction

In time series analysis the identification of a model that is able to appropriately describe

special features of a given data set, like cyclical behavior or persistence of shocks in the

series, is crucial. This is due to the fact that fitting a misspecified model to the data

will lead to biased estimates and all further inference based on previous results, e.g.

forecasting, will be misleading.

In order to identify the best fitting model there are two different strands of procedures in

the literature, namely hypothesis testing and model selection using information criteria.

In the context of linear time series models it is common practice to determine the lag

order using information criteria. However, when nonlinear models are considered, the

testing approach is preferred. So, instead of calculating information criteria for different

models, linearity tests are applied (cf. Tong, 1990; Luukkonen et al., 1988a,b). In

a first step a linear AR process is fitted to the data which lag length is determined

using information criteria. Afterwards, this specification is tested against a nonlinear

alternative (cf. Pitarakis, 2006; Luukkonen et al., 1988a). Pitarakis (2006) shows that

the lag order selection can seriously influence the power properties of linearity tests. This

is due to the fact, that the linear model will be misspecified if the true data generating

process is actually nonlinear. Moreover, Luukkonen et al. (1988b) show that a linearity

test designed to detect a certain kind of nonlinearity may also have power against other

nonlinear models. Hence, the rejection of the null of a linear model may not tell which

nonlinear model should be used to model the data.

Despite these drawbacks of testing, there are probably two reasons why the testing

approach is preferred to model selection for nonlinear models. Firstly, it may not be

clear how to calculate the value of an information criterion if a multiple regime model is

fitted to the data. Information criteria can be easily calculated for single regimes, but

then, these values have to be combined into one index in order to obtain one value for

the whole model. Secondly, there exists no general rule if and how additional parameters

of the nonlinear model have to be incorporated into the penalty terms of information

criteria. Hence, the application of information criteria to nonlinear models may not

result in the selection of optimal models (cf. Clements and Krolzig, 1998).

Nonetheless, in the literature there exist some examples of the application of information

criteria to nonlinear time series models. Lag order selection is treated in Kapetanios

(2001) for SETAR and MSAR models, in Smith et al. (2006) for MSAR models and

in Tong (1983), Wong and Li (1998) and Li (1988) for SETAR models. Gonzalo and

Pitarakis (2002) use information criteria to distinguish between linear AR models and

single- and multiple-regime SETAR models. Further selection of the model class is

considered among others in Psaradakis et al. (2009) and in Kapetanios (2001). Though,
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in contrast to Psaradakis et al. (2009) and Gonzalo and Pitarakis (2002), Kapetanios

(2001) incorporates the threshold parameters of the SETAR models into the penalty

terms of information criteria. However, in most works the lag orders and other relevant

parameters, like the delay parameter of SETAR and STAR models, are treated as given.

Thus, the results are obtained under ideal conditions. In fact, if information criteria are

applied to empirical data, the parameter values are unknown in advance and have to be

estimated first. The resulting estimation errors can influence further calculations and

hence, deteriorate the performance of the information criteria so that former results are

not valid anymore. Therefore, in this work we apply different information criteria to

select the optimal model class and the corresponding lag order and additional parameters

simultaneously. The performance of the information criteria in different scenarios is

assessed in several simulation studies. There, we will take three different versions of the

respective criteria into account. Special focus will be on the fact, whether the criteria

are able to successfully distinguish between linear and nonlinear time series models.

The rest of the paper is organized as follows. In Section 2 the nonlinear models which

are considered in the simulation studies are explained. In Section 3 we shortly repeat the

intuition of information criteria and introduce the four criteria we use. In Section 4 the

simulation set-up and the simulation results are presented. Finally, Section 5 concludes.

2 Nonlinear Time Series Models

There exists a variety of different nonlinear time series models in the literature. In

our simulation studies we focus on regime-switching models with switches in the mean

equation. Hence, the class of ARCH (cf. Engle, 1982) and GARCH (cf. Bollerslev,

1986) models is not considered. The selection of ARCH/GARCH orders is treated e.g.

in Hughes and King (2003) and Hughes et al. (2004). In the following the models used

in the simulation studies are presented.

2.1 The SETAR Model

Self-exciting threshold autoregressive models were introduced in Tong and Lim (1980)

and Tong (1983) (cf. also Tong, 1990). Since linear AR models are not able to capture

certain nonlinear features of the data, but are easy to specify, the SETAR model is a

natural extension of the linear model to the nonlinear case. SETAR models combine

multiple piecewise linear regimes, which are separated by threshold parameters, into one
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model. A two regime SETAR model with p1 and p2 lags respectively can be written as

yt =
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



































φ01 +

p1
∑

i=1
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∑

i=1
φi1yt−i+εt, if yt−d ≤ c ,

(2.1)

where εt ∼ iid (0,σ2). The dependent variable yt falls into the first regime which consists

of an AR process with p1 lags, if the threshold variable yt−d exceeds the threshold c.

Otherwise yt falls into the second regime and follows an AR process with p2 lags. In

SETAR models th threshold variable is a lagged value of the dependent variable. The lag

d is called the delay parameter and does not exceed the largest lag length (cf. Pitarakis,

2006). If in contrast the threshold variable is exogenous the SETAR model becomes a

TAR model. Both models can be generalized to consist of m regimes. Then, there are

m AR equations separated by m−1 threshold parameters.

2.2 The STAR Model

In contrast to the SETAR models, in STAR models the regime switches are not discrete

jumps but smooth transitions. This implies that each observation does not lie in one

single regime but is a weighted mixture of both regimes, where the transition function

Ft attaches the weight to the respective regimes. So, the regimes cannot be clearly

separated. In fact, there exists a continuum of regimes. The value of the transition

function always lies in the unit interval. The following equation describes a STAR

model with two regimes
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Ft (yt−d,γ,c)+εt , (2.2)

with εt ∼ iid (0,σ2). Depending on the transition function Ft, the STAR model is a

logistic STAR (LSTAR) model if

Ft (yt−d,γ,c) =
1

1+exp(−γ(yt−d − c))
(2.3)

or an exponential STAR (ESTAR) model if

Ft (yt−d,γ,c) = 1−exp
(

−γ(yt−d − c)2
)

. (2.4)

Like in SETAR models c denotes the threshold and d the delay parameter. The param-

eter γ regulates the speed of the transition between the regimes. For a value of γ = 0
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there exists no regime shift, instead the model is linear, for γ→∞ the LSTAR model

becomes a two-regime SETAR model, whereas the ESTAR model reduces to a linear

model (cf. van Dijk et al., 2002; Teräsvirta, 1994; Luukkonen et al., 1988a). If the tran-

sition function Ft is the indicator function, Equation 2.2 describes a SETAR model. In

Figure 2.1 the transition functions of the three regime-switching models are represented.
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Figure 2.1: Transition Functions of SETAR and STAR models with c = 0 and γ = 0.375

In addition to SETAR and STAR models there also exists the class of Markov-switching

autoregressive (MSAR) models (cf. Hamilton, 1989, 1994). However, in contrast to

SETAR and STAR models, where the change of regime is governed by an endogenous

variable, the regime shift in MSAR models is controlled by an exogenous, unobservable

state variable. Due to this difference we do not consider MSAR models in our simulation

studies but focus on the the ability of the information criteria to discriminate between

linear and nonlinear models and to detect the correct form of the transition function.

3 Information Criteria

The idea of information criteria is to balance the goodness of fit and the complexity of

a model using a loss function (cf. Wu and Sepulveda, 1998)

L =G(σ̂2)+P(n, p). (3.1)

- 5 -



The first term of the loss function accounts for the goodness of fit and depends on an

estimate of the unknown error term variance. The smaller the estimated variance of

the error terms, the better is the model fit. The second term is the penalty term which

depends on the sample size n and on the number of parameters p. Minimizing the

loss function guarantees that if two models yield the same model fit, the model which

contains fewer parameters is preferred. This is also known as the principle of parsimony

(cf. Akaike, 1974; Schwarz, 1978).

3.1 The Traditional Information Criteria

Different choices of the penalty term yield different information criteria. We will shortly

introduce the four information criteria we are using in our simulation studies.

The Akaike Information Criterion (AIC). The AIC introduced by Akaike (1974) as

an estimate of the Kullback-Leibler information is probably the most commonly used

information criterion

AIC = n
(

log(σ̂2)+1
)

+2(p+1). (3.2)

It has a rather weak penalty term which can result in overfitting in finite samples (cf.

Hurvich and Tsai, 1989). This means that the selected model contains too many pa-

rameters.

The Schwarz Information Criterion (SIC). Using Bayes estimators, Schwarz (1978)

derived another information criterion

S IC = n log(σ̂2)+ p log(n). (3.3)

The SIC has a stronger penalty term than the AIC in order to prevent overfitting. How-

ever, the SIC sometimes underfits. So, the selected model contains too few parameters.

This is especially a problem in small samples.

The Corrected Akaike Information Criterion (AICc). Since the AIC is biased and

therefore tends to overfit in finite samples, Hurvich and Tsai (1989) introduced a bias-

corrected version of the AIC

AICc = n log(σ̂2)+
n(n+ p)
n− p−2

. (3.4)
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For small samples the AICc has a stronger penalty term than the AIC to solve the

problem of overfitting. Asymptotically both versions are equivalent.

The Weighted Average Information Criterion (WIC). Wanting to combine the

strengths of different criteria to obtain a criterion which performs well not depending on

the sample size, Wu and Sepulveda (1998) introduce the weighted average information

criterion

WIC = n log(σ̂2)+
(2n(p+1)/(n− p−2))2

+

(

p log(n)
)2

2n(p+1)/(n− p−2)+ p log(n)
. (3.5)

The WIC is a weighted version of the AICc and the SIC. Setting the weights equal to

the penalty terms of the respective criteria guarantees that for small samples the WIC

behaves like AICc, which performs well in small samples. Besides, in large samples

the WIC behaves like SIC, which performs well in large samples. These properties of

WIC may be very valuable if we apply WIC seperately to the regimes e.g. of a SETAR

model with a dominant regime. In this case, one regime contains significantly more

observations than others. But due to the independence of the sample size, WIC should

perform well in all regimes. We will further discuss and evaluate this point in Section 4.

3.2 The Versions of Information Criteria

As already mentioned in Section 1, it is not clear how to calculate the value of an infor-

mation criterion for multiple-regime models. Since each information criterion depends

on an estimated error term variance and the number of parameters of the model under

consideration, it would be straightforward to estimate the error term variance using the

residual sum of squares of the whole model and add the number of parameters of all

regimes in order to obtain the number of parameters of the whole model. However, it

is not clear whether information criteria maintain their optimality properties of linear

specification, when they are applied to nonlinear models (cf. Clements and Krolzig,

1998). Thus, we also follow another approach. We consider two additional versions of

information criteria, where we separate the models into their regimes. Due to the fact

that the single regimes are linear, information criteria are supposed to select optimal

lag orders of the regimes. Finally, the values of the information criteria of the single

regimes have to be combined again into one global model value. A formal description is

given below.

Equally Weighted Criteria. Following the approach of Tong (1983), for the first ver-

sion we calculate the information criteria separately for each regime and then combine
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these values into one model information criterion, where each regime gets the equal

weight

ICmodel =
1
m

m
∑

i=1

ICreg.i. (3.6)

Regime Weighted Criteria. In the second version the weighting of the regimes is

proportional to the dominance of the regime. The more dominant the respective regime

is, the higher is the attached weight wi

ICmodel =

m
∑

i=1

wi ICreg.i with wi ∈ [0,1]. (3.7)

For SETAR models the weights can simply be determined by the the number of obser-

vations that fall into the respective regime divided by the total number of observations.

In STAR models, the value of the transition function can be used as a weight, since in

STAR models, the observations do not fall in one regime only but are a weighted sum

of both regimes.

Overall Model Criteria. In the third version the regimes are not considered sepa-

rately. Instead, an overall criterion is calculated. Hence, the number of parameters in

the penalty term equals the sum of lags of all regimes and the variance estimate is not

calculated for each regime separately but for the whole model, i.e. all data points are

considered in the computation (cf. Pitarakis, 2006).

The differentiation between these three versions is only meaningful for regime-switching

models. Hence, for the linear AR model, which only consists of one single regime, all

three versions are equivalent.

3.3 The Role of the Error Term Variance Estimator

All previously introduced information criteria depend on an estimate of the error term

variance. Generally, the Maximum Likelihood estimator

σ̂2
=

ε̂′ε̂

n
, (3.8)

where ε̂ is the vector of residuals and n denotes the sample size, is used to calculate the

values of the information criteria. However, σ̂2 is a biased estimator of the true error
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term variance. Therefore, McQuarrie et al. (1997) suggest to use

σ̃2
=

ε̂′ε̂

n− p−1
(3.9)

or the sample variance s2 to evaluate different models using information criteria (cf.

also Wen and Tu, 2001). According to McQuarrie et al. (1997) the information criteria

involving σ̃2 have a stronger penalty term and avoid overfitting.

4 Simulation Study

In the following simulation studies we evaluate the information criteria and their different

versions presented in Section 3.

4.1 Data Generation

In order to identify factors that influence the performance of the information criteria

we generate data from different linear and nonlinear models and vary the sample size,

the persistence parameters, the degree of dominance and the number of regimes. The

models of the basic set-up are tabulated in Tables A.1 - A.4 in the Appendix, where the

εt form a Gaussian white noise process. Following Kapetanios (2001) for every sample

size, we simulate 200 additional observations for each data generating process, which are

discarded afterwards to avoid a starting value bias. All initial values are set to zero. The

simulation results are based on 1000 replications. In our analysis we will primarily focus

on single- and two-regime models, since the computational effort for multiple-regime

models is rather high (cf. also Gonzalo and Pitarakis, 2002).

4.2 Model Estimation

After generating the data, we fit different linear and nonlinear models to the data, cal-

culate the different versions of the information criteria and choose the model, which

minimizes the respective information criterion. Throughout, we assume that the error

terms εt are Gaussian. In order to minimize the computational effort, we set a maximum

lag length of pmax= 4 for the models fitted to the data. Thus, the largest AR model

is an AR(4) and the largest regime switching models consist of an AR(4) specification

in each regime. According to Luukkonen et al. (1988a) a lag order exceeding p = 3 is

rather unlikely for a small sample size of n = 50, but probable for larger samples. In

order to make the results among different sample sizes comparable, we choose pmax= 4

for all sample sizes (cf. also Pitarakis, 2006; Tong and Lim, 1980). The effective sample
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size used to fit the models to the data and in all further calculations is thus n− pmax (cf.

Wong and Li, 1998; Tong and Lim, 1980).

Parameter estimation is done by (conditional) least squares. For the threshold and delay

parameter grids are constructed and the remaining parameters are estimated for each

grid point. Following Hansen (1997) the grid of the threshold consists of the interval

from the 15%to the 85%quantile of yt. Disregarding the lower and upper 15%quantiles

should guarantee that at least 15%of the data lie in each regime and hence, the number

of observations in each regime is sufficient for persistence parameter estimation. The

grid of the delay simply consists of integer values from 1 to pmax. For each model the

parameter combination which minimizes the residual sum of squares is selected and the

corresponding values of the information criteria are calculated. In STAR models the

grid search is done conditional on γ. According to Teräsvirta (1994) it is possible to

standardize the exponent of the transition function and choose γ = 1 as a starting value.

After determining all parameters the value of γ is adjusted by minimizing the residual

sum of squares with respect to γ. For ESTAR models the exponent of the transition

function is divided by the variance of yt, whereas for LSTAR models the standard devi-

ation of yt is appropriate.

As already mentioned there exists no general rule if and how additional parameters of

nonlinear models like the threshold and the delay should be incorporated into the penalty

terms of information criteria. We decide to follow the approach of Kapetanios (2001)

and add all additional parameters of the nonlinear models to the number of parameters.

The intuition is that if the true DGP is nonlinear, then a nonlinear model will provide a

better fit to the data. Hence, the value of the information criteria will decrease. However,

the computational effort will increase. Since the information criteria are supposed to

balance model fit and complexity, additional parameters are incorporated. As a result,

the nonlinear model will only be selected if it provides a substantially better fit than

a simpler model. For all three nonlinear models the additional parameters are the

threshold parameter c as well as the delay parameter d. In STAR models we also

consider the transition parameter γ as an additional parameter in the penalty term.

4.3 Simulation Results

In the following scenarios we assess the ability of the different information criteria to

select the correct model. The Figures and Tables display the respective selection fre-

quencies. In order to evaluate the performance let the power of an information criterion

be defined as the relative frequency of selecting the correct model.
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Lag Order Selection. This paragraph focuses on lag order selection within a certain

model class. Hence, the following figures display the power of the information criteria

when only the lag order (combination) within the true model class has to be determined.

Although the assumption of knowing the correct model class will not be met if the

information criteria are applied to real data, the power results will be helpful to correctly

interpret the performance of the information criteria in further simulation studies. This

is due to the fact, that if the criteria are not able to determine the correct lag order

(combination) within the true model class, we cannot expect them to point to the correct

model when also the model class has to be selected.

In Figure 4.1 the power of the three variants of information criteria are depicted when

the true DGP is the LSTAR(1,1) model. It shows first characteristics of the information

criteria. The regime weighted criteria perform worse than their equally weighted and
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Figure 4.1: Power of the Information Criteria (IC) for LSTAR Models (LSTAR(1,1))

overall counterparts. All versions of AIC and AICc cannot select the correct model with

a probability approaching 1 when the sample size increases. This is due to the fact,

that AIC and AICc are not consistent information criteria (cf. Shibata, 1986). Instead

of the correct lag order combination AIC and AICc tend to overfit and choose larger

combinations. However, AICc performs better than AIC in small and moderate samples

(cf. also Wong and Li, 1998). Using the unbiased error term variance estimator σ̃2

reduces the probability of overfitting. So, the versions of AIC and AICc involving σ̃2

improve up to 20 percentage points (cf. Figures 4.1b and 4.1c).

In general, all information criteria perform better in small models. With increasing lag

order combinations, there is a tendency to underestimate the lag order of one regime

independent of the error term variance estimator. Naturally, AIC and AICc outperform

SIC and WIC in these cases due to their tendency to overfit. However, underfitting can

occur due to weakly identifiable models (cf. McQuarrie et al., 1997). If the largest lag

order only has a minor influence, it may be neglected and a smaller model is preferred
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like for the SETAR(1,3) model (cf. Figure 4.2). Instead of a SETAR(1,3) model a
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Figure 4.2: Power of the Information Criteria (IC) for SETAR Models (SETAR(1,3))

SETAR(1,2) is preferred in small and moderate samples. Equally weighted and overall

AIC and AICc (especially with the unbiased error term variance) outperform SIC and

WIC. Regime weighted information criteria perform poorly. The idea to include the

regime weighted information criteria and also the WIC into the simulation study is that

they may lead to better results if one regime is dominant in the model. In general, the

observations do not fall equally in the regimes, i.e. one regime is always more dominant

than another. Therefore, we consider three modified DGPs. From the SETAR(1,1), the

SETAR(2,1) and the SETAR(3,2) model we generate data with five different thresh-

olds, resulting in a first regime with a share of observations varying from 38% to 81%.

Afterwards, we fit SETAR models to the data and assess the effect of dominant regimes.

In the first two panels of Figure 4.3 we see that the power of the regime weighted AIC

with the unbiased error term variance estimator σ̃2 is highest if the first regime is not

more dominant than the second. So, the best performance is achieved if 52% of the

observations fall into the first regime for the SETAR(1,1)and 48% for the SETAR(2,1),

respectively. But in fact, the size of the effect is quite different. Although for the

SETAR(1,1) the fair separation of regimes is definitely the best, the difference between

the best and the worst separation (with 69% of the observations in the first regime) only

amounts to approximately 15 percentage points in large samples. In contrast, for the

SETAR(2,1) model the fair separation yields similar results as if 58% and asymptotically

similar results as if 38% of the observations lie in the first regime. Nevertheless, the

difference between the best and the worst separation (with 77% of the observations in

the first regime) amounts to 50 percentage points in large samples. In small samples, the

difference between dominant and fair regimes is rather small. The comparison points out

another fact: The worst separation is not always the one with one very dominant regime

(cf. Fig. 4.3a). These considerations are valid for all regime weighted information
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criteria. Though, the effects are more pronounced for AIC and AICc. The equally

weighted and overall information criteria are more independent from the dominance

of the regimes. So asymptotically all separations yield the same power results. For

moderate samples the effect is mostly pronounced.
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Figure 4.3: Power of the Information Criteria in Dominant Regimes:

Regime Weighted AIC with Unbiased Error Term Variance Estimator

Considering Figure 4.3c, we see that the separations with 52% and 69% of the observa-

tions in the first regime offer the best power results if the regime weighted AIC is applied.

The AIC performs worst if the first regime is most dominant (81% of the observations).

However, for this model, other regime weighted criteria behave differently. So, SIC and

WIC perform best if 69% or 75% of the observations fall into the first regime. This

is similar to the equally weighted and overall information criteria. A dominant first

regime leads to better power results than a fair separation (52%) or a dominant second

regime (42%). Hence, there is no general proposition that the performance of the regime

weighted information criteria is proportional to the degree of dominance of one regime,

e.g. the one with a larger lag order. Instead, the behavior appears to be DGP specific.

Discriminating Linear and Nonlinear Models. In this paragraph we assess the per-

formance of the information criteria for selecting between the linear and the nonlinear

model. Again, we only consider the correct nonlinear model class. In the following

Tables the blue row indicates the correct model, whereas the bold numbers mark the

models with the highest selection frequency for the respective criterion. We only give an

extract of the whole Tables for n=100 and n=1000. The results for n=250 and n=500

can be found in the appendix.

In Table 4.1 the selection frequencies are given when the data is generated by a SE-

TAR(1,1) process with 100 observations. The first interesting point is that weighted
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versions of AIC and AICc never select a linear model. Although it is the correct deci-

sion in this setting, it is shown e.g. in the next paragraph that this behavior is spurious.

This fact is also pointed out by Gonzalo and Pitarakis (2002) and Pitarakis (2006). In

contrast, SIC and WIC have the tendency to select the linear model (cf. Psaradakis

et al., 2009). However, taking into account the results for n=1000 in Table 4.2, it

becomes obvious that this is a problem in small samples due to the fact that for the

increased sample size all criteria prefer the correct model. Comparing these results with

Tables 4.3 and 4.4, it becomes evident that the tendency to select linear models also

depends on the true model structure. So, in symmetric models, where the lag order is

equivalent in both regimes, SIC and WIC tend to prefer the linear over the nonlinear

model. If the lag orders differ among regimes, it becomes easier to detect the nonlinear-

ity. However, the overall SIC and WIC still tend to select the linear model (cf. Table

4.3).

Considering the results for the SETAR(2,3) model in Table 4.4, it is striking that the

regime weighted information criteria vary a lot more than their equally weighted and

overall counterparts, which focus on one model for a large sample size. This fact also

partly carries over to AIC and AICc. The respective versions of SIC and WIC concen-

trate more on one model. So, for the equally weighted versions using the common ML

error term variance estimator the selection frequency of the SETAR(2,2) model when

n=1000 is about 40 percentage points higher for SIC and WIC than for AIC and still

about 30 percentage points higher than for AICc (cf. Table 4.4).

The Tables presented in this paragraph pick up the problem of underfitting already

mentioned in the previous paragraph. Especially larger lag order combinations are not

estimated correctly. However, this might be due to identification problems.
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AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(1) 0.000 0.000 0.471 0.494 0.000 0.000 0.398 0.436

SETAR(1,1) 0.263 0.382 0.263 0.301 0.334 0.449 0.273 0.330

SETAR(1,2) 0.118 0.140 0.068 0.071 0.126 0.134 0.080 0.080

SETAR(1,3) 0.077 0.073 0.043 0.029 0.080 0.064 0.052 0.030

SETAR(1,4) 0.090 0.067 0.029 0.014 0.071 0.053 0.026 0.016

SETAR(2,1) 0.085 0.091 0.048 0.046 0.095 0.093 0.061 0.054

SETAR(3,1) 0.088 0.074 0.024 0.018 0.085 0.068 0.032 0.021

SETAR(4,1) 0.072 0.057 0.023 0.011 0.057 0.048 0.019 0.011

(a) Regime Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(1) 0.000 0.000 0.492 0.516 0.000 0.000 0.461 0.488

SETAR(1,1) 0.252 0.525 0.299 0.380 0.473 0.693 0.319 0.405

SETAR(1,2) 0.115 0.114 0.049 0.031 0.124 0.107 0.052 0.039

SETAR(1,3) 0.093 0.054 0.026 0.013 0.059 0.020 0.022 0.007

SETAR(1,4) 0.105 0.045 0.021 0.007 0.045 0.018 0.018 0.005

SETAR(2,1) 0.111 0.105 0.043 0.027 0.124 0.078 0.040 0.029

SETAR(3,1) 0.092 0.066 0.022 0.011 0.076 0.040 0.023 0.009

SETAR(4,1) 0.066 0.035 0.017 0.003 0.035 0.017 0.009 0.001

(b) Equally Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(1) 0.050 0.178 0.806 0.863 0.100 0.238 0.591 0.710

SETAR(1,1) 0.272 0.479 0.143 0.108 0.342 0.491 0.272 0.232

SETAR(1,2) 0.105 0.086 0.012 0.008 0.103 0.079 0.030 0.014

SETAR(1,3) 0.088 0.037 0.003 0.001 0.081 0.028 0.012 0.004

SETAR(1,4) 0.071 0.028 0.000 0.000 0.058 0.016 0.006 0.000

SETAR(2,1) 0.106 0.072 0.008 0.006 0.099 0.063 0.032 0.014

SETAR(3,1) 0.083 0.041 0.000 0.000 0.068 0.028 0.011 0.001

SETAR(4,1) 0.052 0.028 0.001 0.000 0.043 0.020 0.007 0.001

(c) Overall Information Criteria

Table 4.1: Selection Frequencies of the Information Criteria:
AR vs. SETAR models for SETAR(1,1) DGP with n=100
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AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(1) 0.000 0.000 0.086 0.088 0.000 0.000 0.063 0.064

SETAR(1,1) 0.360 0.475 0.637 0.668 0.369 0.477 0.622 0.653

SETAR(1,2) 0.150 0.134 0.105 0.094 0.147 0.134 0.108 0.106

SETAR(1,3) 0.068 0.065 0.062 0.058 0.069 0.064 0.067 0.062

SETAR(1,4) 0.074 0.060 0.035 0.031 0.070 0.060 0.044 0.037

SETAR(2,1) 0.103 0.088 0.035 0.030 0.103 0.090 0.043 0.037

SETAR(3,1) 0.062 0.057 0.014 0.011 0.063 0.056 0.018 0.014

SETAR(4,1) 0.049 0.034 0.006 0.006 0.048 0.033 0.007 0.006

(a) Regime Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(1) 0.000 0.000 0.106 0.106 0.000 0.000 0.090 0.091

SETAR(1,1) 0.465 0.703 0.838 0.868 0.483 0.710 0.813 0.849

SETAR(1,2) 0.130 0.095 0.030 0.016 0.123 0.093 0.047 0.030

SETAR(1,3) 0.066 0.040 0.002 0.002 0.067 0.037 0.009 0.002

SETAR(1,4) 0.053 0.020 0.002 0.000 0.049 0.020 0.003 0.002

SETAR(2,1) 0.105 0.076 0.015 0.003 0.106 0.077 0.026 0.018

SETAR(3,1) 0.056 0.030 0.004 0.002 0.056 0.029 0.006 0.004

SETAR(4,1) 0.053 0.016 0.000 0.000 0.050 0.015 0.000 0.000

(b) Equally Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(1) 0.000 0.000 0.012 0.019 0.000 0.000 0.002 0.003

SETAR(1,1) 0.501 0.728 0.952 0.970 0.506 0.734 0.935 0.958

SETAR(1,2) 0.110 0.081 0.020 0.008 0.111 0.080 0.029 0.019

SETAR(1,3) 0.064 0.039 0.001 0.000 0.064 0.037 0.003 0.002

SETAR(1,4) 0.047 0.023 0.000 0.000 0.047 0.022 0.001 0.000

SETAR(2,1) 0.101 0.069 0.011 0.002 0.100 0.070 0.024 0.014

SETAR(3,1) 0.057 0.028 0.004 0.001 0.056 0.028 0.005 0.004

SETAR(4,1) 0.047 0.015 0.000 0.000 0.048 0.014 0.000 0.000

(c) Overall Information Criteria

Table 4.2: Selection Frequencies of the Information Criteria:
AR vs. SETAR models for SETAR(1,1) DGP with n=1000
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AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(1) 0.000 0.000 0.166 0.190 0.000 0.000 0.121 0.149

AR(2) 0.000 0.000 0.094 0.079 0.000 0.000 0.111 0.086

SETAR(1,1) 0.157 0.242 0.171 0.230 0.211 0.290 0.162 0.223

SETAR(1,2) 0.166 0.202 0.184 0.202 0.186 0.221 0.188 0.209

SETAR(1,3) 0.083 0.077 0.054 0.041 0.079 0.068 0.051 0.042

SETAR(2,1) 0.082 0.100 0.071 0.073 0.109 0.111 0.073 0.090

SETAR(2,2) 0.082 0.075 0.090 0.076 0.085 0.077 0.103 0.081

SETAR(2,3) 0.051 0.039 0.028 0.019 0.036 0.027 0.037 0.022

(a) Regime Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(1) 0.000 0.000 0.166 0.199 0.000 0.000 0.136 0.172

AR(2) 0.000 0.000 0.109 0.091 0.000 0.000 0.134 0.109

SETAR(1,1) 0.077 0.210 0.176 0.258 0.182 0.322 0.169 0.264

SETAR(1,2) 0.142 0.238 0.182 0.195 0.214 0.262 0.195 0.205

SETAR(1,3) 0.065 0.056 0.046 0.031 0.056 0.039 0.044 0.026

SETAR(2,1) 0.083 0.126 0.077 0.076 0.137 0.143 0.084 0.084

SETAR(2,2) 0.148 0.149 0.108 0.090 0.149 0.115 0.112 0.082

SETAR(2,3) 0.088 0.040 0.027 0.014 0.044 0.020 0.020 0.009

(b) Equally Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(1) 0.009 0.040 0.351 0.463 0.014 0.059 0.199 0.293

AR(2) 0.016 0.035 0.237 0.224 0.026 0.056 0.188 0.195

SETAR(1,1) 0.075 0.187 0.108 0.105 0.102 0.210 0.143 0.171

SETAR(1,2) 0.163 0.239 0.149 0.117 0.184 0.244 0.191 0.178

SETAR(1,3) 0.063 0.049 0.016 0.010 0.059 0.046 0.027 0.017

SETAR(2,1) 0.073 0.099 0.044 0.033 0.090 0.100 0.069 0.053

SETAR(2,2) 0.161 0.146 0.057 0.034 0.169 0.142 0.104 0.061

SETAR(2,3) 0.083 0.047 0.005 0.001 0.075 0.025 0.012 0.004

(c) Overall Information Criteria

Table 4.3: Selection Frequencies of the Information Criteria:
AR vs. SETAR models for SETAR(2,3) DGP with n=100
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AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

AR(2) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

SETAR(1,1) 0.230 0.237 0.005 0.008 0.230 0.238 0.004 0.005

SETAR(1,2) 0.225 0.247 0.012 0.015 0.228 0.249 0.010 0.012

SETAR(1,3) 0.050 0.042 0.000 0.000 0.049 0.040 0.000 0.000

SETAR(2,1) 0.031 0.034 0.130 0.141 0.031 0.034 0.118 0.130

SETAR(2,2) 0.170 0.257 0.691 0.709 0.179 0.260 0.662 0.697

SETAR(2,3) 0.083 0.067 0.118 0.094 0.081 0.065 0.137 0.112

(a) Regime Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

AR(2) 0.000 0.000 0.001 0.001 0.000 0.000 0.001 0.001

SETAR(1,1) 0.000 0.000 0.001 0.001 0.000 0.000 0.001 0.001

SETAR(1,2) 0.000 0.000 0.006 0.008 0.000 0.000 0.003 0.006

SETAR(1,3) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

SETAR(2,1) 0.001 0.003 0.022 0.037 0.001 0.005 0.013 0.023

SETAR(2,2) 0.481 0.686 0.846 0.879 0.509 0.695 0.812 0.856

SETAR(2,3) 0.215 0.173 0.103 0.067 0.205 0.169 0.133 0.094

(b) Equally Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

AR(2) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

SETAR(1,1) 0.000 0.000 0.001 0.001 0.000 0.000 0.001 0.001

SETAR(1,2) 0.000 0.000 0.011 0.013 0.000 0.000 0.006 0.011

SETAR(1,3) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

SETAR(2,1) 0.001 0.002 0.026 0.041 0.001 0.002 0.015 0.024

SETAR(2,2) 0.459 0.673 0.900 0.899 0.468 0.678 0.872 0.894

SETAR(2,3) 0.233 0.185 0.053 0.040 0.235 0.182 0.083 0.058

(c) Overall Information Criteria

Table 4.4: Selection Frequencies of the Information Criteria:
AR vs. SETAR models for SETAR(2,3) DGP with n=1000
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The previous remarks on SETAR models are also valid for the selection between AR and

ESTAR and LSTAR models, respectively. However, the differentiation between linear

and nonlinear models is slightly better for LSTAR than for ESTAR models. This is

due to the asymptotic behavior concerning the transition parameter γ. ESTAR models

converge to linear models for both extremes γ→ 0 and γ→∞, whereas LSTAR models

only become linear for γ→ 0. Thus, the parameter estimate of the transition variable

plays an important role. This will be further discussed in the context of discrimination

between nonlinear models.

Effects of the Persistence Parameters. According to Psaradakis et al. (2009) the

performance of the information criteria to select between the linear and the nonlinear

model is better when the persistence parameters among the regimes differ. The following

Figures display this fact and the dependence on the sample size. The true DGP is a

SETAR(1,1) model with persistence parameters varying from -0.8 to 0.8 by 0.2. Since

the error terms of both regimes are iid normally distributed, the SETAR(1,1) reduces

to an AR(1) model if the persistence parameters are equal.
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Figure 4.4: Selection Frequencies for Equally Weighted SIC with σ̃2 and n=100

For a small sample size of n = 100 the selection frequency of a SETAR(1,1) model

increases with the distance between the persistence parameters (cf. Figure 4.4a). This

confirms the findings of Psaradakis et al. (2009) that the differentiation between linear

and nonlinear models becomes easier the more the regimes differ. On the diagonal the

persistence parameters are equal and the model reduces to an AR(1) process. On this

diagonal the selection frequency for the SETAR(1,1) is lowest. However, the selection
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frequency of the SETAR(1,1) model is already relatively low when the regimes are not

equal but quite similar. This is confirmed by Figure 4.4b which depicts the respective

selection frequency of an AR(1) model. On the diagonal the true model is actually the

AR(1) model and there the selection frequency is the highest. Close to the diagonal, the

selection frequency is still rather high. This implies that the linear model is preferred

to the nonlinear model. For distinct regimes the AR(1) model is clearly inferior to the

SETAR(1,1) model.

With an increasing sample size the differentiation between linear and nonlinear models

is more reliable. In Figure 4.5a the selection frequency of the SETAR(1,1) model ap-

proaches 1 if the regimes are distinct. The more similar the regimes become, the lower

is the selection frequency. Again, it is minimal on the diagonal where the model reduces

to the linear case. Additionally, in Figure 4.5b the respective selection frequencies of

the AR(1) model are presented. For distinct persistence parameters the linear model

is never selected. The more similar the regimes become, the higher is the selection

frequency. Nevertheless, the regimes have to be very similar, otherwise the nonlinear

model is superior to the linear model. Hence, there are more correct selections if the

number of observations increases. All versions of SIC and WIC have these properties.

−0.5

0.0

0.5

−0.5

0.0

0.5

0.0

0.2

0.4

0.6

0.8

1.0

φ1

φ
2

(a) SETAR(1,1)

−0.5

0.0

0.5

−0.5

0.0

0.5

0.0

0.2

0.4

0.6

0.8

1.0

φ1

φ
2

(b) AR(1)

Figure 4.5: Selection Frequency for Equally Weighted SIC with σ̃2 and n=1000

The overall versions of AIC and AICc are able to detect linearity but especially in small

samples have a tendency to prefer the nonlinear over the linear model. The weighted

versions of AIC and AICc cannot detect linearity. They spuriously select the nonlinear

model and never the linear model independent of the sample size and the distance be-

tween regimes. Figure 4.6 illustrates the spurious behavior of the equally weighted AIC

already mentioned in the previous paragraph.
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Figure 4.6: Selection Frequency for Equally Weighted AIC with σ̃2 and n=1000

Discriminating Nonlinear Models. So far we have only considered the selection be-

tween linear and nonlinear models, focussing on one nonlinear model class. Now, the

collection of models includes also other nonlinear model classes in order to assess the

ability of the information criteria to determine the form of the transition function. In a

first step we only consider the LSTAR and the ESTAR models (cf. Tab. 4.5 - 4.8). Our

results point out that there are two important factors that influence the information

criteria. The first one is the sample size: As already pointed out by Psaradakis et al.

(2009), it is difficult to determine the switching mechanism when only a small number

of observations is available. Moreover, the transition parameter γ plays an important

role. The selection results are better for a small value of γ = 1 than for γ = 20. In the

small sample the equally weighted and the overall criteria favor the ESTAR over the

LSTAR model (cf. Tables 4.5 and 4.7). Though, the selected lag orders are appropriate.

In fact, the equally weighted and the overall criteria tend to a spurious selection of the

ESTAR model class for larger γ, whereas the regime weighted criteria favor LSTAR

models. However, the lag order selection is always similar to the lag order combination

preferred if only the correct model class is considered. With an increasing sample size

both lag order and model class selection improve for all versions of information criteria

(cf. Tables 4.6 and 4.8). Nevertheless, the selection frequencies of the correct model are

higher if γ = 1.
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AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

ESTAR(1,2) 0.010 0.011 0.066 0.089 0.008 0.011 0.103 0.123

ESTAR(2,1) 0.006 0.012 0.039 0.051 0.020 0.023 0.079 0.091

ESTAR(2,2) 0.026 0.032 0.183 0.156 0.023 0.020 0.160 0.147

ESTAR(2,3) 0.007 0.007 0.016 0.006 0.009 0.007 0.021 0.011

LSTAR(1,1) 0.131 0.193 0.092 0.134 0.238 0.305 0.063 0.101

LSTAR(2,1) 0.140 0.191 0.109 0.139 0.204 0.229 0.079 0.092

LSTAR(2,2) 0.200 0.237 0.276 0.276 0.195 0.201 0.289 0.300

(a) Regime Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

ESTAR(1,2) 0.064 0.108 0.101 0.146 0.094 0.125 0.124 0.158

ESTAR(2,1) 0.021 0.041 0.047 0.066 0.091 0.125 0.078 0.106

ESTAR(2,2) 0.225 0.274 0.295 0.277 0.172 0.171 0.232 0.206

ESTAR(2,3) 0.035 0.021 0.024 0.010 0.027 0.018 0.019 0.010

LSTAR(1,1) 0.004 0.022 0.031 0.048 0.008 0.019 0.025 0.042

LSTAR(2,1) 0.017 0.029 0.046 0.071 0.037 0.058 0.038 0.058

LSTAR(2,2) 0.237 0.314 0.271 0.285 0.317 0.347 0.345 0.346

(b) Equally Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

ESTAR(1,2) 0.059 0.114 0.176 0.212 0.082 0.126 0.143 0.187

ESTAR(2,1) 0.017 0.043 0.065 0.076 0.031 0.049 0.054 0.068

ESTAR(2,2) 0.247 0.285 0.266 0.230 0.279 0.292 0.284 0.261

ESTAR(2,3) 0.032 0.025 0.006 0.005 0.028 0.016 0.015 0.004

LSTAR(1,1) 0.004 0.014 0.052 0.086 0.009 0.022 0.028 0.060

LSTAR(2,1) 0.014 0.031 0.056 0.070 0.020 0.039 0.043 0.062

LSTAR(2,2) 0.263 0.323 0.309 0.281 0.292 0.329 0.321 0.304

(c) Overall Information Criteria

Table 4.5: Selection Frequencies of the Information Criteria:
ESTAR vs. LSTAR models for LSTAR(2,2) DGP with γ = 1 and n=100
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AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

ESTAR(1,2) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ESTAR(2,1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ESTAR(2,2) 0.000 0.000 0.148 0.153 0.000 0.000 0.139 0.146

ESTAR(2,3) 0.000 0.000 0.002 0.001 0.000 0.000 0.004 0.003

LSTAR(1,1) 0.035 0.049 0.000 0.000 0.037 0.053 0.000 0.000

LSTAR(2,1) 0.285 0.333 0.000 0.000 0.288 0.333 0.000 0.000

LSTAR(2,2) 0.201 0.246 0.775 0.790 0.205 0.250 0.752 0.775

(a) Regime Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

ESTAR(1,2) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ESTAR(2,1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ESTAR(2,2) 0.061 0.083 0.132 0.136 0.063 0.081 0.120 0.126

ESTAR(2,3) 0.009 0.006 0.004 0.002 0.009 0.006 0.006 0.004

LSTAR(1,1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LSTAR(2,1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LSTAR(2,2) 0.601 0.740 0.836 0.850 0.611 0.746 0.820 0.845

(b) Equally Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

ESTAR(1,2) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ESTAR(2,1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ESTAR(2,2) 0.059 0.074 0.089 0.092 0.060 0.075 0.087 0.089

ESTAR(2,3) 0.007 0.005 0.003 0.001 0.007 0.005 0.003 0.003

LSTAR(1,1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LSTAR(2,1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LSTAR(2,2) 0.605 0.755 0.897 0.902 0.611 0.758 0.882 0.895

(c) Overall Information Criteria

Table 4.6: Selection Frequencies of the Information Criteria:
ESTAR vs. LSTAR models for LSTAR(2,2) DGP with γ = 1 and n=1000
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AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

ESTAR(1,2) 0.002 0.006 0.161 0.199 0.017 0.025 0.231 0.284

ESTAR(2,1) 0.005 0.006 0.012 0.017 0.009 0.010 0.025 0.029

ESTAR(2,2) 0.040 0.045 0.198 0.180 0.053 0.042 0.214 0.208

ESTAR(2,3) 0.005 0.003 0.008 0.004 0.002 0.002 0.009 0.002

LSTAR(1,1) 0.126 0.185 0.069 0.110 0.221 0.283 0.054 0.068

LSTAR(2,1) 0.128 0.158 0.051 0.064 0.175 0.206 0.033 0.045

LSTAR(2,2) 0.239 0.276 0.306 0.289 0.241 0.239 0.250 0.252

(a) Regime Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

ESTAR(1,2) 0.145 0.252 0.258 0.348 0.249 0.318 0.308 0.363

ESTAR(2,1) 0.005 0.009 0.008 0.009 0.019 0.029 0.013 0.019

ESTAR(2,2) 0.274 0.321 0.331 0.311 0.256 0.261 0.289 0.281

ESTAR(2,3) 0.044 0.028 0.017 0.007 0.016 0.008 0.014 0.002

LSTAR(1,1) 0.000 0.003 0.007 0.020 0.000 0.003 0.005 0.011

LSTAR(2,1) 0.003 0.005 0.012 0.016 0.009 0.017 0.012 0.018

LSTAR(2,2) 0.185 0.218 0.224 0.213 0.233 0.242 0.234 0.230

(b) Equally Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

ESTAR(1,2) 0.157 0.257 0.374 0.439 0.190 0.292 0.327 0.385

ESTAR(2,1) 0.005 0.008 0.011 0.013 0.007 0.008 0.008 0.012

ESTAR(2,2) 0.304 0.349 0.318 0.275 0.355 0.351 0.339 0.311

ESTAR(2,3) 0.051 0.032 0.008 0.003 0.045 0.023 0.021 0.007

LSTAR(1,1) 0.000 0.004 0.017 0.030 0.000 0.004 0.004 0.019

LSTAR(2,1) 0.002 0.004 0.014 0.017 0.002 0.009 0.012 0.017

LSTAR(2,2) 0.176 0.205 0.201 0.193 0.192 0.208 0.207 0.199

(c) Overall Information Criteria

Table 4.7: Selection Frequencies of the Information Criteria:
ESTAR vs. LSTAR models for LSTAR(2,2) DGP with γ = 20 and n=100
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AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

ESTAR(1,2) 0.000 0.000 0.003 0.004 0.000 0.000 0.002 0.003

ESTAR(2,1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ESTAR(2,2) 0.001 0.001 0.240 0.243 0.001 0.001 0.232 0.238

ESTAR(2,3) 0.000 0.000 0.005 0.003 0.000 0.000 0.007 0.005

LSTAR(1,1) 0.012 0.017 0.000 0.000 0.014 0.017 0.000 0.000

LSTAR(2,1) 0.133 0.164 0.000 0.000 0.133 0.165 0.000 0.000

LSTAR(2,2) 0.254 0.315 0.694 0.710 0.261 0.318 0.670 0.695

(a) Regime Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

ESTAR(1,2) 0.000 0.001 0.002 0.002 0.000 0.001 0.002 0.002

ESTAR(2,1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ESTAR(2,2) 0.257 0.327 0.421 0.433 0.264 0.327 0.401 0.414

ESTAR(2,3) 0.045 0.037 0.013 0.008 0.049 0.037 0.016 0.013

LSTAR(1,1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LSTAR(2,1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LSTAR(2,2) 0.389 0.480 0.538 0.545 0.401 0.489 0.540 0.549

(b) Equally Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

ESTAR(1,2) 0.000 0.001 0.003 0.004 0.000 0.001 0.003 0.003

ESTAR(2,1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ESTAR(2,2) 0.228 0.287 0.359 0.366 0.233 0.290 0.354 0.359

ESTAR(2,3) 0.042 0.032 0.012 0.007 0.040 0.032 0.013 0.012

LSTAR(1,1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LSTAR(2,1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LSTAR(2,2) 0.425 0.518 0.614 0.618 0.429 0.519 0.607 0.614

(c) Overall Information Criteria

Table 4.8: Selection Frequencies of the Information Criteria:
ESTAR vs. LSTAR models for LSTAR(2,2) DGP with γ = 20 and n=1000
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In the next step we also allow for SETAR models in the collection of models. As a result,

we find another spurious behavior of the information criteria. In small samples all equally

weighted and overall information criteria as well as the regime weighted SIC and WIC

select the SETAR model. This might be due to the fact, that SETAR models have a

smaller penalty term since the transition parameter γ does not have to be estimated.

Hence, this spurious behavior can be interpreted as some kind of underfitting. The

regime weighted versions of AIC and AICc prefer LSTAR models, even if the true DGP

is a SETAR model. In larger samples the information criteria select the true model class.

Again, the transition parameter γ is a key factor for the performance. For large values of

γ the LSTAR model becomes a SETAR model. Then, it is impossible to distinguish these

two model classes. The information criteria tend to favor the SETAR model in these

cases, since the penalty term is smaller due to the missing transition parameter. For

smaller values of γ the performance of the information criteria improves and especially

for larger samples the differentiation between the different types of transition functions is

reliable. Although in some cases a wrong model class is selected, the lag order coincides

with the one preferred if only the correct model class is considered.

Finally, linear models are included into the collection of models. Then, the problem of

distinguishing between linear and nonlinear becomes relevant again. As already shown,

weighted versions of AIC and AICc cannot detect linearity. SIC and WIC tend to favor

linear models although the model is nonlinear. This is especially a problem in small

samples. The equally weighted and the overall versions of the information criteria often

select the SETAR models. However, as already mentioned earlier, the performance

improves with an increasing sample size. Regime weighted AIC and AICc spuriously

select LSTAR models. Lag order selection works well. Even if not the correct model

class is selected, the lag order combination corresponds to the artificial case with the

correct model class.

Discriminating Regimes. Finally, we evaluate whether the information criteria can

also be used to select the number of regimes. In this paragraph we only consider SE-

TAR models with two or three regimes (cf. Gonzalo and Pitarakis, 2002; Clements

and Krolzig, 1998) and reduce the maximum lag order to two, which yields eight lag

order combinations for the three regime model. Furthermore, we also change the grid

for thresholds. In this simulation study the grid consists of all quantiles from the 10%

to the 90% quantile of yt. Although this grid might be rough, we choose it because

it guarantees that even if two consecutive grid points are chosen as thresholds, there

will lie 10% of the observations in the middle regime. The estimation procedure of the

thresholds is the sequential approach from Gonzalo and Pitarakis (2002). We consider
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the 1-step and the 2-step approach, i.e. we estimate the first threshold and given this

threshold the second threshold. In the 1-step approach we keep these two estimates.

In contrast, in the 2-step approach the first threshold is reestimated given the second

threshold and finally the second threshold is reestimated given the refined first threshold

(cf. Gonzalo and Pitarakis, 2002). For the three regime SETAR models the number of

additional parameters increases to three (two thresholds, one delay parameter). Gon-

zalo and Pitarakis (2002) do not account for the number of thresholds in the penalty

term, whereas Liu et al. (1997) incorporate thresholds as additional parameters into the

penalty term.

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(2) 0.000 0.000 0.537 0.468 0.000 0.000 0.551 0.509

SETAR(2,2) 0.000 0.000 0.040 0.031 0.004 0.004 0.048 0.040

SETAR(1,2,1) 0.134 0.176 0.034 0.040 0.206 0.221 0.024 0.029

SETAR(1,2,2) 0.190 0.180 0.033 0.034 0.173 0.160 0.029 0.029

SETAR(2,2,2) 0.216 0.162 0.035 0.029 0.113 0.088 0.022 0.018

(a) Regime Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(2) 0.000 0.000 0.470 0.410 0.000 0.000 0.547 0.500

SETAR(2,2) 0.000 0.000 0.043 0.027 0.001 0.001 0.057 0.043

SETAR(1,2,1) 0.104 0.165 0.051 0.057 0.191 0.208 0.018 0.020

SETAR(1,2,2) 0.194 0.170 0.031 0.030 0.179 0.157 0.014 0.014

SETAR(2,2,2) 0.236 0.146 0.034 0.019 0.100 0.074 0.017 0.012

(b) Equally Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(2) 0.492 0.629 0.818 0.749 0.601 0.697 0.826 0.803

SETAR(2,2) 0.072 0.045 0.001 0.000 0.065 0.036 0.007 0.003

SETAR(1,2,1) 0.042 0.027 0.000 0.000 0.034 0.017 0.001 0.001

SETAR(1,2,2) 0.045 0.018 0.000 0.000 0.026 0.011 0.002 0.001

SETAR(2,2,2) 0.071 0.015 0.000 0.000 0.031 0.004 0.000 0.000

(c) Overall Information Criteria

Table 4.9: Selection Frequencies of the Information Criteria:
AR vs. SETAR(2;·, ·) vs. SETAR(3;·, ·, ·) models for AR(2) DGP with n=100;

1-step Estimation

- 27 -



AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(2) 0.000 0.000 0.562 0.561 0.000 0.000 0.500 0.498

SETAR(2,2) 0.000 0.000 0.085 0.085 0.000 0.000 0.089 0.083

SETAR(1,2,1) 0.009 0.009 0.019 0.020 0.009 0.009 0.020 0.021

SETAR(1,2,2) 0.119 0.126 0.055 0.055 0.119 0.127 0.053 0.059

SETAR(2,2,2) 0.484 0.473 0.119 0.115 0.483 0.472 0.144 0.137

(a) Regime Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(2) 0.000 0.000 0.637 0.637 0.000 0.000 0.609 0.607

SETAR(2,2) 0.000 0.000 0.036 0.030 0.000 0.000 0.042 0.037

SETAR(1,2,1) 0.002 0.004 0.011 0.018 0.002 0.005 0.007 0.011

SETAR(1,2,2) 0.034 0.059 0.053 0.051 0.035 0.060 0.043 0.057

SETAR(2,2,2) 0.904 0.841 0.158 0.137 0.900 0.844 0.220 0.187

(b) Equally Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(2) 0.695 0.870 1.000 1.000 0.711 0.874 1.000 1.000

SETAR(2,2) 0.146 0.083 0.000 0.000 0.145 0.081 0.000 0.000

SETAR(1,2,1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

SETAR(1,2,2) 0.006 0.003 0.000 0.000 0.006 0.003 0.000 0.000

SETAR(2,2,2) 0.130 0.027 0.000 0.000 0.117 0.025 0.000 0.000

(c) Overall Information Criteria

Table 4.10: Selection Frequencies of the Information Criteria:
AR vs. SETAR(2;·, ·) vs. SETAR(3;·, ·, ·) models for AR(2) DGP with n=1000;

1-step Estimation

Tables 4.9 and 4.10 present the selection frequencies of the information criteria if the

true model is an AR(2) process and the 1-step approach is applied. Tables C.1 and

C.2 show the respective results for the 2-step approach. Comparing these results, it

becomes obvious that the weighted versions of the 1-step approach lead to more correct

selections of the AR(2) model. The weighted versions of AIC and AICc never select

the true model, but versions of SIC and WIC detect the linearity. The corresponding

information criteria of the 2-step algorithm prefer a three regime SETAR model. Both

approaches work well if the overall information criteria are applied. Then, the 2-step

approach is even slightly superior.

In Tables 4.11, 4.12, C.3 and C.4 the results for the SETAR(1,1) process are tabulated.
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In small samples weighted versions of SIC andWIC and the overall information criteria of

the 1-step approach favor the linear models, whereas the respective versions of AIC and

AICc favor the SETAR(1,1,1). For the 2-step approach equally weighted and overall SIC

and WIC select the linear model. The other criteria prefer the SETAR(1,1,1). With an

increasing sample size the weighted versions of SIC and WIC and all overall information

criteria select the correct model when the 1-step approach is applied. For the 2-step

approach only the overall criteria favor the correct model. The other versions prefer the

SETAR(1,1,1).

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(1) 0.000 0.000 0.519 0.540 0.000 0.000 0.462 0.480

SETAR(1,1) 0.005 0.006 0.177 0.200 0.012 0.015 0.222 0.252

SETAR(1,1,1) 0.312 0.405 0.089 0.096 0.432 0.473 0.074 0.079

SETAR(1,2,1) 0.177 0.178 0.030 0.026 0.188 0.173 0.038 0.031

SETAR(2,1,1) 0.172 0.161 0.030 0.026 0.144 0.135 0.021 0.019

(a) Regime Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(1) 0.000 0.000 0.504 0.532 0.000 0.000 0.468 0.489

SETAR(1,1) 0.000 0.000 0.117 0.145 0.003 0.004 0.245 0.272

SETAR(1,1,1) 0.327 0.500 0.119 0.159 0.501 0.567 0.062 0.064

SETAR(1,2,1) 0.179 0.157 0.064 0.041 0.168 0.150 0.053 0.050

SETAR(2,1,1) 0.160 0.142 0.040 0.033 0.129 0.121 0.016 0.018

(b) Equally Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(1) 0.147 0.296 0.842 0.879 0.222 0.358 0.686 0.784

SETAR(1,1) 0.167 0.288 0.096 0.090 0.217 0.315 0.171 0.147

SETAR(1,1,1) 0.200 0.158 0.012 0.005 0.174 0.117 0.030 0.018

SETAR(1,2,1) 0.094 0.046 0.001 0.000 0.070 0.029 0.007 0.002

SETAR(2,1,1) 0.088 0.036 0.002 0.001 0.057 0.024 0.007 0.004

(c) Overall Information Criteria

Table 4.11: Selection Frequencies of the Information Criteria:
AR vs. SETAR(2;·, ·) vs. SETAR(3;·, ·, ·) models for SETAR(1,1) DGP with n=100;

1-step Estimation
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AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(1) 0.000 0.000 0.086 0.086 0.000 0.000 0.067 0.069

SETAR(1,1) 0.000 0.000 0.472 0.479 0.000 0.000 0.441 0.455

SETAR(1,1,1) 0.419 0.496 0.215 0.223 0.436 0.504 0.228 0.239

SETAR(1,2,1) 0.157 0.149 0.066 0.063 0.156 0.149 0.075 0.072

SETAR(2,1,1) 0.151 0.154 0.040 0.040 0.149 0.153 0.048 0.046

(a) Regime Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(1) 0.000 0.000 0.110 0.110 0.000 0.000 0.090 0.091

SETAR(1,1) 0.000 0.000 0.524 0.536 0.000 0.000 0.506 0.524

SETAR(1,1,1) 0.469 0.634 0.261 0.282 0.504 0.650 0.256 0.290

SETAR(1,2,1) 0.151 0.124 0.035 0.020 0.145 0.114 0.042 0.027

SETAR(2,1,1) 0.137 0.114 0.019 0.018 0.138 0.115 0.024 0.019

(b) Equally Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(1) 0.000 0.000 0.016 0.021 0.000 0.000 0.003 0.005

SETAR(1,1) 0.306 0.535 0.953 0.967 0.321 0.546 0.940 0.963

SETAR(1,1,1) 0.254 0.206 0.003 0.001 0.252 0.200 0.008 0.004

SETAR(1,2,1) 0.094 0.044 0.000 0.000 0.090 0.043 0.000 0.000

SETAR(2,1,1) 0.079 0.041 0.000 0.000 0.077 0.040 0.000 0.000

(c) Overall Information Criteria

Table 4.12: Selection Frequencies of the Information Criteria:
AR vs. SETAR(2;·, ·) vs. SETAR(3;·, ·, ·) models for SETAR(1,1) DGP with n=1000;

1-step Estimation

In Tables C.5 - C.8 in the Appendix the results for the SETAR(2,2,2) model can be

found. Even in a small sample all versions of information criteria identify the correct

model when the 1-step algorithm is applied. In large samples the selection frequencies

converge towards 1. In case of the 2-step approach the weighted versions select the

correct model class though not the correct lag order combination when the sample size

is small. For a larger sample the correct model is selected. The overall information

criteria favor a two regime SETAR model in small samples and an underfitted three

regime SETAR model in the larger sample.

Taking into account all these results, we cannot find one superior approach. In general,
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we would expect the 2-step algorithm to outperform the 1-step approach. However, this

is not always case, which is probably due to the grid. Li (1988) points out that the

choice of the grid has an effect on the threshold estimates. Thus, a finer grid might

improve the results.

Generally, information criteria can be used to distinguish between SETAR models with

a different number of regimes. The overall criteria perform quite well. But in small

samples there is the possibility of underfitting. However, since the computational effort

of estimating nonlinear models with more than two regimes is rather high, Gonzalo and

Pitarakis (2002) recommend first to use a collection of models consisting only of linear

and two regime models. If the information criteria select the nonlinear model, in a

second step the two regime models and the three regime models are evaluated. If in the

first step the linear model is preferred, it is not necessary to estimate the three regime

models.

5 Conclusion

In this paper we evaluate the performance of different information criteria for simul-

taneous lag order and model class selection of nonlinear models. We focus on SETAR

and STAR models due to the fact that they have a similar switching mechanism. Our

set of information criteria consists of the commonly known criteria AIC, SIC and AICc.

Furthermore, we also apply WIC which is supposed to perform well independent of the

sample size. All in all, we consider 24 different information criteria with varying penalty

terms, error term variance estimators and regime weightings. Our aim is to identify

one or more criteria that can be used to select a best fitting model among different

nonlinear model classes. Strictly speaking, information criteria cannot be employed in

order to select between different model classes, because they are developed under the

assumption that all models under consideration belong to the same parametric family

(cf. Kapetanios, 2001). Nevertheless, this approach can be a valuable alternative to

linearity tests. This is due to the fact that tests rely on a (possibly misspecified) lag

order estimate, which influences the power properties of the tests (cf. Pitarakis, 2006).

Furthermore, linearity tests with a specified alternative may have power against other

models as well (cf. Luukkonen et al., 1988b). Hence, rejecting the null of a linear model

does not tell which nonlinear model should be applied to the data. In contrast, model

selection using information criteria will lead to a definite model choice.

Our results show that the information criteria perform well in general. However, there

are some key factors that seriously influence the performance of the criteria. The sample

size plays a crucial role. So, in small samples some criteria adopt a spurious behavior.

Especially overall SIC and WIC tend to select a simple model. Depending on the
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collection of models, this results in underfitting, the selection of linear models, although

the true model is nonlinear, or a model with fewer additional parameters (cf. 4.3:

Discriminating Nonlinear Models). In large samples the information criteria perform

well. Another factor is the identifiability of the true model. One of its aspects concerns

the lag order selection. If the largest lag has only a minor influence, the model is weakly

identifiable (cf. McQuarrie et al., 1997) and underfitting occurs. Hence, underfitting

is not necessarily a drawback of the information criteria but is due to the true data

generating process. But also the distance between regimes affects the identifiability. If

the regimes are very similar, a simpler model will be preferred. Especially in small

samples the selection frequencies of the correct model are quite low. Asymptotically

there are only few incorrect selections. The distance of regimes plays an important

role for the discrimination between linear and nonlinear models. We have shown that

weighted versions of AIC and AICc cannot detect linearity and therefore, should not be

applied, if linear models are among the collection of models, since they spuriously point

to the nonlinear model (cf. also Gonzalo and Pitarakis, 2002; Pitarakis, 2006). Another

factor crucially influences the performance of the information criteria, as well. The shape

of the transition functions of STAR models depends on the transition parameter γ. For

small values both STAR models converge to AR models, whereas for large values the

LSTAR model converges to a SETAR model and the ESTAR model reduces to a linear

model. In these extreme cases it is difficult to distinguish the different model types. Due

to the smaller penalties AR and SETAR models will be preferred to STARmodels. Again

a large sample size facilitates the selection process. For a larger number of observations,

the differentiation of the type of transition function becomes more reliable (cf. also

Psaradakis et al., 2009). The selection of the lag order combination does not suffer from

misspecified model classes. Instead, it corresponds to the one selected if only the true

model class is considered. Summarizing all our results, we cannot generally advise the

use of one certain information criterion. Instead, several criteria should be applied in

order to balance the individual strengths and weaknesses. However, our results show

that the performance of the information criteria is not deteriorated if model specific

parameters like threshold, delay or transition parameters are unknown and have to be

estimated. Hence, the application of information criteria to empirical data in order to

identify the best fitting model is an alternative approach to linearity tests. Though,

weighted versions of AIC and AICc should not be used if linear and nonlinear model

are compared. Moreover, the regime weighted criteria cannot outperform their equally

weighted and overall counterparts. This is independent of the dominance of the regimes.

Equally weighted and overall information criteria are more or less independent from the

share of observations in each regime. The regime weighted criteria mostly perform better

when the regimes are fairly separated. Hence, the equally weighted or overall versions
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should be preferred. The problem of choosing an adequate penalty term is similar to

the application of information criteria to linear processes. Liu et al. (1997) remarks

that for easily identifiable models a criterion with a large penalty should be applied

in order to avoid overfitting, whereas for weakly identifiable models a criterion with a

small penalty should be preferred to prevent underfitting. In fact, it is not clear whether

the true model is weakly identifiable and thus, which information criterion should be

applied. AIC and AICc are known to overfit. Our results show that the probability

of overfitting can be reduced by using the unbiased error term variance estimator σ̃2

(cf. also McQuarrie et al., 1997). Applying this estimator to SIC and WIC can lead

to underfitting. Nevertheless, there are scenarios, where the selection frequencies of the

correct model for SIC and WIC increase as well, when the unbiased estimator is used.

Further modifications may lead to even better selection frequencies. So, Li (1988) points

out that the choice of possible thresholds affects the final estimates. Therefore, a fine

grid will probably lead to better threshold estimates and improve model selection. But

in fact, the computational effort will increase enormously. This problem might be solved

by applying a 2-step grid search algorithm. In the first step a rough grid is used to find

a first threshold estimate. In the second step, a finer grid is built around this point and

the estimate is refined. As a result, it would be unnecessary to do a global fine grid

search. Instead, the computational effort would only increase locally.
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A Data Generating Processes

AR(1) yt = 0.5yt−1+ εt

AR(2) yt = −1.2+0.7yt−1+0.3yt−2+ εt

AR(3) yt = 1.2yt−1−0.35yt−2−0.1yt−3+ εt

Table A.1: DGP: Autoregressive Processes

LSTAR(1,1) Ft(·) = 1/(1+exp(−yt−1))

yt = (0.8yt−1)(1−Ft(·))+ (0.2yt−1)Ft(·)+ εt

LSTAR(2,2) Ft(·) = 1/(1+exp(−yt−1))

yt = (1.8yt−1−1.06yt−2)(1−Ft(·))+ (0.02+0.9yt−1−0.265yt−2)Ft(·)+ εt

LSTAR(3,4) Ft(·) = 1/(1+exp(−yt−1))

yt = (1.8yt−1−1.06yt−2−0.2yt−3)(1−Ft(·))

+(0.02+0.9yt−1−0.265yt−2+0.27yt−3−0.32yt−4)Ft(·)+ εt

Table A.2: DGP: Logistic Smooth Transition Autoregressive Processes

ESTAR(1,1) Ft(·) = 1−exp(−y2
t−1)

yt = (0.8yt−1)(1−Ft(·))+ (0.2yt−1)Ft(·)+ εt

ESTAR(2,2) Ft(·) = 1−exp(−y2
t−1)

yt = (1.8yt−1−1.06yt−2)(1−Ft(·))+ (0.02+0.9yt−1−0.265yt−2)Ft(·)+ εt

ESTAR(3,4) Ft(·) = 1−exp(−y2
t−1)

yt = (1.8yt−1−1.06yt−2−0.2yt−3)(1−Ft(·))

+(0.02+0.9yt−1−0.265yt−2+0.27yt−3−0.32yt−4)Ft(·)+ εt

Table A.3: DGP: Exponential Smooth Transition Autoregressive Processes
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SETAR(1,1) yt = (0.8yt−1+ εt) Iyt−1>0+ (0.2yt−1+ εt) Iyt−1≤0

SETAR(1,3) yt = (0.2yt−1εt) Iyt−1>0+ (1.2yt−1−0.35yt−2−0.1yt−3εt) Iyt−1≤0

SETAR(2,1) yt = (1.0+0.7yt−1−0.3yt−2+ εt) Iyt−1>0+ (0.8yt−1+ εt) Iyt−1≤0

SETAR(2,2) yt = (1.2+0.7yt−1−0.2yt−2+ εt) Iyt−1>0

+ (1−1.1yt−1+0.18yt−2+ εt) Iyt−1≤0

SETAR(3,2) yt = (1.2yt−1−0.35yt−2−0.1yt−3+ εt) Iyt−1>0

+ (1.2+0.7yt−1−0.2yt−2+ εt) Iyt−1≤0

SETAR(4,3) yt = (2.7607yt−1−3.8106yt−1+2.6535yt−3−0.9238yt−4+ εt) Iyt−1>0

+ (1.2yt−1−0.35yt−2−0.1yt−3+ εt) Iyt−1≤0

SETAR(1,1,1) yt = (−0.5yt−1+ εt) Iyt−1>0.5+ (0.8yt−1+ εt) I−0.5<yt−1≤0.5+ (0.2yt−1+ εt) Iyt−1≤−0.5

SETAR(2,2,2) yt = (1+0.7yt−1−0.3yt−2+ εt) Iyt−2>12+ (6+1.9yt−1−0.3yt−2+ εt) I5<yt−2≤12

+ (2.7+0.8yt−1−0.2yt−2+ εt) Iyt−2≤5

Table A.4: DGP: Self-exciting Threshold Autoregressive Processes
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B Discriminating Linear and Nonlinear Model

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(1) 0.000 0.000 0.371 0.379 0.000 0.000 0.286 0.306

SETAR(1,1) 0.295 0.400 0.390 0.423 0.322 0.420 0.391 0.440

SETAR(1,2) 0.096 0.107 0.075 0.068 0.102 0.101 0.089 0.081

SETAR(1,3) 0.084 0.067 0.034 0.025 0.081 0.064 0.043 0.034

SETAR(1,4) 0.075 0.065 0.025 0.020 0.069 0.060 0.035 0.024

SETAR(2,1) 0.110 0.114 0.051 0.049 0.112 0.112 0.059 0.053

SETAR(3,1) 0.071 0.068 0.021 0.017 0.070 0.068 0.033 0.026

SETAR(4,1) 0.067 0.053 0.012 0.008 0.063 0.052 0.016 0.011

(a) Regime Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(1) 0.000 0.000 0.406 0.411 0.000 0.000 0.356 0.366

SETAR(1,1) 0.371 0.634 0.478 0.527 0.448 0.679 0.471 0.540

SETAR(1,2) 0.106 0.113 0.041 0.026 0.114 0.094 0.049 0.034

SETAR(1,3) 0.074 0.047 0.011 0.002 0.064 0.039 0.018 0.004

SETAR(1,4) 0.081 0.024 0.007 0.001 0.054 0.020 0.012 0.003

SETAR(2,1) 0.114 0.092 0.034 0.022 0.115 0.090 0.049 0.031

SETAR(3,1) 0.070 0.043 0.009 0.003 0.063 0.039 0.016 0.008

SETAR(4,1) 0.050 0.018 0.005 0.003 0.040 0.016 0.008 0.004

(b) Equally Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(1) 0.011 0.042 0.632 0.691 0.012 0.050 0.442 0.512

SETAR(1,1) 0.388 0.641 0.327 0.286 0.425 0.645 0.471 0.440

SETAR(1,2) 0.108 0.094 0.011 0.004 0.109 0.090 0.027 0.014

SETAR(1,3) 0.071 0.037 0.000 0.000 0.068 0.037 0.003 0.000

SETAR(1,4) 0.078 0.025 0.001 0.000 0.066 0.022 0.002 0.001

SETAR(2,1) 0.112 0.085 0.014 0.011 0.114 0.085 0.029 0.018

SETAR(3,1) 0.068 0.033 0.002 0.000 0.062 0.033 0.006 0.002

SETAR(4,1) 0.048 0.018 0.001 0.001 0.045 0.017 0.001 0.001

(c) Overall Information Criteria

Table B.1: Selection Frequencies of the Information Criteria:
AR vs. SETAR models for SETAR(1,1) DGP with n=250
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AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(1) 0.000 0.000 0.203 0.210 0.000 0.000 0.173 0.181

SETAR(1,1) 0.349 0.447 0.540 0.567 0.367 0.449 0.514 0.554

SETAR(1,2) 0.128 0.118 0.096 0.086 0.125 0.118 0.109 0.096

SETAR(1,3) 0.079 0.068 0.042 0.037 0.078 0.067 0.054 0.046

SETAR(1,4) 0.082 0.068 0.027 0.025 0.078 0.068 0.032 0.027

SETAR(2,1) 0.088 0.088 0.049 0.042 0.090 0.089 0.058 0.053

SETAR(3,1) 0.068 0.058 0.020 0.018 0.065 0.058 0.025 0.020

SETAR(4,1) 0.057 0.046 0.005 0.003 0.054 0.046 0.006 0.005

(a) Regime Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(1) 0.000 0.000 0.244 0.246 0.000 0.000 0.220 0.226

SETAR(1,1) 0.444 0.692 0.691 0.716 0.489 0.712 0.662 0.712

SETAR(1,2) 0.118 0.109 0.035 0.025 0.118 0.109 0.054 0.033

SETAR(1,3) 0.072 0.031 0.004 0.000 0.068 0.028 0.008 0.003

SETAR(1,4) 0.067 0.025 0.001 0.001 0.052 0.021 0.008 0.001

SETAR(2,1) 0.089 0.073 0.017 0.010 0.086 0.068 0.029 0.018

SETAR(3,1) 0.066 0.030 0.002 0.000 0.059 0.026 0.006 0.002

SETAR(4,1) 0.047 0.018 0.002 0.000 0.041 0.017 0.004 0.002

(b) Equally Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(1) 0.001 0.003 0.279 0.317 0.001 0.003 0.144 0.190

SETAR(1,1) 0.480 0.714 0.687 0.661 0.500 0.723 0.793 0.777

SETAR(1,2) 0.122 0.101 0.022 0.015 0.123 0.101 0.036 0.023

SETAR(1,3) 0.060 0.032 0.000 0.000 0.058 0.031 0.003 0.000

SETAR(1,4) 0.067 0.023 0.000 0.000 0.064 0.019 0.000 0.000

SETAR(2,1) 0.076 0.063 0.007 0.003 0.077 0.061 0.018 0.009

SETAR(3,1) 0.059 0.028 0.000 0.000 0.056 0.026 0.003 0.000

SETAR(4,1) 0.044 0.019 0.000 0.000 0.041 0.019 0.000 0.000

(c) Overall Information Criteria

Table B.2: Selection Frequencies of the Information Criteria:
AR vs. SETAR models for SETAR(1,1) DGP with n=500
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AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(1) 0.000 0.000 0.030 0.031 0.000 0.000 0.016 0.021

AR(2) 0.000 0.000 0.042 0.041 0.000 0.000 0.041 0.038

SETAR(1,1) 0.172 0.206 0.131 0.173 0.184 0.215 0.097 0.136

SETAR(1,2) 0.161 0.195 0.186 0.219 0.172 0.204 0.162 0.192

SETAR(1,3) 0.071 0.064 0.035 0.033 0.065 0.059 0.034 0.034

SETAR(2,1) 0.081 0.101 0.134 0.138 0.083 0.102 0.133 0.154

SETAR(2,2) 0.173 0.182 0.285 0.252 0.185 0.188 0.310 0.283

SETAR(2,3) 0.059 0.050 0.070 0.051 0.053 0.045 0.084 0.062

(a) Regime Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(1) 0.000 0.000 0.040 0.043 0.000 0.000 0.021 0.032

AR(2) 0.000 0.000 0.062 0.056 0.000 0.000 0.063 0.056

SETAR(1,1) 0.019 0.053 0.103 0.165 0.029 0.063 0.069 0.127

SETAR(1,2) 0.070 0.126 0.180 0.213 0.086 0.146 0.157 0.191

SETAR(1,3) 0.027 0.026 0.023 0.017 0.023 0.024 0.022 0.021

SETAR(2,1) 0.056 0.115 0.109 0.118 0.082 0.126 0.106 0.123

SETAR(2,2) 0.337 0.422 0.363 0.327 0.388 0.432 0.393 0.356

SETAR(2,3) 0.142 0.095 0.061 0.035 0.110 0.078 0.075 0.049

(b) Equally Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(1) 0.000 0.000 0.070 0.095 0.000 0.000 0.024 0.044

AR(2) 0.002 0.007 0.128 0.137 0.002 0.010 0.084 0.095

SETAR(1,1) 0.020 0.051 0.119 0.149 0.021 0.053 0.099 0.142

SETAR(1,2) 0.079 0.129 0.190 0.208 0.081 0.135 0.175 0.197

SETAR(1,3) 0.027 0.030 0.014 0.013 0.029 0.028 0.014 0.016

SETAR(2,1) 0.047 0.104 0.115 0.112 0.057 0.105 0.130 0.133

SETAR(2,2) 0.346 0.433 0.315 0.256 0.368 0.436 0.378 0.323

SETAR(2,3) 0.143 0.099 0.026 0.015 0.143 0.097 0.051 0.026

(c) Overall Information Criteria

Table B.3: Selection Frequencies of the Information Criteria:
AR vs. SETAR models for SETAR(2,3) DGP with n=250
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AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(1) 0.000 0.000 0.002 0.002 0.000 0.000 0.001 0.001

AR(2) 0.000 0.000 0.004 0.004 0.000 0.000 0.003 0.003

SETAR(1,1) 0.210 0.237 0.039 0.057 0.216 0.238 0.029 0.040

SETAR(1,2) 0.181 0.201 0.100 0.114 0.187 0.203 0.071 0.098

SETAR(1,3) 0.060 0.046 0.010 0.009 0.057 0.047 0.013 0.010

SETAR(2,1) 0.061 0.072 0.169 0.190 0.062 0.074 0.156 0.173

SETAR(2,2) 0.185 0.235 0.514 0.504 0.197 0.242 0.522 0.522

SETAR(2,3) 0.070 0.056 0.103 0.071 0.067 0.052 0.121 0.094

(a) Regime Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(1) 0.000 0.000 0.003 0.003 0.000 0.000 0.001 0.001

AR(2) 0.000 0.000 0.014 0.013 0.000 0.000 0.012 0.013

SETAR(1,1) 0.002 0.006 0.019 0.027 0.002 0.007 0.013 0.021

SETAR(1,2) 0.010 0.025 0.066 0.081 0.014 0.027 0.045 0.071

SETAR(1,3) 0.001 0.002 0.002 0.004 0.001 0.003 0.004 0.002

SETAR(2,1) 0.030 0.050 0.101 0.153 0.032 0.058 0.074 0.116

SETAR(2,2) 0.465 0.599 0.672 0.645 0.501 0.618 0.675 0.671

SETAR(2,3) 0.182 0.148 0.092 0.058 0.167 0.131 0.117 0.078

(b) Equally Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(1) 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.001

AR(2) 0.001 0.001 0.014 0.022 0.001 0.001 0.006 0.010

SETAR(1,1) 0.002 0.007 0.028 0.041 0.002 0.007 0.022 0.028

SETAR(1,2) 0.010 0.021 0.089 0.105 0.011 0.023 0.058 0.091

SETAR(1,3) 0.001 0.003 0.002 0.004 0.001 0.003 0.003 0.002

SETAR(2,1) 0.023 0.046 0.130 0.155 0.024 0.046 0.095 0.131

SETAR(2,2) 0.468 0.606 0.677 0.639 0.481 0.616 0.711 0.677

SETAR(2,3) 0.192 0.144 0.044 0.025 0.192 0.140 0.072 0.045

(c) Overall Information Criteria

Table B.4: Selection Frequencies of the Information Criteria:
AR vs. SETAR models for SETAR(2,3) DGP with n=500
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C Discriminating Regimes

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(2) 0.000 0.000 0.115 0.097 0.000 0.000 0.136 0.125

SETAR(2,2) 0.000 0.000 0.008 0.006 0.000 0.000 0.010 0.007

SETAR(1,2,1) 0.136 0.156 0.109 0.115 0.155 0.167 0.100 0.110

SETAR(1,2,2) 0.213 0.207 0.168 0.167 0.209 0.202 0.177 0.173

SETAR(2,2,2) 0.152 0.121 0.105 0.089 0.108 0.100 0.091 0.082

(a) Regime Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(2) 0.000 0.000 0.157 0.139 0.000 0.000 0.235 0.220

SETAR(2,2) 0.000 0.000 0.010 0.006 0.000 0.000 0.014 0.010

SETAR(1,2,1) 0.103 0.114 0.084 0.092 0.136 0.138 0.062 0.066

SETAR(1,2,2) 0.189 0.191 0.154 0.152 0.181 0.173 0.133 0.129

SETAR(2,2,2) 0.167 0.129 0.097 0.089 0.101 0.086 0.074 0.061

(b) Equally Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(2) 0.536 0.645 0.818 0.749 0.622 0.703 0.828 0.804

SETAR(2,2) 0.120 0.058 0.001 0.000 0.090 0.041 0.007 0.003

SETAR(1,2,1) 0.020 0.007 0.000 0.000 0.015 0.002 0.000 0.000

SETAR(1,2,2) 0.016 0.007 0.000 0.000 0.010 0.005 0.000 0.000

SETAR(2,2,2) 0.024 0.005 0.000 0.000 0.011 0.001 0.000 0.000

(c) Overall Information Criteria

Table C.1: Selection Frequencies of the Information Criteria:
AR vs. SETAR(2;·, ·) vs. SETAR(3;·, ·, ·) models for AR(2) DGP with n=100;

2-step Estimation
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AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(2) 0.000 0.000 0.059 0.059 0.000 0.000 0.053 0.052

SETAR(2,2) 0.000 0.000 0.005 0.005 0.000 0.000 0.007 0.006

SETAR(1,2,1) 0.011 0.012 0.003 0.003 0.011 0.012 0.003 0.003

SETAR(1,2,2) 0.389 0.390 0.529 0.534 0.390 0.390 0.526 0.529

SETAR(2,2,2) 0.302 0.301 0.194 0.189 0.301 0.301 0.198 0.195

(a) Regime Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(2) 0.000 0.000 0.116 0.116 0.000 0.000 0.106 0.105

SETAR(2,2) 0.000 0.000 0.001 0.001 0.000 0.000 0.006 0.004

SETAR(1,2,1) 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

SETAR(1,2,2) 0.443 0.446 0.426 0.431 0.443 0.445 0.423 0.429

SETAR(2,2,2) 0.347 0.341 0.259 0.251 0.347 0.340 0.269 0.260

(b) Equally Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(2) 0.734 0.880 1.000 1.000 0.744 0.884 1.000 1.000

SETAR(2,2) 0.208 0.094 0.000 0.000 0.203 0.091 0.000 0.000

SETAR(1,2,1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

SETAR(1,2,2) 0.002 0.000 0.000 0.000 0.002 0.000 0.000 0.000

SETAR(2,2,2) 0.032 0.006 0.000 0.000 0.027 0.006 0.000 0.000

(c) Overall Information Criteria

Table C.2: Selection Frequencies of the Information Criteria:
AR vs. SETAR(2;·, ·, ·) vs. SETAR(3;·, ·, ·) models for AR(2) DGP with n=1000;

2-step Estimation
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AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(1) 0.000 0.000 0.154 0.164 0.000 0.000 0.144 0.154

SETAR(1,1) 0.015 0.017 0.061 0.067 0.023 0.026 0.086 0.091

SETAR(1,1,1) 0.205 0.252 0.161 0.177 0.254 0.289 0.158 0.167

SETAR(1,2,1) 0.182 0.189 0.141 0.142 0.182 0.176 0.150 0.141

SETAR(2,1,1) 0.175 0.176 0.146 0.145 0.173 0.170 0.150 0.151

(a) Regime Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(1) 0.000 0.000 0.200 0.215 0.000 0.000 0.220 0.234

SETAR(1,1) 0.000 0.000 0.046 0.057 0.003 0.003 0.095 0.101

SETAR(1,1,1) 0.219 0.283 0.148 0.170 0.288 0.327 0.123 0.133

SETAR(1,2,1) 0.177 0.177 0.145 0.141 0.195 0.189 0.155 0.146

SETAR(2,1,1) 0.186 0.189 0.145 0.141 0.177 0.170 0.129 0.129

(b) Equally Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(1) 0.179 0.310 0.845 0.880 0.237 0.380 0.698 0.789

SETAR(1,1) 0.286 0.379 0.103 0.092 0.319 0.376 0.188 0.158

SETAR(1,1,1) 0.091 0.069 0.005 0.003 0.076 0.050 0.010 0.006

SETAR(1,2,1) 0.054 0.026 0.000 0.000 0.034 0.021 0.005 0.001

SETAR(2,1,1) 0.038 0.015 0.000 0.000 0.024 0.007 0.001 0.001

(c) Overall Information Criteria

Table C.3: Selection Frequencies of the Information Criteria:
AR vs. SETAR(2;·, ·) vs. SETAR(3;·, ·, ·) models for SETAR(1,1) DGP with n=100;

2-step Estimation
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AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(1) 0.000 0.000 0.018 0.018 0.000 0.000 0.015 0.016

SETAR(1,1) 0.034 0.036 0.162 0.164 0.034 0.037 0.153 0.157

SETAR(1,1,1) 0.296 0.341 0.276 0.287 0.309 0.343 0.273 0.283

SETAR(1,2,1) 0.159 0.149 0.136 0.136 0.156 0.149 0.139 0.138

SETAR(2,1,1) 0.215 0.210 0.187 0.184 0.214 0.212 0.191 0.187

(a) Regime Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(1) 0.000 0.000 0.030 0.030 0.000 0.000 0.027 0.028

SETAR(1,1) 0.000 0.000 0.115 0.116 0.000 0.000 0.107 0.113

SETAR(1,1,1) 0.328 0.381 0.318 0.330 0.342 0.383 0.311 0.323

SETAR(1,2,1) 0.175 0.164 0.146 0.146 0.173 0.163 0.147 0.146

SETAR(2,1,1) 0.226 0.216 0.193 0.190 0.223 0.219 0.196 0.193

(b) Equally Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

AR(1) 0.000 0.000 0.016 0.021 0.000 0.000 0.003 0.005

SETAR(1,1) 0.508 0.692 0.955 0.967 0.515 0.698 0.942 0.965

SETAR(1,1,1) 0.109 0.083 0.001 0.001 0.109 0.081 0.006 0.002

SETAR(1,2,1) 0.046 0.021 0.000 0.000 0.045 0.020 0.001 0.000

SETAR(2,1,1) 0.023 0.010 0.000 0.000 0.022 0.010 0.000 0.000

(c) Overall Information Criteria

Table C.4: Selection Frequencies of the Information Criteria:
AR vs. SETAR(2;·, ·) vs. SETAR(3;·, ·, ·) models for SETAR(1,1) DGP with n=1000;

2-step Estimation
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AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

SETAR(2,1,1) 0.060 0.087 0.084 0.110 0.129 0.149 0.133 0.147

SETAR(2,1,2) 0.139 0.130 0.128 0.121 0.134 0.133 0.130 0.128

SETAR(2,2,1) 0.189 0.226 0.259 0.306 0.166 0.203 0.190 0.241

SETAR(2,2,2) 0.554 0.492 0.467 0.397 0.484 0.432 0.459 0.398

(a) Regime Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

SETAR(2,1,1) 0.050 0.080 0.081 0.106 0.121 0.141 0.129 0.143

SETAR(2,1,2) 0.117 0.106 0.101 0.097 0.111 0.110 0.107 0.104

SETAR(2,2,1) 0.201 0.240 0.277 0.321 0.179 0.216 0.205 0.258

SETAR(2,2,2) 0.552 0.488 0.461 0.392 0.481 0.425 0.451 0.388

(b) Equally Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

SETAR(2,1,1) 0.019 0.035 0.052 0.067 0.026 0.040 0.043 0.056

SETAR(2,1,2) 0.017 0.013 0.012 0.010 0.019 0.013 0.013 0.012

SETAR(2,2,1) 0.344 0.452 0.501 0.542 0.402 0.472 0.480 0.514

SETAR(2,2,2) 0.434 0.308 0.236 0.178 0.365 0.279 0.268 0.217

(c) Overall Information Criteria

Table C.5: Selection Frequencies of the Information Criteria:
AR vs. SETAR(2;·, ·) vs. SETAR(3;·, ·, ·) models for SETAR(2,2,2) DGP with n=100;

1-step Estimation
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AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

SETAR(2,1,1) 0.001 0.001 0.005 0.005 0.001 0.001 0.004 0.005

SETAR(2,1,2) 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

SETAR(2,2,1) 0.010 0.012 0.018 0.020 0.010 0.012 0.016 0.018

SETAR(2,2,2) 0.978 0.976 0.968 0.966 0.978 0.976 0.970 0.968

(a) Regime Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

SETAR(2,1,1) 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013

SETAR(2,1,2) 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

SETAR(2,2,1) 0.015 0.017 0.023 0.025 0.015 0.017 0.021 0.023

SETAR(2,2,2) 0.969 0.967 0.961 0.959 0.969 0.967 0.963 0.961

(b) Equally Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

SETAR(2,2,1) 0.017 0.028 0.059 0.076 0.017 0.028 0.050 0.057

SETAR(2,2,2) 0.979 0.967 0.936 0.919 0.979 0.967 0.945 0.938

(c) Overall Information Criteria

Table C.6: Selection Frequencies of the Information Criteria:
AR vs. SETAR(2;·, ·) vs. SETAR(3;·, ·, ·) models for SETAR(2,2,2) DGP with n=1000;

1-step Estimation
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AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

SETAR(2,1,1) 0.102 0.142 0.124 0.183 0.198 0.224 0.186 0.217

SETAR(2,1,2) 0.376 0.415 0.323 0.358 0.397 0.396 0.325 0.332

SETAR(2,2,1) 0.169 0.165 0.206 0.181 0.111 0.111 0.143 0.152

SETAR(2,2,2) 0.285 0.206 0.261 0.192 0.225 0.200 0.266 0.222

(a) Regime Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

SETAR(2,1,1) 0.106 0.149 0.132 0.190 0.205 0.242 0.191 0.227

SETAR(2,1,2) 0.371 0.410 0.325 0.361 0.396 0.394 0.320 0.328

SETAR(2,2,1) 0.164 0.159 0.199 0.174 0.106 0.101 0.139 0.146

SETAR(2,2,2) 0.282 0.208 0.257 0.190 0.203 0.183 0.246 0.208

(b) Equally Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

SETAR(2,1) 0.147 0.200 0.263 0.300 0.163 0.217 0.244 0.270

SETAR(2,2) 0.402 0.347 0.295 0.255 0.386 0.333 0.309 0.283

SETAR(2,1,1) 0.082 0.089 0.089 0.089 0.082 0.088 0.089 0.090

SETAR(2,1,2) 0.012 0.006 0.004 0.004 0.011 0.007 0.006 0.004

SETAR(2,2,1) 0.095 0.104 0.105 0.103 0.102 0.104 0.104 0.105

SETAR(2,2,2) 0.069 0.045 0.022 0.015 0.054 0.038 0.030 0.019

(c) Overall Information Criteria

Table C.7: Selection Frequencies of the Information Criteria:
AR vs. SETAR(2;·, ·) vs. SETAR(3;·, ·, ·) models for SETAR(2,2,2) DGP with n=100;

2-step Estimation
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AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

SETAR(2,1,1) 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

SETAR(2,1,2) 0.019 0.038 0.050 0.065 0.027 0.044 0.044 0.053

SETAR(2,2,1) 0.021 0.023 0.025 0.026 0.021 0.023 0.025 0.025

SETAR(2,2,2) 0.954 0.933 0.919 0.903 0.946 0.927 0.925 0.916

(a) Regime Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

SETAR(2,1,1) 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004

SETAR(2,1,2) 0.019 0.038 0.050 0.065 0.027 0.044 0.044 0.053

SETAR(2,2,1) 0.020 0.022 0.024 0.025 0.020 0.022 0.024 0.024

SETAR(2,2,2) 0.952 0.931 0.917 0.901 0.944 0.925 0.923 0.914

(b) Equally Weighted Information Criteria

AICσ̂2 AICσ̃2 S ICσ̂2 S ICσ̃2 AICcσ̂2 AICcσ̃2 WICσ̂2 WICσ̃2

SETAR(2,2) 0.449 0.449 0.449 0.449 0.449 0.449 0.449 0.449

SETAR(2,1,1) 0.482 0.500 0.504 0.504 0.483 0.501 0.504 0.504

SETAR(2,1,2) 0.021 0.003 0.000 0.000 0.020 0.002 0.000 0.000

SETAR(2,2,1) 0.015 0.018 0.019 0.019 0.015 0.018 0.019 0.019

SETAR(2,2,2) 0.016 0.013 0.011 0.011 0.016 0.013 0.011 0.011

(c) Overall Information Criteria

Table C.8: Selection Frequencies of the Information Criteria:
AR vs. SETAR(2;·, ·) vs. SETAR(3;·, ·, ·) models for SETAR(2,2,2) DGP with n=1000;

2-step Estimation
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van Dijk, D., Teräsvirta, T., and Franses, P. H. (2002). Smooth transition autoregressive

models—a survey of recent developments. Econometric Reviews, 21(1):1–47.

Wen, M.-J. and Tu, Y.-H. (2001). Modified WIC for order selection in autoregressive

model. Technical Report No. 40, National Cheng-Kung University, Institute of

Statistics.

Wong, C. S. and Li, W. K. (1998). A note on the corrected akaike information criterion

for threshold autoregressive models. Journal of Time Series Analysis, 19(1):113–

124.

Wu, T.-J. and Sepulveda, A. (1998). The weighted average information criterion for

order selection in time series and regression models. Statistics & Probability Letters,

39(1):1–10.

- 50 -


	Introduction
	Nonlinear Time Series Models
	The SETAR Model
	The STAR Model

	Information Criteria
	The Traditional Information Criteria
	The Versions of Information Criteria
	The Role of the Error Term Variance Estimator

	Simulation Study
	Data Generation
	Model Estimation
	Simulation Results

	Conclusion
	Data Generating Processes
	Discriminating Linear and Nonlinear Model
	Discriminating Regimes
	References

