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Abstract

We study the problem of determining both the structure and the schedule of

projects subject to capacity constraints. We assume that those projects are flexible

in the sense that the activities to be implemented are not entirely known in advance.

In such a setting, decisions must be made with respect to the implementation of the

optional activities. Such decisions affect the duration, cost, quality and eventual

revenue of the project. Examples of this type of problem can often be found when

complex capital goods such as aircraft engines are overhauled, when buildings are

renovated to meet higher environmental and efficiency standards, or in product-

development processes. We describe the problem, develop a mixed-integer optimi-

sation model, explain specific features of a genetic algorithm to solve the problem

and report the results of a numerical study.
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1



1 Introduction

A standard assumption in the literature on resource-constrained project scheduling

problems (RCPSPs) is that the activities to be implemented as well as the precedence re-

lationships between those activities—and hence the project structure—are given. How-

ever, there are cases when, in the process of planning and scheduling a project, decisions

have to be made with respect to optional activities. While this includes the case in which

one must choose between alternative modes for given activities in multi-mode RCPSPs,

i.e., MRCPSPs, the situation studied in this paper goes far beyond the well-established

MRCPSPs. In particular, a RCPSP with a flexible project structure, or RCPSP-PS for

short, can model the case in which there is a model-endogenous decision to determine

the outcome of the project.

Consider, for example, the process of overhauling jet engines of commercial aircraft.

This process is performed by commercial service providers that have to meet rigorous

standards and regulations to ensure the airworthiness of the overhauled engines. How-

ever, within those rules, there can be a substantial and economically important degree

of freedom regarding how to overhaul the engine. This situation gives rise to the ques-

tion of whether a particular component should be disassembled and overhauled at all,

and if so, what should be done about the component’s used sub-assemblies. The sub-

assemblies could, for example, be used again as they are, be repaired using different

available repair procedures, or be replaced, either with used or already repaired parts

of the same type or with a new part. Such decisions affect the work content of the

project and hence eventually the schedule. However, they also affect qualitative aspects

of the project outcome. In the case of an aircraft engine, these aspects could be the en-

ergy efficiency and/or the noise emissions of the overhauled engine. Different owners of

aircraft engines, particularly airlines with different business models, may have different

requirements and objectives and favour different ways to overhaul their engines.

Another example is the renovation or reconstruction of buildings to meet new and

more demanding environmental and energy efficiency standards. In European Union

countries, those standards are increasingly being imposed on homeowners. There may

be alternative ways to meet those efficiency goals, such as installing new windows or

heating systems or adding layers or insulation to the building’s exterior structures. Sub-

stantial public subsidies can be earned by the homeowner in return, depending on the

level of efficiency achieved. A particular level of efficiency may be attained by differ-

ent combinations of measures. Implementing those measures leads to an RCPSP-PS

involving quality, duration, cost and revenue aspects.
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Hence, it appears to be worthwhile to model RCPSP-PSs with respect to duration,

quality and profit. Solving this problem to optimality turns out to be quite demanding.

For this reason, we present a specific adaption of a genetic algorithm and evaluate its

performance in a numerical study.

The remainder of this paper is structured as follows: In Section 2, the problem and

the modelling assumptions are outlined in detail. Furthermore, the related literature is

briefly discussed. In Section 3, we describe the model, and in Section 4 we describe the

algorithm. Numerical results are presented in Section 5. Section 6 provides a summary

of the main results and concluding remarks as well as directions for further research.

2 Problem and literature

2.1 Flexible projects with quality attributes

Figure 1 shows an example of a flexible project; see Kellenbrink and Helber (2013)

and Kellenbrink (2014). Activities j ∈J are depicted as squares. They are assumed

to be topologically numbered such that i < j implies that there is no direct or indirect

precedence relationship from activity j to activity i. Choices e ∈ E are depicted as light-

grey ovals. They contain a subset of activities We ⊂J from which exactly one activity

has to be chosen if that decision is activated. In Figure 1, choice e = 1 is activated by

the mandatory (start) activity j = 1, i.e., a(e = 1) = j = 1, and hence, a choice between

activities j = 4 and j = 5 must be made. If in choice e = 1 activity j = 5 is selected, a

second choice e = 2 is trigged, the choice between activities j = 7 and j = 8. Optional

activities j can also cause other activities i ∈B j ⊂J . In our example, if in choice e = 1
activity j = 4 is chosen, the further activity j = 9 is caused; see the dark-grey circle

in Figure 1. Precedence relationships that lead to or originate from optional activities

are depicted by broken arrows in Figure 1. These relationships are only imposed if the

optional activities are implemented.

We assume that the activities selected from among the aforementioned sets of op-

tional activities related to the choices affect the quality of the project outcome along

potentially multiple quantifiable and independent dimensions. Figure 2 conceptually

shows the overall impact on the profit of the project. Implementing specific activities

directly affects costs. Because implemented optional activities have a duration, they also

affect the overall project duration or makespan. Finally, optional activities determine

the quality of the project outcome, and makespan as well as quality have a combined

effect on revenues. All of these effects culminate in the profit of the project.
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Figure 1: Example of a flexible project
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Figure 2: Effect of project structure on profit

In Table 1, the duration d j, the capacity consumption k j,1 of a single renewable

resource and the cost c j of each activity j are given for the sample project in Figure 1.

In our example, we assume that the quality of the project outcome is measured along

two different and independent quality dimensions o. Table 2 shows, for example, that

the mandatory activities along quality dimension o= 1 lead to a base quality of qbase
o = 20

and that implementing activity 4, for example, leads to an increase of q4,1 = 10 units in

quality level along quality dimension o = 1.

4



Multi-dimensional quality attributes of goods and services are often condensed in

and communicated as quality grades or classes, such as air travel classes (Economy,

Business, First). This reduces marketing and operational complexities. Coming back

to our initial example of public subsidy programs for the energy-efficient renovation

of buildings, we find that those subsidies are often tied to achieved energy efficiency

classes. Following these examples, we therefore assume that the multiple quality di-

mensions are condensed in quality grades. In our example, we assume that there are

three quality grades l, denoted “A”, “AA”, and “AAA”. The required minimum quality

levels wol per quality dimension o and grade l are presented in Table 3.

Table 1: Duration, capacity consumption and cost of each activity j

j 1 2 3 4 5 6 7 8 9 10
d j 0 3 4 3 5 6 4 2 2 0

k j,1 0 3 7 5 2 8 6 5 4 0
c j 0 5 3 2 1 7 10 6 1 0

We assume that the project costs are simply the sum of the costs c j of the imple-

mented activities (such as wages and material costs); see the last row in Table 1.

In principle, the decision about project structure and schedule in such a setting is

a multi-criteria optimisation problem with quality, cost and project duration objectives.

One could hence aim at determining the Pareto-efficient front of solutions along those

three dimensions. However, finding a single point of that three-dimensional Pareto front

already requires to solve a challenging scheduling problem. We hence assume that the

decision maker aims at maximising the profit as suggested in Figure 2. To this end, we

assume that the project revenue ult depends on the quality grade (“A” to “AAA” in our

example) and the makespan or completion period of the project as follows:

• The revenue ult increases monotonically with the quality grade l.

• The revenue ult decreases monotonically with the project completion period t.

The assumptions imply that a customer’s willingness to pay and therefore the project

revenue does not increase as the quality grade of the project outcome decreases or the

makespan of the project increases.

Table 2: Quality dimensions, base levels and quality increases due to optional activities

o qbase
o q4,o q5,o q7,o q8,o q9,o

1 20 10 12 15 5 8
2 0 0 10 15 0 20
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Table 3: Minimum quality levels wol per quality grade and quality dimension

o wo,A wo,AA wo,AAA
1 30 35 40
2 10 15 20

Table 4: Properties of the possible project structures

Project Implemented Quality Duration Cost
structure activities grade

A 1, 2, 3, 4, 6, 9, 10 AA 13 18
B 1, 2, 3, 5, 6, 7, 10 AAA 14 26
C 1, 2, 3, 5, 6, 8, 10 A 12 22

In the algorithm for solving the problem that will be presented in Section 4, this

property is used.

For the project in Figure 1, three possible project structures A, B, and C exist. It can

easily be shown using the data in Tables 1,2, and 3 and a given (per-period) capacity of

the single renewable resource of 10 units that those three project structures lead to the

respective quality grades, project durations and costs in Table 4. Note that the lowest

quality grade can be reached through project structure C within 12 periods, whereas

the highest quality grade is achieved in project structure B within 14 periods.

Which project structure is most profitable depends on the customer’s willingness to

pay, which in turn may reflect the customer’s particular business model. In Table 5,

we introduce three hypothetical customers and their willingness to pay—the potential

revenues—as a function of quality grade and project duration. For those combinations

of project duration and quality grade that cannot be achieved due to the capacity limit

of 10 units for the renewable resource, the revenues are presented in brackets. In Ta-

ble 6, we present the profit per customer and project structure for those combinations of

project duration and quality grade that can actually be achieved. The optimal solutions

are printed in bold type. Note how the solutions reflect the different customers’ pref-

erences. For customer 1, quality matters most, and he should hence be offered project

structure B. Customer 2, in contrast, is mostly interested in the duration of the project

and should be offered project structure C. The third customer is interested in both qual-

ity and project duration and should be offered project structure A. This small example

shows how customer segmentation and flexible project scheduling can be used together

to maximise profit.
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Table 5: Revenue per customer, quality grade, project duration and structure

Quality Duration Project
grade 12 13 14 structure
AAA (50) (49) 48 B

Customer 1 AA (40) 39 38 A
A 30 29 28 C

AAA (50) (40) 30 B
Customer 2 AA (49) 39 29 A

A 48 38 28 C
AAA (40) (39) 38 B

Customer 3 AA (39) 38 37 A
A 38 37 36 C

Table 6: Profit per customer, quality grade, project duration and structure

Quality Duration Project
grade 12 13 14 structure
AAA - - 48-26=22 B

Customer 1 AA - 39-18=21 38-18=20 A
A 30-22=8 29-22=7 28-22=6 C

AAA - - 30-26=4 B
Customer 2 AA - 39-18=21 29-18=11 A

A 48-22=26 38-22=16 28-22=6 C
AAA - - 38-26=12 B

Customer 3 AA - 38-18=20 37-18=19 A
A 38-22=16 37-22=15 36-22=14 C

2.2 Related literature

Numerous surveys review the voluminous literature on resource-constrained project

scheduling, among them Özdamar and Ulusoy (1995), Herroelen et al. (1998), Brucker

et al. (1999), Kolisch and Padman (2001), Demeulemeester and Herroelen (2002) as

well as Hartmann and Briskorn (2010). Much of this literature assumes that both the

activities and the precedence relationships and hence the project structure are given,

whereas we consider below only the case in which there is a substantial degree of

project structure flexibility.

A certain degree of flexibility is considered in the multi-mode extension of the

RCPSP, the MRCPSP (cf., e.g., Talbot (1982), or for a recent survey Wȩglarz et al.

(2011)). In the MRCPSP, different execution modes can be available for an activity,

even though each activity must still be implemented in one of the available modes.

Another approach—to depart from the standard assumption of a strictly given project
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structure with only mandatory activities and precedence relationships—was introduced

by Tiwari et al. (2009), who extended the MRCPSP using rework activities. Here, the

basic assumption is that rework is required if the original activity is implemented in a

specific predefined mode. However, the underlying modelling assumption is that re-

work always consists of a single activity that is a direct successor of the original activity

causing the rework. This approach is much less general and flexible than the concept of

a flexible project as outlined in Section 2.1.

Logical dependencies between some activities are considered in Belhe and Kusiak

(1995) who present the so-called “design activity network” approach, whereas alterna-

tive process plans are treated explicitly in Čapek et al. (2011). In these approaches, one

assumes that a logical dependency among activities always accompanies a precedence

constraint among these activities, which is not necessary in our case.

Rescheduling problems in the context of disruption-management problems at air-

ports with alternative process-implementation paths are studied in Kuster et al. (2009)

and Kuster et al. (2010). However, this approach concentrates on reactive rescheduling

as opposed to structuring a flexible project in the first place. Furthermore, the authors

do not present a formal optimisation model of their problem.

In the literature on stochastic project networks, cf. Elmaghraby (1964) or Neumann

(1990), activities that are not necessarily implemented have also been modelled. There,

however, the basic assumption is that the implementation of activities is the result of

random exogenous influences as the project progresses in contrast to the endogenous
decisions considered in our setting.

The literature on quality aspects in project scheduling is even more limited, which is

not surprising because such considerations require some concept of project flexibility. A

rather natural starting point for considering quality aspects is again the MRCPSP. In this

type of model, it is possible to tie quality levels to different modes. For example, Icmeli-

Tukel and Rom (1997) as well as Erenguc and Icmeli-Tukel (1999) consider quality as a

function of rework, which is necessary if specific modes are chosen.

Vanhoucke (2006) considers quality-dependent time slots to model the case in which

a deviation from an optimal time window results in a lower quality and thereby higher

costs. If quality aspects are considered, constraints can be used as in Tiwari et al. (2009)

and in Li and Womer (2008), where the assumption is that a certain given minimum

quality must be met. In a different paper, Tareghian and Taheri (2006) consider quality

maximisation subject to constraints on costs and project duration.

We are not aware of an approach that simultaneously optimises project structure,

schedule and outcome quality to maximise the profit of a project. The work presented
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in this paper hence aims at closing that gap. It builds on the concept of a flexible project

as introduced in Kellenbrink (2014, Chapter 3) and Kellenbrink and Helber (2013) as

well as the quality-related considerations discussed in Kellenbrink (2014, Chapter 6).

3 Quality- and profit-oriented optimisation model

We now formally define the quality- and profit-oriented scheduling problem for resource-

constrained flexible projects (RCPSP-PS-Q). The problem is a modification and exten-

sion of the well-established RCPSP, cf. Klein (2000), pp. 79-80, and the RCPSP-PS, cf.

Kellenbrink and Helber (2013) with respect to the following features:

• We assume that the quality of the project outcome can be quantified along multiple

quality dimensions. The outcome is affected by the selected choice of optional

activities, i.e., the project structure, which in turn determines the project costs.

• Both the quality outcome and the project duration affect revenues, which leads to

profit-maximising decisions regarding both project structure and schedule.

Using the notation in Table 7, the problem can be formulated as follows:

Model RCPSP-PS-Q

max Z = ∑
l∈L

LFTJ

∑
t=EFTJ

ult · ylt−
J

∑
j=1

c j ·
LFTj

∑
t=EFTj

x jt (1)

subject to

LFTj

∑
t=EFTj

x jt = 1 j ∈ V (2)

∑
j∈We

LFTj

∑
t=EFTj

x jt =

LFTa(e)

∑
t=EFTa(e)

xa(e),t e ∈ E (3)

LFTi

∑
t=EFTi

xit =
LFTj

∑
t=EFTj

x jt e ∈ E ; j ∈We; i ∈B j (4)

LFTi

∑
t=EFTi

t · xit ≤
LFTj

∑
t=EFTj

(t−d j) · x jt +T · (1−
LFTj

∑
t=EFTj

x jt) j ∈J ; i ∈P j (5)

J

∑
j=1

(
k jr ·

t+d j−1

∑
τ=t

x jτ

)
≤ Kr r ∈R; t ∈T (6)
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Indices and (ordered) sets
a(e) unique activity causing choice e
i ∈B j ⊂J activities caused by activity j, with i, j /∈ V
e ∈ E topologically ordered choices, with e = 1, ...,E
j, i ∈J topologically ordered activities, with j, i = 1, ...,J
l ∈L quality grades, with l = 1, ...,L
r ∈N non-renewable resources
o ∈ O quality dimensions/attributes, with o = 1, ...,O
i ∈P j predecessors of activity j
r ∈R renewable resources
t,τ ∈T periods, with t,τ = 1, ...,T
j ∈ V ⊆J mandatory activities, including (dummy) activities 1 and J
j ∈We ⊂J optional activities of choice e

Parameters
c j cost of activity j
EFTj earliest finishing time of activity j
d j duration of activity j (integer number of periods)
k jr capacity requirement of resource r by activity j
Kr available capacity of resource r
LFTj latest finishing time of activity j
M sufficiently large number
qbase

o base quality along quality dimension o
q jo quality increase along quality dimension o if activity j is implemented
ult revenue if the project is finished in period t and quality grade l
wol minimum quality level along quality dimension o to reach quality grade l

Decision variables

x jt

{
1, if activity j is finished in period t
0, otherwise

ylt

{
1, the project is finished in period t and quality grade l
0, otherwise

Table 7: Notation of the RCPSP-PS-Q
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J

∑
j=1

(
k jr ·

LFTj

∑
t=EFTj

x jt

)
≤ Kr r ∈N (7)

qBasis
o +

J

∑
j=1

q jo ·
LFTj

∑
t=EFTj

x jt ≥ wol−M · (1−
T

∑
t=1

ylt) o ∈ O; l ∈L (8)

∑
l∈L

ylt = xJt t ∈T (9)

In the objective function (1), we aim at maximising the profit related to the project.

Revenues depend on the quality grade that is reached and the period in which the

project is completed, whereas costs are related to the activities that are actually imple-

mented. According to equations (2), all mandatory activities j∈V have to be performed

at least once. In equations (3), if and only if the activity a(e), which triggers choice e, is

implemented, one of the optional activities j∈We of choice e is also implemented. Equa-

tions (4) state that, for each choice and each implemented activity j of that choice, each

other activity i∈B j that is caused by activity j is also implemented. The constraints (5)

enforce the precedence relationships between those activities that are actually imple-

mented. The capacity limits for renewable and non-renewable resources are enforced

in constraints (6) and (7), respectively. The constraints (8) guarantee that the mini-

mum quality level wol, which corresponds to the resulting quality grade l, is reached

along all quality dimensions o, whereas constraints (9) determine the period in which

the project is completed. The earliest and latest finishing times EFTj and LFTj, re-

spectively, for each activity j are computed in a preprocessing step considering only the

mandatory activities and the given time horizon. This computation reduces the number

of variables to consider and the computational effort required to solve the model using

a standard MIP solver such as CPLEX.

Note that the RCPSP is a special case of the RCPSP-PS-Q in which the set E is empty

(i.e., all activities are mandatory), all revenue parameters are set to ult =−t and all cost

parameters are set to c j = 0. Because the RCPSP is an NP-hard optimisation problem

(cf., e.g., Blazewicz et al. (1983) or Klein (2000, p. 90)), so is the RCPSP-PS-Q.

4 Genetic algorithm

Given that the RCPSP-PS-Q presented in Section 3 is an NP-hard optimisation problem,

it is not surprising that the numerical effort required to fully solve it to optimality using,

e.g., an exact standard solver such as CPLEX, increases dramatically with the size of

the problem instances. Many heuristic approaches have therefore been proposed in the
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context of project scheduling. A promising starting point for our problem is the genetic

algorithm for the MRCPSP presented in Hartmann (2001). Genetic algorithms mimic

evolutionary selection processes within populations of a species; see, e.g., Goldberg

(1989). In the genetic algorithm for the MRCPSP developed by Hartmann (2001), a

solution to the problem is essentially represented by an activity list. This activity list

serves as a priority ordering of activities to be fed into a serial schedule-generation

scheme, cf. Kelley (1963), pp. 352-353, or Kolisch and Hartmann (1999), p. 152.

In Kellenbrink and Helber (2013) and Kellenbrink (2014), a genetic algorithm is

described and evaluated to solve an RCPSP-PS with a makespan minimisation objective.

The algorithm in this study generalises and extends the ideas presented in Hartmann

(2001) to the case of flexible projects. The algorithm for the RCPSP-PS shows attractive

performance with respect to both solution quality and computation time. We modi-

fied that algorithm presented in Kellenbrink and Helber (2013) to solve the profit- and

quality-oriented RCPSP-PS-Q modelled in Section 3 of this paper. In the following, we

describe both the central elements of that algorithm and the modifications that are due

to the specific features of the profit- and quality-oriented problem treated in this paper.

The common implementation details of the genetic algorithm can be found in Kellen-

brink and Helber (2013) and Kellenbrink (2014). Those details are not repeated here

as they are beyond the scope of this paper.

One of the most important aspects of any genetic algorithm is the encoding of the
individual candidate solutions. In Kellenbrink and Helber (2013), we used an encoding

of an individual solution I based on an activity list λ and an implementation list ν:

I =

(
Choice list α Activity list λ

Auxiliary information Implementation list ν

)
(10)

For expository purposes, the encoding is augmented by a choice list α and auxiliary

information on the left side of equation (10). Consider the project network in Figure 1

with the data in Table 1 and the following individual candidate solution:

I =

(
5 7 1 3 6 4 2 8 5 7 9 10

1;{4,5} 5;{7,8} 1 1 1 0 1 0 1 1 0 1

)
(11)

This solution indicates that, in the first choice, between activities 4 and 5, activity

5 is selected for implementation. The selection of activity 5 in turn activates the sec-

ond choice, in which activity 7 is chosen. Consequently, activities 4, 8 and 9 are not
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implemented, which is indicated by the “0” entries in the implementation list; see also

Figure 3 for a visualisation.
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Figure 3: Project with structure B
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Figure 4: Schedule for individual I

In the standard serial generation scheme, each activity is then scheduled as early

as possible with respect to capacity constraints and precedence relationships. In that

scheduling process, activities are treated according to the sequence in the activity list λ .

Consider the activity list λ in (11) and assume that the single renewable resource has

a period capacity of 10 units. Figure 4 shows the resulting schedule for that individual

solution I in (11). The first non-dummy activity to be scheduled is activity 3. Then,

activity 6 is scheduled. Due to the capacity constraint, activity 6 can only begin after

activity 3 is completed. Activity 4 is not implemented. Then, activity 2 is considered

and scheduled to start as early as possible, i.e., at time 0. See (Kelley 1963, pp. 352-

353), Kolisch and Hartmann (1999) or Kellenbrink and Helber (2013) for details on
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that method. Each such individual I hence leads to exactly one project structure and

schedule.

In the fitness function of the genetic algorithm, the unique schedule associated with

each individual and its specific profit is determined. This determination is straightfor-

ward because all of the required revenue and cost information on the implemented

activities and project termination as well as the resulting quality levels and aggregated

quality grade can be found in or be immediately derived from the schedule. For fur-

ther details on the implementation of the algorithm, such as crossover, mutation, and

selection, please see Kellenbrink and Helber (2013).

5 Numerical results

5.1 Overview

The objective of this section is two-fold. On the one hand, we want to assess the per-

formance of the genetic algorithm with respect to solution quality and computational

effort. This topic is addressed in Section 5.2. On the other hand, we want to use a fic-

titious case study to demonstrate the type of effects that can be discovered and studied

with respect to the behaviour of the solutions using our model. Section 5.3 is devoted

to that latter aspect.

5.2 Performance evaluation of the genetic algorithm

In Kolisch et al. (1995), the ProGen instance generator for RCPSPs was introduced. It

was extended in Kellenbrink (2014) and Kellenbrink and Helber (2013) to generate

instances of flexible projects in a systematic way. For the purpose of this study, the

generator was further extended to cover quality as well as cost and revenue aspects

in addition to all of the other aspects originally considered in Kolisch et al. (1995).

As a result, the following aspects of a RCPSP-PS-Q were varied systematically in our

numerical study:

1. Number of activities

2. Network complexity, defined as the number of non-redundant precedence rela-

tionships per activity

3. Resource factor, describing how intensely activities are related to renewable and

non-renewable resources
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4. Resource strength, measuring the tightness of the capacity constraints of renew-

able and non-renewable resources

5. Number of choices among alternative activities

6. Number of alternative activities per choice

7. Number of caused activities and number of activities causing other activities

We constructed four problem classes A, B, C, and D with 30, 60, 90, and 120 non-

dummy activities, respectively. To this end, the above-mentioned aspects were varied

systematically in a full-factorial way to create 1536 test instances for each of the four

classes.

We created the cases such that each test instance was feasible with respect to re-

newable resources, but not all of them were feasible with respect to non-renewable

resources. Note that infeasibility with respect to non-renewable resources can be ver-

ified easily by solving a relaxed version of the RCPSP-PS-Q in which the precedence

constraints as well as the capacity constraints for the renewable resources are omitted.

If and only if the relaxed problem is infeasible is the original (non-relaxed) problem also

infeasible. It is also reassuring to observe that a substantial fraction of the problem in-

stances are infeasible due to non-renewable resources because this observation implies

that the instance generator creates problems in which the non-renewable resources are

tight enough to be relevant. Out of those 1536 instances for problem classes A to D,

1174, 1076, 1053, and 1030 instances were shown to be feasible, respectively. The

exact parameters of those instances as well as the details regarding the construction

process can be obtained from the authors on request, see also Kellenbrink and Helber

(2013, Appendix B).

To assess the quality of the solutions found via our genetic algorithm, we com-

pared the results to reference values from a (potentially aborted) branch&bound ap-

proach using CPLEX 12 on a 2.00 GHz Intel Xeon machine with 34 GB of RAM and

four threads in a central computing cluster at Leibniz Universität Hannover, c.f. www.

rrzn.uni-hannover.de/clustersystem. However, aggregating the deviations

from those reference values is not straightforward due to the level of measurement in

the objective function (1). Note that the profit is only interval-scaled but not ratio-

scaled. In other words, because the profit has no meaningful absolute zero value (un-

like, for example, the makespan), relative deviations, i.e., ratios, from optimal profit

values are not meaningful. This particular aspect of the profit objective can easily be

understood by considering the relative deviation from the optimal profit in a case in

which this optimal profit is zero.
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Table 8: Results for the test instances in class A with 30 non-dummy activities

Genetic Algorithm CPLEX
1040 5040 10000

schedules schedules schedules
Average gain [%] 99.84 99.89 99.89 100.00
Best [%] 85.09 88.76 89.27 100.00
Time [s] 0.02 0.07 0.14 277.20

Table 9: Results for the test instances in class B with 60 non-dummy activities

Genetic Algorithm CPLEX
1040 5040 10000

schedules schedules schedules
Average gain [%] 99.63 99.86 99.87 99.76
Best [%] 59.48 77.42 79.65 88.38
Time [s] 0.05 0.19 0.37 1269.85

Table 10: Results for the test instances in class C with 90 non-dummy activities

Genetic Algorithm CPLEX
1040 5040 10000

schedules schedules schedules
Average gain [%] 99.61 99.87 99.90 99.35
Best [%] 52.52 73.98 81.67 80.06
Time [s] 0.09 0.35 0.67 2014.68

Table 11: Results for the test instances in class D with 120 non-dummy activities

Genetic Algorithm CPLEX
1040 5040 10000

schedules schedules schedules
Average gain [%] 99.56 99.87 99.91 98.56
Best [%] 38.93 66.12 80.19 73.11
Time [s] 0.15 0.55 1.05 2694.78
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For this reason, we defined the achieved percentage of the possible profit gain as a

ratio-scaled performance measure. To this end, we first determined the smallest possible

profit for each instance for the given time horizon by minimising instead of maximising

the objective function in (1) in the relaxed problem version mentioned above (without

precedence constraints and capacity constraints for renewable resources). Second, we

tried to determine for each instance the maximum of the objective function values by i)

applying the genetic algorithm and by ii) using CPLEX to determine a profit-maximising

solution. We then determined the fraction of the profit interval (or range) for each

instance that could be achieved via the genetic algorithm. Assume, for example, that the

smallest possible profit is 20 and the largest possible profit (determined for the proven

optimal CPLEX solution) is 90, whereas the best solution from the genetic algorithm

has a profit of 80. Therefore, 80−20
90−20 ≈ 85.7% of the possible profit gain can be achieved

via the genetic algorithm. Those percentage values can then be averaged to assess the

overall solution quality.

Although it was possible to determine the exact smallest possible objective function

(profit) values for all of the feasible problem instances with quite limited numerical ef-

fort, such solutions were often not possible for the proven largest possible profit values.

In our attempt to compute upper reference values, all of the instances of class A were

solved to proven optimality. However, we had to limit the CPLEX computation times at

the compute cluster to 7200 seconds of CPU time per instance for classes B to D. Within

those CPLEX CPU time limits, there were cases in which the best solutions that we know

of were found through the genetic algorithm. In such cases, the genetic algorithm hence

found 100% of the possible profit interval gain, as it is known to us.
As in Kellenbrink and Helber (2013), we identified and eliminated the optional ac-

tivities that would violate the capacity constraints of the non-renewable resources if

they were implemented in a preprocessing step because they could never be part of any

feasible solution but could inflate the required computation time. The genetic algorithm

was implemented in Delphi XE and executed on a 2.66 GHz Intel Core2 Quad machine

with 4 GB of RAM using a single thread. Each generation of the genetic algorithm con-

sisted of NI = 80 individuals (and hence schedules). To illustrate the improvement in the

solutions over the generations, we present the results for generations 13, 63, and 125

NG, i.e., after generating 1040, 5040, and 10000 schedules. The mutation parameters

were set to mα = 3% and mλ = 10%, respectively.

The aggregated results are presented in Tables 8 to 11. Consider, for example, the

results for problem class A in Table 8 for the case of 63 generations, i.e., 5040 gen-

erated schedules. On average, over the 1174 feasible instances of that class, 99.89%
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of the possible profit gains were achieved via the genetic algorithm, and in 88.8% of

the instances, the genetic algorithm found the best known (for this class even optimal)

solution when generating those 5040 schedules. On average, this process required 0.07

seconds of CPU time per instance. Note that for all of the classes, the genetic algo-

rithm on average achieved more than 99% of the possible profit gain that is known

at present. As the number of activities increases from problem class A to D, the best

known solutions were found more frequently using our genetic algorithm to generate

10000 schedules than using CPLEX. However, as the problem instances become larger,

more generations of the genetic algorithm are required, i.e., more schedules have to be

constructed and evaluated to find good solutions. Given the high overall quality of the

results, the algorithm appears to be quite robust with respect to the different problem

aspects that were systematically varied in our test bed. Even for the larger instances, the

numerical effort of the modified genetic algorithm appears to be negligible compared

with the CPLEX computation times. We thus conclude that the genetic algorithm is both

fast and reliable.

5.3 Behaviour of solutions and structural insights

In this section, we address the structural aspects of the behaviour of the solutions,

i.e., the “economic mechanics” of the problem. To this end, based on the project in

network in Figure 5, we study a case that is still manageable yet is substantially richer

than the example in Figure 1. We assume that one renewable and one non-renewable

resource are required for the activities. Table 12 contains the activity-related data.

Note that in this table we only consider the quality impact that is due to the optional

activities. Furthermore, we consider two different quality dimensions. Figure 6 shows

the relationship between the quality levels along those two quality dimensions and the

resulting five-stage quality grade. The quality grade increases as the threshold values

for the two quality dimensions are reached. The customer’s assumed willingness to

pay as a function of quality grade and project duration is depicted in Figure 7. The

customer’s willingness to pay increases substantially with increasing quality grade but

only increases moderately with decreasing project duration.

For our numerical study we determined the optimal solutions for values of the ca-

pacity Kr1 of the renewable resource ranging from 6 to 16 and for the non-renewable

resource Kn1 for values ranging from 65 to 85. The results with respect to profit, project

duration and quality grade are summarised in Figures 8, 9, and 10. Figure 8 shows

18



Activity

Activity

Activity

Activity

Activity

Activity

Activity

Activity

Activity

Activity

Activity

Activity

Activity

Activity

Activity
Activity

Activity

Activity

Activity

Activity

Activity

Activity
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

W1

a(1) = Act. 1

W2

a(2) = Act. 1

W3

a(3) = Act. 1

W4

a(4) = Act. 1

BAct. 15

BAct. 16

Figure 5: Flexible project with 2 ·3 ·3 ·2 = 36 project structures
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Figure 6: Quality grade as a function of two-dimensional quality levels
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Table 12: Activity data

j d j kr1, j kn1, j c j q j,o1 q j,o2
1 0 0 0 0 0 0
2 6 3 8 76 0 0
3 7 2 8 68 0 0
4 6 4 6 78 9 12
5 3 2 2 22 1 2
6 5 5 10 100 12 14
7 6 3 5 61 5 4
8 2 3 2 22 2 2
9 4 5 2 50 0 0
10 3 2 1 17 0 0
11 6 6 7 107 0 0
12 6 3 2 46 0 0
13 4 6 7 83 0 0
14 5 4 8 80 10 12
15 5 1 10 60 6 6
16 3 5 2 40 3 3
17 6 4 7 83 10 8
18 4 8 2 74 3 1
19 7 3 8 82 0 0
20 4 8 5 89 13 10
21 2 3 6 42 1 2
22 0 0 0 0 0 0
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Figure 7: Revenue as a function of project duration and quality grade

that the profit increases as the capacity of both resource types increases. As the capacity

of the renewable resource increases, the project duration decreases; see Figure 9. In
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Figure 8: Profit as a function of capacity levels

almost all of the cases, the increase in the capacity of the renewable resource does not

affect the quality grade. The single exception is the case with the highest capacity of the

non-renewable resource kn1 = 85, in which an increase in the capacity of the renewable

resource from 6 to 8 leads to a change in the quality grade from 4 to 5; see Figure 10.

The more substantial profit increase in Figure 8 is due to an increase in the capacity

of the non-renewable resource. Due to this capacity increase, optional activities that

require a high resource consumption of the non-renewable resource and lead to higher

quality and revenues can be selected.

Figure 9 indicates that the project duration decreases as the capacity of the renew-

able resource increases because more and more activities can be performed in parallel.

Note, however, that an increase in the capacity of the non-renewable resource in several

cases leads to an increase in the project duration. The reason is that more elaborate ac-

tivities can now be selected, yielding a substantially higher quality grade and eventually

a higher profit, even though the project duration may increase.

These examples show how complex the interactions between project structure, qual-

ity, capacity requirements, project duration and profit can be. The model presented in

Section 3 captures these relationships, and the algorithm outlined in Section 4 solves

these problems quickly and with high solution quality.
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Figure 10: Quality grade as a function of capacity levels

6 Conclusion

We have studied the problem of determining both an optimal project structure and an

optimal schedule for a specific type of a flexible project. In such a project, the optional

activities affect the quality of the project outcome, the cost, the revenue and the re-
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source consumption. We presented a formal model for the problem as well as the core

elements of a genetic algorithm to solve the model for problem instances with a large

number of activities. In a systematic numerical study on accuracy and performance,

the algorithm showed highly satisfactory behaviour. In a further study on structural

effects, we investigated and explained the complex interactions between the different

aspects of that complex problem. We obtained both intuitive and (perhaps) not so in-

tuitive results. Among the intuitive results are the decreasing rates of return of both

renewable and non-renewable resource availabilities with respect to projects’ profit and

the decrease in project duration due to an increase in renewable resource capacities.

A perhaps not so intuitive result is that an increase in the capacity of a non-renewable

resource can lead to an increase in project duration. Combining project structure flex-

ibility with quality and profit aspects hence appears to lead to a rich and potentially

quite useful project-scheduling approach. A possible direction for further research is the

multi-project problem in which different flexible projects compete for resources. Fur-

thermore, given that the genetic algorithm is rather fast, one could modify it to deter-

mine an approximation of the front of Pareto-efficient solutions with respect to quality

grade, cost and duration of the project. From the algorithmic perspective, one could try

to generalize other efficient algorithms for resource-constrained project scheduling to

solve the model proposed in this paper, taking advantage of the comparison presented

in Kolisch and Hartmann (2006).
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