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Abstract

In this paper we introduce a new nonlinear Markov-STAR model to capture both

the markov switching and smooth transition dynamics for real exchange rates.

The Markov switching part captures the effect of time variations of the equilibrium

exchange rates, while the smooth transition part models the nonlinear adjustment

to the equilibrium. We describe the model and the estimation algorithm. In

an empirical application the Markov-STAR model is applied to the real exchange

rates of 18 countries. In an effort to make sense of the switching equilibrium rates,

we relate relevant macroeconomic variables, such as output gap, inflation rate, and

economic uncertainty to the smoothed probabilities through logit regressions. We

find that, consistent with economic models, a deteriorating economy relative to

US economy tends to significantly increase the likelihood of the real exchange rate

to depreciate relative to the US Dollar for the majority of the countries under

investigation. Furthermore, a higher economic uncertainty in the US tends to

significantly increase the likelihood of a real exchange rate appreciation for many

advanced European economies while it is exactly the opposite for some developing

countries. Finally, we also find strong evidence that rising economic uncertainty

tends to be associated with a higher exchange rate volatility.
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1 Introduction

It has been well established that the real exchange rate dynamics is featured by nonlinear

adjustments (Taylor and Sarno (2003)). In efforts to resolve the purchasing power parity

(PPP) puzzle due to Rogoff (1996), researchers find that the tendency for the real

exchange rate to revert back to its equilibrium value becomes stronger only when it is

further away from its equilibrium value, because of the transaction and transportation

costs involved in arbitrage activities. Michael et al. (1997) and Taylor et al. (2001) apply

the exponential smooth transition autoregressive (ESTAR) models, due to Teräsvirta

(1994), to the real exchange rate and document a stronger tendency for the real exchange

rate to revert to its PPP value once the nonlinearity is accounted for. This type of model

involves the self-exciting adjustments and contains two autoregressive regimes with a

symmetric smooth transition conducted by an exponential transition function between

these regimes. In the model the exchange rate is nonstationary when it is close to its PPP

equilibrium value but the mean-reversion happens when its deviation from PPP becomes

large. An overview about the econometric properties of this model can be found in van

Dijk et al. (2002). While Lo (2008) points out that certain nonlinear smooth transition

models have the potential of resolving the PPP puzzle, Lo and Morley (2015) further

provide empirical evidence that once multiple regimes are taken into consideration the

half lives of the PPP deviations are significantly reduced, corroborating findings in the

existing literature such as those cited above. Furthermore, Kilian and Taylor (2003) and

Rapach and Wohar (2006) show that these smooth transition models can improve the

forecast of the real exchange rates relative to linear models. However, one important

drawback of these threshold or smooth transition models is that the equilibrium real

exchange rates are often assumed to be constant, which is at odds with various economic

theories and models that suggest otherwise (see e.g. Engel (2000) and Engel and West

(2005)). As such, it is important to introduce additional dynamics to account for the

possibly changing equilibrium exchange rates.

Another popular nonlinear model for the real exchange rate is the Markov regime-

switching model, due to Hamilton (1989). In this type of model, a set of latent factors

that follow a binomial distribution generates distinct regimes, which turn out to be

useful to capture sudden but persistent regime shifts in the real exchange rate data.

In particular, Engel and Hamilton (1990) demonstrate that an autoregressive model

augmented with Markov regime-switching means and volatilities proves successful in

capturing the long swings that are often featured in the real exchange rate data. Engel

and Kim (1999) decompose the US/UK real exchange rate into permanent and transitory

- 2 -



components by allowing for Markov regime-switching variances of the shocks. Further

Engel (1994) and Bergman and Hansson (2005) explore the forecast ability of the Markov

regime-switching model, and they find some evidence that the Markov switching model

can improve upon the forecast performance relative to a standard nonstationary process

of the real exchange rates. Bergman and Hansson (2005) further show that the Markov

switching model can explain the often documented failure of rejecting a unit root in

the real exchange rate (see e.g., Lopez et al. (2005)). These works have shown that the

Markov switching dynamics are useful to capture the possibly changing equilibrium real

exchange rates.

Although most often the above two different dynamics have been employed separately

to model the exchange rate, recently several attempts have emerged to compare and/or

combine these two models to study the real exchange rate. For example, Kaufmann et al.

(2014) argue that the ESTAR model aims to capture the dynamic adjustment process

that is self-excited by large deviations from PPP, but the Markov regime-switching

model allows for sudden but persistent regime shifts which are better at capturing large

external shocks such as currency devaluations. They apply a statistical model specifi-

cation test and show that the former tends to hold for countries within the European

Union whereas the latter effect rather dominates for less developed countries. Similarly,

Ahmad and Lo (2014) study how these two models can be distinguished from each other

by conducting Monte Carlo simulations. Given the different nonlinear dynamics and

distinct types of nonlinearities these two models aim to capture, it is reasonable to sug-

gest that both of these nonlinear dynamics may be present in the data especially over

longer time span. It makes sense to argue that the Markov switching dynamics is better

at capturing the possibly changing equilibrium real exchange rate while the threshold

or smooth transition dynamics can account for the impact of transaction or transporta-

tion cost when the real exchange rate is moving toward its equilibrium value. To allow

for both types of nonlinear dynamics, we introduce a model that combines the Markov

regime-switching and the ESTAR approaches, in a parsimonious setup. Our new MS-

ESTAR model contains an ESTAR process where the first regime is a Markov-Switching

Autoregressive (MSAR) process. Our model therefore allows for exogenous shocks by

its MS component. However, the size of the shocks is restricted by the forces of the

ESTAR component making unrealistic break sizes rather unlikely. (By eye-balling we

find that the resulting paths look rather like a real exchange rate process opposite to

ESTAR- or MS-processes alone.)

The purpose of this paper is, however, twofold. Following discussions so far, we build

on previous literature and propose a new nonlinear Markov-STAR model to capture

both types of nonlinear dynamics in the real exchange rates data. More importantly,

although the equilibrium exchange rates are related to a set of economic fundamental
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variables in standard economic models (see Engel and West (2005)) and some previous

work have presented supportive empirical evidence (see Rapach and Wohar (2002) and

Cerra and Saxena (2010)), such a close connection is all but conclusive (Bacchetta and

van Wincoop (2013)). Therefore, our second purpose of this paper is to investigate the

connection between the equilibrium real exchange rates and their economic fundamentals

after taking into account the realistic nonlinear feature of the exchange rate data through

the lens of our newly proposed model. To our knowledge, our work is the first to study

the connection between the exchange rate and its economic fundamentals in the context

of a highly nonlinear model.

Our approach is in line with Sarno and Valente (2006). They propose a VECM approach

and define a so-called nonlinear Markov-Switching-Intercept-Autoregressive-Heteroske-

dastic-VECM containing an MS component and also an exponential adjustment compo-

nent. However, their model specification is different from ours. Furthermore, we provide

a discussion of the economic motivation of such a general model, and we attempt to re-

late the regime switchings of the real exchange rate to economic fundamental variables.

We present compelling evidence that the Markov regime switchings estimated in our

general model are strongly related with the underlying economic fundamental variables,

such as the output gap differentials, inflation differentials, and economic uncertainties,

in the right direction. Therefore, our work corroborates recent findings in the literature

that have found some connections between the exchange rate and its economic funda-

mentals (see e.g., Engel and West (2005), Rapach and Wohar (2002), Cerra and Saxena

(2010), and Balke et al. (2013)). What makes our work distinct from all the above

cited work is that our findings are made in a highly nonlinear but also more realistic

model that includes both the MS and ESTAR adjustments. Therefore, we identify a

stronger connection between the exchange rate and its economic fundamental variables

in presence of nonlinear dynamic adjustments often featured in the real exchange rate

data.

2 Economic Motivation

The literature that employs the STAR type of models to account for nonlinearity when

evaluating the mean-reversions of the real exchange rates often assumes a constant or a

stable band for the real exchange rates to converge to. While it is important to account

for nonlinearity that could intuitively arise due to transaction or transportation costs

(Lo and Zivot (2001)) or aggregation (Taylor (2001)), there are a number of reasons why

restricting the equilibrium real exchange rate to a constant may be too restrictive an

assumption. For example, Engel (2000) argues that the usual unit root tests often fail to

capture the Balassa-Samuelson effect, which refers to time variations of the equilibrium
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real exchange rates arising from differences of the productivity growth, because of the

nontrivial size distortions of these tests in many economically realistic scenarios. As

a way to capture these time variations of the equilibrium real exchange rates, Engel

and Kim (1999) propose an unobserved components model where they decompose the

real exchanges rates into a permanent and a transitory component. The permanent

component is taken as an approximation of the time-varying equilibrium exchange rates

accounting for structural changes in long observational periods whereas the transitory

component governs the convergence towards this equilibrium. Their exchange rate model

is given in state space form where the permanent component is modeled as a random

walk whereas the transitory component is an AR(2) process.

Other papers also attempted to account for the time variations of the equilibrium real

exchange rates using different approaches. For example, Hegwood and Papell (1998)

allow for multiple exogenous structural breaks in the mean when testing the PPP and

find evidence for shorter half-lives of PPP deviations. On the other hand Papell and

Prodan (2006) employ a time trend together with the structural breaks to allow for the

Balassa-Samuelson effect and find stronger evidence for PPP after controlling for the

time varying equilibrium real exchange rates.

We extend the approach in Engel and Kim (1999) but propose an alternative model to

capture the time varying equilibrium real exchange rates using the Hamilton (1989) type

Markov regime switching process. Our model allows for shifts in the mean as well as in

the variance. Different to Hegwood and Papell (1998) we model shifting regimes in the

mean not by a dummy variable but by a Markov Switching stochastic process. Thus, our

model also allows for a time varying equilibrium real exchange rate. The difference of

our approach to the Engel and Kim model is that our permanent component is constant

over some periods with a positive probability whereas it is constantly moving in the

Engel and Kim approach. However, one important difference between our model and

the Engel and Kim model and the Hedgewood and Papell model is that our transition

component towards the equilibrium is nonlinear and depends on the distance between

the actual real exchange rate and the switching equilibrium values. In this way, we

combine two important features from two major literatures: one that focuses on the

time-varying equilibrium real exchange rate but is restricted to linear mean-reversions,

and the other that stresses nonlinear mean-reversions but inhibits a changing equilibrium

real exchange rate.

We present a simple economic model in the spirit of Engel and West (2005) and Engel

(2015) to motivate our econometric specification. Consider the following general interest

parity condition:

Etst+1− st = it − i∗t + xt (1)
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where st is the (log) nominal exchange rate and it is the nominal interest rate at time

t. Et denotes the expected value. The exchange rate is quoted as the price of one

foreign currency in terms of domestic currencies and the variables with ∗ denote foreign

variables. The stochastic variable x is necessary as there has been overwhelming evidence

against the strong version of the uncovered interest parity (Fama (1984)). One economic

justification of the variable x is that it represents a time-varying risk premium within

the rational expectation framework. By definition the (log) real exchange rate q is given

by:

qt = st+ p∗t − pt, (2)

where p denotes the (log) price level. Also by definition the inflation rate π is:

πt+1 = pt+1− pt (3)

and the real interest rate rt is defined by:

rt = it −Etπt+1. (4)

Combining equations (1), (2), (3), and (4), one can easily derive the following stochastic

difference equation that determines the real exchange rate:

qt = Etqt+1+ (r∗t − rt)− xt.

Iterate this equation forward to obtain:

qt = Et

∞
∑

j=0

(r∗t+ j− rt+ j)−Et

∞
∑

j=0

xt+ j+ lim
T→∞

Etqt+T .

This present value formulation of the exchange rate determination has been explored

by Engel and West (2006) and Balke et al. (2013) among many others. In this parti-

cular type of simple model based on the parity condition, the economic fundamentals

are the real interest rate differential and the risk premium. The last term will be

nontrivial if the rational bubble is present. The real interest rates are primarily affected

by productivity, and possibly monetary policies in presence of nominal rigidities and

monopolistic competition (Woodford (2003)). The equilibrium real exchange rate can

also change due to the second term in the above equation so-called risk premium, which

is by consensus most likely stationary, see Engel et al. (2012). At the same time, the

rational bubble can emerge in some periods but be contained in others. Given such

economic model, it makes sense to employ the stochastic Markov switching variable to

approximate the time-varying equilibrium real exchange rate due to changing economic
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fundamentals and/or the emergence and disappearance of the rational bubbles. Suppose

traders collect fundamental news and take advantage of such a model or similar ones to

execute her trades. She will not start to trade, however, unless the actual exchange rate

differs from her calculated equilibrium value by a margin large enough to make up for

the involved transaction or information cost. Therefore, reversions to the equilibrium

real exchange rate will be nonlinear.

The rest of the paper is organized as follows. Section 3 defines our model, section 4

describes the estimation of the model parameters, section 5 applies the model on real

exchange rate data and section 6 concludes. All Tables and Figures are in the appendix.

3 The Markov-STAR Model

The general ESTAR model is given by two autoregressive regimes connected by a smooth

exponential transition function G( · ;γ,c) : IR→ [0,1]. This function governs the tran-

sition between the two regimes in a smooth way. Alternatively, an ESTAR model can

also be interpreted as a continuum of regimes which is passed through by the process.

In general, univariate ESTAR(p) models, p ≥ 1 and d ≤ p, are given by

(qt − c) =

















p
∑

k=1

ψk(qt−k− c)

















× (1−G(qt−d;γ,c))+

















p
∑

k=1

θk(qt−k− c)

















×G(qt−d;γ,c)+εt

=

p
∑

k=1

ψk(qt−k− c)+

















p
∑

k=1

φk(qt−k− c)

















×G(qt−d;γ,c)+εt, t ≥ 1,

(5)

with εt
iid
∼ (0,σ2).1 c can be interpreted as the threshold parameter where G(c;γ,c) = 0.5.

As we use demeaned data in our application we specify the threshold parameter to be

the mean of the respective real exchange rate, i.e. c = q.

For an ESTAR model the transition function G(·) is given by

G(·;γ,c) = 1−exp
{

−γ(qt−d − c)2
}

; γ > 0 .

This exponential transition function provides a symmetric adjustment towards the equi-

librium. Surveys of the broad field of nonlinear time series models in general and STAR

models in particular are given by Potter (1999) and van Dijk et al. (2002); see also

Teräsvirta (1994).

The most frequently used special case of the general ESTAR model in (5) is the ES-

1Throughout the paper we set d = 1
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TAR(1) model

(qt − c) = ψ(qt−1− c)+φ(qt−1− c)
{

1−exp
(

−γ (qt−1− c)2
)}

+εt .

To model real exchange rate behavior, Taylor et al. (2001) and Rapach andWohar (2006)

impose an inner unit root regime, ψ = 1. This regime is corrected back by a white noise

process for the outer regime, φ=−1, to ensure global stationarity. In general, stationarity

is given as long as |ψ+φ| < 1.

Estimation of these models either by nonlinear least squares or maximum likelihood

techniques is treated by Klimko and Nelson (1978) and Tjøstheim (1986), respectively.

For the Markov switching framework we use the framework based on Lindgren (1978),

Engel and Hamilton (1990) and Engel (1994):

qt = µst +φ1stqt−1+ . . .+φpstqt−p+εt .

The values of the autoregressive parameters φ1st , . . . ,φpst and the mean µst and thus the

regime switching is governed by an unobservable Markov chain

P(st = j|st−1 = i, st−2 = k, . . . ,qt−1,qt−2, . . .) = P(st = j|st−1 = i) = pi j .

The transition probabilities pi j lie in the open unit interval and µ1 , µ2 , · · · , µN to

ensure a transient Markov chain and clear identification of the N regimes. The (N ×N)

transition probability matrix is then given by

P =

































p11 · · · p1N
... pi j

...

pN1 · · · pNN

































.

st is assumed to be an ergodic homogeneous Markov chain with invariant probability

measure π = (πi) and it is initiated at t = 0 to guarantee the independence of (st)t>0.

Extensions of this basic framework are possible, see e.g. Hamilton and Raj (2002) and

the papers cited therein.

The MSAR(1)-ESTAR(1) model (henceforward Markov-STAR) considered in this paper

is a combination of the MSAR(1)-model in the first regime of an ESTAR(1) process

qt = µst +φqt−1+ψG(qt−1;γ,c)qt−1+εt, (6)

where εt is a white noise error term with E(εt)= 0 and Var(εt)=σ2
st
. This means that we
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allow only the mean and the variance of the process to switch whereas the autoregressive

parameters are hold fixed. Allowing the autoregressive parameters to switch too would

make the model difficult to estimate and results hard to interpret. It should also be

mentioned that the transition function G(·) is centered around the switching mean so

that the adjustment process depends on the current state of the equilibrium which is

one of the desired properties of our model.

Note that via variation of γ our model nests a markov-switching only model as well as a

random walk model with a switching drift term. Concretely when γ→∞, the transition

function G(·) gets 1 and the second and third term in (6) drop out. Hence the model

becomes a markov switching only model. On the other hand, if γ→ 0 we have G(·)→ 0

and our model becomes a random walk with switching drift.

Our empirical findings indicate that the half-lifes of a one standard deviation shock de-

pend on the smooth transition part, and thus on γ, quite heavily. Further, our estimates

for γ show that a markov-switching only model does not seem appropriate for a vast

majority of the countries. Hence we note that the contribution of the smooth transition

part in our model is not only given by economic theory alone, but also seems to be

important from an empirical point of view. Section 5 describes those considerations and

the empirical results in more detail.

4 Model Specification and Estimation

The Markov-STAR model (6) is estimated via maximizing the likelihood function

L(µ,P,σ;γ,c) =
N
∑

i=1

T
∑

t=1

log fit with fit = 1′(ξit|t−1⊙ηit),

ηit =
(

2πσ2
i

)−1/2
exp
(

−0.5ε2
it/σ

2
i

)

and εit = qt −µi−φqt−1−ψG(qt−1;γ,c)qt−1

(7)

with (φ,ψ) being set to (1,−1) and ⊙ denotes element-wise multiplication. ξt|t := Pr(st =

i|qt;θ) with θ = (µ1, . . . ,µN ,σ1, . . . ,σN ,φ,ψ,γ,c) denotes the conditional probability that

the tth observation lies in regime i. ξt|t then describes the (N ×1) vector of transition

probabilities being constructed by the filter

ξt|t =
ξt|t−1⊙ηt

1′(ξt|t−1⊙ηt)
ξt+1|t = P · ξt|t
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where the starting values in ξ1|0 are set to N−1. The smoothed transition probabilities

are calculated via the algorithm of Kim (1993) being given by

ξt|T = ξt|t ⊙
(

P′
(

ξt+1|T ⊙ ξ
−1
t+1|t

))

. (8)

The iteration starts with ξT |T and goes backwards until t = 1. γ is selected using a grid

search with values γk = (0.01,0.03,0.05,0.1, . . . ,2,2.5,3, . . . ,10,15). Hence for each one of

the k = (1, . . . ,59) values of γk the likelihood is maximized resulting in Lk = L(θk) with

θk = (µk,Pk,σk;γk). The final model specification with parameter vector θk∗ then satisfies

k∗ = argmaxk Lk.

In the second part of the analysis we specify a logit model in order to explain the behavior

of the transition probabilities by macro variables X such as output gap differentials,

inflation differentials and economic uncertainty. For this purpose we take the first row

of the smoothed probabilities ξt|T , i.e. we fix i = 1 in p̃i := Pr(st = i|qT ;θ). Then we recode

the first row of ξt|T into a binary variable Y such that

Y :=



















0 for p̃1 ≤ 0.5

1 for p̃1 > 0.5.
(9)

Hence the markov chain is expected to be in the second state for Y = 0.

We then fit the logit model Y = Xβ+ u via maximum likelihood where u denotes an

error term. The estimated coefficients β̂ then describe the marginal effect of X on

ln(p̃1/(1− p̃1)). Thus if β̂ < 0, p̃1 < 0.5 and one would expect an increase of the macro

variable leading to a switch from regime 1 to regime 2.

5 Empirical Analysis

We fit the Markov-STAR model (6) to real exchange rate data of 18 countries.2 For

this we use monthly data from 01/60 until 04/14 for the real exchange rates yielding a

sample size of at most T = 652(without missing data). Hence for those countries having

adopted the Euro in 1999 (Finland, France, Italy, Netherlands, Portugal and Spain)

we have data from 01/60 until 12/98, i.e. T = 468 observations. An exception marks

Germany where data is available only from the time of the German reunification until

the Euro adoption.

The real exchange rates are constructed as described in section 2, i.e. qt = st + p∗t − pt

and demeaned. Hence as qt is formulated in direct quotation an increasing value of qt

2The selection of the countries is due to data availability of both the exchange rate data as well as the
country-specific exogenous explanatory variables.
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corresponds to a depreciation of the currency in real terms and vice versa.

For country-specific explanatory variables we compute the output gap and inflation dif-

ferentials, all relative to the U.S. All data are taken from the IMF eLibrary. The output

gap differential is constructed as in Engel and West (2006), i.e. as the residuals from

quadratically detrended output, where the output is measured as the log of seasonally

adjusted industrial production. The output gap differential variable is then constructed

as the U.S. output gap minus the output gap of the respective country.

Inflation is measured as the first differences of log CPI. Inflation differentials are then

constructed as US inflation minus the respective country inflation rate. Finally as a

measure for uncertainty we utilize the index by Nick Bloom.3

The parameter estimates of the Markov-STAR model (6) are displayed in Table 1. As

the real exchange rates are demeaned, a positive (negative) value of µ̂ corresponds to a

depreciation (appreciation) of the currency over time. Hence for all countries a regime

switch from the first to the second regime marks an appreciation of the currency while

for almost two thirds of the countries the probability of residing is slightly higher in the

depreciation than in the appreciation regime as indicated by p̂1 and p̂2.

The parameter γ∗ dictates the transitional path of the exchange rates toward its equi-

librium value. The magnitude of γ∗ estimates imply that the transition back to the

equilibrium takes place rather smoothly for most of the countries. Here we observe

values of γ∗ ∈ [0.01,0.6] for almost 80% of the countries. Exceptions are i.a. Chile and

Germany where we observe a high value of γ going along with small sample sizes.

The smooth transition behavior of selected countries is plotted in Figure 1. To get a

better idea about the contribution of the smooth transition part we additionally calculate

the half-lifes for those countries. For this we apply the methodology for generalized

impulse-response functions of Koop et al. (1996), i.e. we conduct the Monte Carlo

integration algorithm with a one standard deviation shock to the real exchange rates.

The resulting half-lifes are given in Table 2. The first column returns the half-lifes

implied by the estimated γ∗ given in Table 1. The next two columns describe the

resulting half-lifes if a very small (large) γ of .01 (15) is imposed. As one can clearly

see, the implied half-lifes differ substantially over different values of γ. The difference

for UK e.g. adds up to value of over 13 years. The higher the value of γ the faster

the shock fades out due to the fact that the smooth transition part drops out of the

model. On the other hand the shock only very slowly fades out if we have a small γ

as the transition function becomes smoother in that case. Hence we can say that the

contribution of γ seems to be quite decisive concerning the transition behavior and thus

the economic implications.

3http://www.policyuncertainty.com. Another natural choice would have also been the CBOE Volatility
Index (VIX). It is, however, merely available since 1990.
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In order to explain the switching behavior of the real exchange rates and relate these

switchings to economic fundamental variables, we utilize the smoothed probabilities

from the estimation results given by (8) and specify the binary variable Y as described

in (9). Then we fit a logit model by regressing the binary variable onto the economic

fundamentals such as the output gap differential, inflation differential, and economic

uncertainty. The estimation results are displayed in Table 3.4

Based on the variable definitions and regression specifications in section 4, an increase

in the value of a fundamental variable increases the likelihood of being in regime 1

given a positive β estimate associated with that fundamental variable, but increases

the likelihood of being in regime 2 if the β estimate associated with the fundamental

variable is negative instead. Turning to the results for the output gap differential first,

it appears that in most cases the sign of the estimated coefficients is consistent with

what the economic theory or intuitions would predict. Specifically, a higher output gap

differential corresponds to a better US economy relative to the studied country and thus

leads to an appreciation of the US dollar or the depreciation of the studied currency.

Therefore, the sign of β̂ is expected to be positive so that an increase in the value of the

output gap differential will increase the likelihood of being in the regime 1, which is the

depreciation regime. For those estimates being significant at the 10% level, expectations

are met in almost 90% of the cases.

Concerning inflation, the results are somewhat mixed. Intuitively, an increase in the

value of the inflation differential indicates that the US experiences a higher inflation

rate than the studied country, leading to an appreciation of the currency against US

dollar. As a result, we expect the sign of β̂ to be negative so that an increasing inflation

differential tends to increase the likelihood of being the appreciation regime 2. This,

however is true only for 50% of all the cases with significant coefficients.

Finally, economic uncertainty is taken into account by including the Bloom uncertainty

index in the regression. This variable is statistically significant in 11 out of total 18

countries in investigation, and thus seems important in describing the switching behav-

ior of the exchange rate. Unfortunately, to our knowledge the existing economic theory

has yet to yield a clear prediction of the direction of the impact of the economic uncer-

tainty on exchange rate changes. Intuitively a rise in economic uncertainty affects all

currencies and thus results in a higher risk premium in all currencies markets, leaving

it unclear whether a particular currency will appreciate or depreciate against the US

dollar. However, if it becomes clear that the currency is affected more (less) than its

benchmark currency – US dollar in this case – then the currency is expected to de-

4The estimation algorithm for Greece did converge only until the convergence tolerance has been set
to a higher value. Still the estimates indicate strange results such that the coefficient estimates are all
insignificant - yet the McFadden R2 is very high.
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preciate (appreciate) relative to the US dollar. The regression results in Table 3 seem

to suggest that a rising economic uncertainty generally appears to affect a number of

European countries (namely Denmark, Finland, France, Germany, Italy, Netherlands,

Portugal, and Spain) less than the US so that it tends to raise the likelihood of being

in the appreciation regime 2 given the negative β̂. On the other hand, for several other

countries (namely Brazil, Canada, Turkey, and Norway), a rising economic uncertainty

appears to lead to a depreciation regime of their currencies.5

Although the model we estimate so far allows both mean and volatility to switch be-

tween two regimes, one drawback of this model is that we have only one latent MS factor

to govern both mean and volatility switchings, which is entirely due to a parsimonious

purpose.6 Despite this limitation, our model does allow a possible investigation of the

relationship between volatility switchings and economic fundamentals, which is particu-

larly relevant when relating switchings to the Bloom uncertainty index. In other words,

one can also interpret the connection between the exchange rate regime switchings and

the uncertainty index as reflecting the close association between the general economic

uncertainty and the exchange rate market volatility. For example, the estimation results

for Brazil in Table 1 show that its currency volatility becomes significantly lower from

regime 1 (high volatility) to regime 2 (low volatility). The corresponding significantly

positive coefficient estimate associated with Bloom uncertainty index for Brazil in Table

3 thus implies that a rising economic uncertainty index is closely related with an eleva-

ting currency risk in the exchange rate market. The same logic applies to several other

currencies that appear to experience significant volatility switchings: Canada, Finland,

France, and Turkey. However, such a pattern fails to emerge in general. To investigate

to what extent this is due to the drawback of mixing switchings of mean and volatility

as mentioned above, we modify (6) such that µ is fixed while σ is still allowed to switch

to focus on the volatility switching. The model estimation results are displayed in Table

4. Table 5 presents the corresponding logit estimation results for the case of a fixed µ.

Following the same specification as before, β̂ < 0 implies an increase in the value of the

economic fundamental variable increases the likelihood of being in regime 2 whereas β̂ > 0

corresponds to an increasing likelihood of being in regime 1. Based on the results from

Table 4, a switch from regime 1 to regime 2 corresponds to an increase in volatility. If we

focus on the results associated with the economic uncertainty index in Table 5 we have

statistically significant coefficient estimates in 11 out total 18 countries in investigation.

Furthermore, in all these significant cases the coefficient estimates are negative and thus

suggest that a rising economic uncertainty tends to increase the likelihood of switching

5We notice that the economies of Canada and Norway are featured by a heavy reliance of productions
and exports of oil commodity, whereas Brazil and Turkey are developing economies.

6We leave it as a future research endeavor to relax this restriction and allow for more general switchings.
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from the low volatility regime 1 to the high volatility regime 2, remarkably consistent

with the economic intuitions.

Finally, given our discussions of the exchange rate level regime switchings associated

with the fundamental variables based on the general model that allows both mean and

volatility switchings, but controlled by the same latent MS factor, we want to make

sure that the switching is not entirely driven by the volatility switching. Therefore, we

estimate (6) by fixing σ and present the results in Table 6. We then use the Likelihood

Ratio (LR) test to compare the model with the restricted σ to the general model with

unrestricted σ. Hence we calculate LR = −2ln(Lk∗∗/Lk∗) where Lk∗∗ (Lk∗) denotes the

maximized value of (7) in the restricted (unrestricted) model. The test statistics are

given in the last column of Table 6. As one can clearly see, all LR values lie between 0

and 1.09. With a critical value of 2.71 for α = 0.1 the Null of H0 : σ2 = 0 can never be

rejected. Hence we can conclude that it is rather the switch in mean than the switch in

volatility that drive the real exchange rate dynamics in the most general model that we

estimate.

6 Conclusion

Motivated by popular economic models we propose a new nonlinear Markov-STAR

model to capture both the time-varying equilibrium real exchange rates – due to vari-

ous economic factors – and the smooth transition type of nonlinear adjustment to the

equilibrium – due to the economic intuitions that imply arbitrage profits only beyond

certain transaction and transportation costs. We find this Markov-STAR model can

better capture the time series dynamics of the real exchange rate and the implied half-

lifes. More importantly, we aim to evaluate the connection between the real exchange

rate and its economic fundamentals through the lens of this newly proposed nonlinear

model. The connection between the real exchange rate and its economic fundamentals

is featured in most economic models but the empirical evidence to establish such a close

relationship has been all but conclusive. To our knowledge, our work is the first one to

investigate such a connection in a highly nonlinear context, which takes into account

the realistic feature of nonlinearity in exchange rate data. We use US as the benchmark

country and apply our model to 18 countries. We find strong evidence that the varying

equilibrium real exchange rate is closely related with economic fundamentals predicted

by standard economic models. Specifically, we find that a worsening economy relative

to US economy tends to significantly increases the likelihood of the real exchange rate

to depreciate relative to the US Dollar. Our exercises also cast a light on the role of

the economic uncertainty in affecting the equilibrium exchange rates. We find that a

higher economic uncertainty index in US significantly increase the likelihood of a real
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exchange rate appreciation for many advanced European economies while it is the op-

posite for some developing countries. Lastly, but not least interestingly, we document

compelling evidence that a rising economic uncertainty tends to be associated with a

higher exchange rate volatility, consistent with the usual economic intuitions. Based on

these findings, we reach our conclusion that the connection between the exchange rates

and their economic fundamentals becomes much stronger and clearer once the realistic

nonlinearity feature of the real exchange rate is explicitly accounted for. Therefore,

although our work provides additional empirical support for the fundamental approach

to the real exchange rate, it also points out the importance of including the nonlinearity

feature into standard economic models of the real exchange rate.
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Teräsvirta, T. (1994). Specification, estimation, and evaluation of smooth transition

autoregressive models. Journal of the American Statistical Association, 89(425):208–

218.

- 18 -



Tjøstheim, D. (1986). Estimation in nonlinear time series models. Stochastic Processes

and their Applications, 21(2):251–273.
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7 Appendix

7.1 Tables

Country µ̂1 µ̂2 p̂1 p̂2 σ̂1 σ̂2 γ∗ T

Brazil 0.0021 -0.0023 0.8801 0.9818 0.0618 0.0101 0.01 413

Canada 0.0011 -0.0006 0.8855 0.9908 0.0179 0.0031 0.01 652

Chile 0.0600 -0.0022 0.9990 0.9990 0.0000 0.0211 1.75 64

Denmark 0.0211 -0.0204 0.9499 0.9378 0.0148 0.0151 0.40 568

Finland 0.0000 -0.0014 0.9985 0.9916 0.0000 0.0280 1.15 468

France 0.0000 -0.0008 0.9990 0.9792 0.0000 0.0287 0.01 468

Germany 0.0208 -0.0256 0.9501 0.9438 0.0170 0.0153 15.00 96

Greece 0.0013 0.0000 0.9806 0.9990 0.0258 0.0001 0.55 492

Italy 0.0000 -0.0008 0.9990 0.9749 0.0001 0.0246 0.15 468

Japan 0.0102 -0.0376 0.9627 0.9102 0.0159 0.0196 0.03 652

Mexico 0.0031 -0.0100 0.9774 0.9990 0.0444 0.0001 0.03 652

Netherlands 0.0140 -0.0277 0.9604 0.9485 0.0149 0.0141 0.30 468

Norway 0.0002 -0.0002 0.9990 0.9602 0.0005 0.0241 0.15 652

Portugal 0.0108 -0.0317 0.9588 0.9389 0.0171 0.0142 0.40 468

Spain 0.0170 -0.0215 0.9536 0.9438 0.0169 0.0155 0.30 468

Sweden 0.0001 -0.0005 0.9990 0.9668 0.0003 0.0266 0.60 652

Turkey 0.0196 -0.0039 0.8583 0.9762 0.0869 0.0188 0.01 544

UK 0.0172 -0.0199 0.9156 0.9357 0.0161 0.0130 2.50 316

Table 1: Estimation results of the Markov-STAR model qt = µst +φqt−1+ψG(qt−1;γ,c)qt−1+ εt

with φ = 1 and ψ = −1.

Country γ = γ∗ γ = .01 γ = 15 St. Dev.

Denmark 2.2074 11.0146 0.3067 0.1871

Japan 4.4847 6.3560 0.0833 0.3746

Spain 2.4880 10.5711 0.0833 0.2727

UK 1.2280 13.6058 0.6049 0.0835

Table 2: Returns the half-lifes in years of the Markov-STAR model qt = µst + φqt−1 +

ψG(qt−1;γ,c)qt−1 + εt with φ = 1 and ψ = −1 for a one standard deviation shock. The first
column refers to the estimated value of γ from Table 1, the second with an imposed γ of 0.01
and the third with an imposed γ of 15. The empirical standard deviations are given in the last
column.
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Country Cons p-value Outp gap p-value Inflation p-value Bloom p-value McF R2 T

Brazil -1.2619 0.0240 2.1166 0.1675 0.2104 0.1265 0.0083 0.0178 0.3498 277

Canada -2.5149 0.0000 -0.8764 0.5863 22.3886 0.0007 0.0269 0.0000 0.2127 638

Chile -1.4458 0.8621 -5.8024 0.8216 95.0608 0.1064 -0.0180 0.6647 0.3274 50

Denmark 1.1618 0.0033 0.1359 0.9115 6.1457 0.2108 -0.0090 0.0009 0.1700 482

Finland -1.2216 0.0415 6.9882 0.0022 -11.2645 0.0435 -0.0158 0.0045 0.1860 456

France 1.4334 0.0059 5.2411 0.0026 -8.7965 0.1933 -0.0217 0.0000 0.2611 456

Germany 5.7656 0.0042 30.4195 0.0001 -160.3895 0.0002 -0.0516 0.0011 0.3935 84

Greece 3.2912 0.2530 -3.0250 0.8110 -19.7693 0.4640 -0.0011 0.9510 0.9720 71

Italy -0.9686 0.0834 8.4582 0.0000 1.7153 0.6583 -0.0025 0.6483 0.1774 456

Japan 3.1656 0.0000 2.7421 0.0000 3.0448 0.3900 -0.0115 0.0000 0.0883 638

Mexico 0.1086 0.8485 0.8032 0.7558 -2.9040 0.0016 0.0060 0.1086 0.4300 410

Netherlands 3.7095 0.0000 6.9630 0.0000 -2.3859 0.6104 -0.0222 0.0000 0.2008 456

Norway -3.0725 0.0000 -1.4693 0.1025 -14.1791 0.0091 0.0054 0.0678 0.0349 638

Portugal 4.1083 0.0000 1.6396 0.1463 -3.0523 0.1354 -0.0264 0.0000 0.1743 456

Spain 2.2098 0.0000 3.1035 0.0003 5.7628 0.0564 -0.0147 0.0004 0.1923 456

Sweden -2.3789 0.0231 -5.7314 0.0588 28.2894 0.1957 -0.0015 0.8031 0.7718 206

Turkey -2.6346 0.0007 7.8153 0.0000 1.6519 0.0714 0.0078 0.0573 0.4395 350

UK 0.7189 0.1648 0.4888 0.8291 20.8430 0.0176 -0.0026 0.4259 0.0689 302

Table 3: Logit regression results. Significant coefficients for α = 0.1 in bold.

Country µ̂ p̂1 p̂2 σ̂1 σ̂2 γ∗

Brazil -0.0020 0.98201 0.8801 0.0101 0.0618 0.0100

Canada -0.0005 0.9910 0.8854 0.0032 0.0180 0.0100

Chile -0.0100 0.9990 0.9917 0.0000 0.0279 0.0100

Denmark 0.0004 0.9890 0.8978 0.0072 0.0313 0.0300

Finland -0.0008 0.9900 0.8905 0.0062 0.0367 0.1000

France 0.0000 0.9990 0.9672 0.0001 0.0288 0.0300

Germany -0.0064 0.9990 0.9356 0.0013 0.0295 6.5000

Greece -0.0000 0.9990 0.9792 0.0000 0.0265 0.0300

Italy 0.0000 0.9990 0.9773 0.0000 0.0261 0.0100

Japan 0.0004 0.9832 0.8703 0.0079 0.0372 0.0100

Mexico -0.0034 0.9782 0.8794 0.0079 0.0832 0.0100

Netherlands 0.0008 0.9822 0.9213 0.0025 0.0292 0.0300

Norway 0.0001 0.9990 0.9553 0.0002 0.0265 0.0100

Portugal 0.0001 0.9990 0.9565 0.0007 0.0265 0.1000

Spain 0.0002 0.9990 0.9377 0.0004 0.0278 0.0100

Sweden 0.0000 0.9988 0.9880 0.0000 0.0256 0.0300

Turkey -0.0028 0.9751 0.8592 0.0183 0.0869 0.0300

UK 0.0020 0.9733 0.8720 0.0075 0.0323 1.8500

Table 4: Estimation results of the Markov-STAR model qt = µst +φqt−1+ψG(qt−1;γ,c)qt−1+ εt

with µ fixed, φ = 1 and ψ = −1.
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Country Cons p-value Outp gap p-value Inflation p-value Bloom p-value McF R2 T

Brazil 1.2199 0.0290 -2.0712 0.1764 -0.2153 0.1174 -0.0081 0.0201 0.3494 277

Canada 2.3750 0.0000 0.9886 0.5351 -21.2466 0.0011 -0.0254 0.0000 0.1994 638

Chile -3.2782 0.1074 4.5629 0.6382 82.5774 0.0310 0.0129 0.1286 0.3728 50

Denmark -2.4563 0.0000 0.9396 0.5976 17.9266 0.0268 0.0040 0.2367 0.3990 482

Finland 4.3886 0.0000 1.0099 0.4947 -4.7237 0.2255 -0.0428 0.0000 0.3330 456

France 1.4334 0.0059 5.2411 0.0026 -8.7965 0.1933 -0.0217 0.0000 0.2611 456

Germany -0.0354 0.9893 6.7519 0.3806 -34.3305 0.4656 -0.0202 0.3228 0.1486 84

Greece -3.7843 0.1542 9.0071 0.4445 46.8058 0.1180 0.0128 0.4166 0.9060 72

Italy 0.3635 0.4857 6.5754 0.0003 -0.8291 0.8102 -0.0118 0.0225 0.2212 456

Japan 1.5532 0.0000 2.8777 0.0000 -12.8065 0.0001 -0.0142 0.0000 0.2193 638

Mexico 2.2328 0.0000 -3.0232 0.1631 1.0405 0.0559 -0.0077 0.0119 0.2643 410

Netherlands 2.3628 0.0000 1.7446 0.2276 9.7440 0.1002 -0.0395 0.0000 0.2843 456

Norway 0.1599 0.5716 1.7546 0.0101 -8.1598 0.0420 -0.0116 0.0000 0.1021 638

Portugal -2.3218 0.0003 1.5063 0.2886 -3.3301 0.2133 0.0005 0.9389 0.0165 456

Spain 0.7946 0.1314 0.5160 0.5240 4.1769 0.1658 -0.0168 0.0005 0.1276 456

Sweden -2.4018 0.0206 -5.9916 0.0460 34.5575 0.1104 -0.0016 0.7884 0.7798 206

Turkey 2.5982 0.0004 -7.4661 0.0000 -1.4762 0.0814 -0.0087 0.0250 0.4256 350

UK -1.0304 0.0557 -2.6436 0.2638 32.8191 0.0008 0.0031 0.3610 0.0691 302

Table 5: Logit regression results with µ fixed. Significant coefficients for α = 0.1 in bold.

Country µ̂1 µ̂2 p̂1 p̂2 σ̂ γ∗ LR

Brazil -0.0067 0.1069 0.9905 0.9322 0.0300 0.1000 0.23

Canada -0.0055 0.0151 0.9469 0.9369 0.0091 0.5000 0.12

Chile -0.0140 0.0252 0.9603 0.9467 0.0120 7.0000 0.15

Denmark -0.0205 0.0210 0.9382 0.9492 0.0150 0.4000 0.00

Finland -0.0063 0.0406 0.9753 0.9653 0.0194 0.0100 0.36

France -0.0078 0.0367 0.9710 0.9173 0.0161 0.4000 1.09

Germany -0.0246 0.0215 0.9387 0.9488 0.0163 15.0000 0.01

Greece -0.0094 0.0307 0.9522 0.9483 0.0156 0.3500 0.38

Italy -0.0081 0.0316 0.9726 0.9550 0.0151 0.3000 0.74

Japan -0.0372 0.0115 0.9283 0.9612 0.0167 0.0500 0.01

Mexico -0.0018 0.3635 0.9990 0.9990 0.0263 0.2000 0.74

Netherlands -0.0281 0.0144 0.9428 0.9632 0.0146 0.3500 0.01

Norway -0.0244 0.0140 0.9292 0.9580 0.0138 0.4000 0.04

Portugal -0.0298 0.0107 0.9287 0.9567 0.0163 0.3000 0.23

Spain -0.0084 0.0354 0.9746 0.9360 0.0163 0.0100 0.00

Sweden -0.0109 0.0279 0.9571 0.9593 0.0154 0.3000 0.26

Turkey -0.0045 0.1650 0.9970 0.9935 0.0300 0.0500 0.10

UK -0.0182 0.0187 0.9257 0.9243 0.0148 3.0000 0.01

Table 6: Estimation results of the Markov-STAR model qt = µst +φqt−1+ψG(qt−1;γ,c)qt−1+ εt

with σ fixed, φ = 1 and ψ = −1.
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7.2 Figures
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Figure 1: Plots the estimated smoothed transition probabilities G(qt−1;γ∗,c)qt−1 of selected
countries.
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