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Abstract

This paper derives the memory of the product series xtyt, where xt and yt are stationary long

memory time series of orders dx and dy, respectively. Special attention is paid to the case

of squared series and products of series driven by a common stochastic factor. It is found

that the memory of products of series with non-zero means is determined by the maximal

memory of the factor series, whereas the memory is reduced if the series are mean zero.
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1 Introduction

Products of time series occur frequently in non-linear models such as the bilinear model, ran-

dom coe�cient models, or multiplicative noise models and they also play an important role as

interaction terms in time series regressions. Therefore, it is of interest how time series properties

such as long range dependence are translated from the factor series xt and yt to the product

series zt = xtyt. In this paper, it is shown that the transmission of memory critically depends

on the means of the processes. While the memory of products is the maximum of the memory

orders of the factor series if the means are non-zero, the memory order in the product series will

be reduced for zero mean processes.

In a related literature Granger and Hallman (1991) and Corradi (1995) have studied the proper-

ties of non-linear transformations of integrated variables. For long memory time series Dittmann

∗I would like to thank Philip Bertram, Robinson Kruse, Philipp Sibbertsen and Michael Will, for their com-
ments on earlier versions of this paper.
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and Granger (2002) have derived the memory properties for transformations of zero mean time

series if the transformation can be expressed as a �nite sum of Hermite polynomials. The memory

of products of long memory time series, however, has not been covered.1

The expectation of the product series zt = xtyt that we are interested in, is given by E[zt] =

σxσyρxy +µxµy, where µx and µy denote the means of xt and yt, respectively, σx and σy are the

standard deviations, and ρxy denotes the correlation between the two series. For general random

variables x and y, with �nite �rst and second moments, Goodman (1960) derived the variance

of xy. Later, Bohrnstedt and Goldberger (1969) derived the exact covariance of the products xy

and vw, where v and w form a second pair of random variables that ful�lls the same moment

conditions as x and y. According to Bohrnstedt and Goldberger (1969), the variance of zt is

given by

σ2
z = µ2

xσ
2
y + µ2

yσ
2
x + E[(x− µx)2(y − µy)2]

+ 2µxE[(x− µx)(y − µy)2]

+ 2µyE[(x− µx)2(y − µy)]

+ 2µxµyσxσyρxy − σ2
xσ

2
yρ

2
xy.

The autocovariance function of the product of two weakly stationary time series xt and yt was

derived by Wecker (1978). If both series are Gaussian, it is given by

γxy(τ) =µ2
xγy(τ) + µ2

yγx(τ) + µxµy[ξ(τ) + ξ(−τ)]

+ γx(τ)γy(τ) + ξ(τ)ξ(−τ), (1)

where ξ(τ) denotes the cross-covariance function at lag τ de�ned as ξ(τ) = E[(xt−µx)(yt−τ−µy)].

In the remainder of this paper, the memory properties of the product series zt will be derived

from the asymptotic behavior of (1), as τ → ∞. De�nitions, assumptions and the main result

are given in Section 2. Sections 3 and 4 extend these results to squares of long memory series

and products of variables with common long range dependent factors. Conclusions are drawn in

Section 5.

1Note that the application of a log-transformation does not mitigate this issue. It merely converts the problem
into determining the memory of the sum of non-linearly transformed series, but the logarithm cannot be rep-
resented as required by Dittmann and Granger (2002). Therefore, the memory of the log-transformed series is
unknown - as is that of the product.
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2 Persistence of Products of Long Memory Time Series

In the following, a time series xt is a long memory series with parameter dx if its spectral density

fx(λ) at frequency λ obeys the power law

fx(λ) ∼ gx(λ)λ−2dx , (2)

as λ→ 0+, or if its autocovariance function γx(τ) at lag τ is

γx(τ) ∼ Gx(λ)τ2dx−1, (3)

for τ →∞. Here, gx(λ) and Gx(λ) denote functions that are slowly varying at zero and in�nitiy,

respectively. As Beran et al. (2013) show, these de�nitions are equivalent under fairly general

conditions. Hereafter, we write xt ∼ LM(dx) if xt ful�lls at least one of (2) or (3). For simplicity,

we will treat gx and Gx as constants. The properties of any xt that is LM(dx) depend on the

value of dx ∈ (−1/2, 1/2). For dx < 0, the process is antipersistent, and fx(0) = 0. If dx = 0,

fx(0) = gx and the process has short memory. Finally, for dx > 0, xt is long range dependent.

Here, we follow Dittmann and Granger (2002) and distinguish between fractional integration

and long memory. The reason is, that we derive the memory of zt = xtyt based on the behavior

of γxy(τ) for large τ that is of the form speci�ed in (3), so that its spectral density is of the

form given in (2). A fractionally integrated process z̃t, on the other hand, has spectral density

fz̃(λ) = |1− eiλ|−2dz̃gz̃(λ), so that fz̃(λ) ∼ gz̃|λ|−2dz̃ , as λ→ 0+, since |1− eiλ| → λ, as λ→ 0+.

While fractional integration is therefore a special case of long memory, the results given here

only allow to draw conclusions about the memory properties of the product series.

For the main result we require the following assumptions.

Assumption 1. xt ∼ LM(dx) and yt ∼ LM(dy) are weakly stationary and causal Gaussian

processes, with 0 ≤ dx, dy < 0.5 and �nite second order moments.

Assumption 2. If xt, yt ∼ LM(d), then xt − ψ0 − ψ1yt ∼ LM(d) for all ψ0, ψ1 ∈ R.

Assumption 1 is a simple regularity condition, whereas Assumption 2 precludes the presence of

fractional cointegration. This will be relaxed in Section 4, where the case of a common long

memory factor driving xt and yt is considered.

Given these assumptions, the memory of the product series xtyt is characterized by the following
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proposition.

Proposition 1. Under Assumptions 1 and 2 the product series zt = xtyt is LM(dz), with

dz =



max(dx, dy), for µx, µy 6= 0

dx, for µx = 0, µy 6= 0

dy, for µy = 0, µx 6= 0

max {dx + dy − 1/2, 0} , for µy = µx = 0 and Sxy 6= 0

dx + dy − 1/2, for µy = µx = 0 and Sxy = 0,

where Sxy =

∞∑
τ=−∞

γx(τ)γy(τ).

Proof. The autocovariance function of any xtyt satisfying Assumption 1 is given by (1). This is

a linear combination of the autocovariance functions γx(τ), γy(τ), the cross-covariance function

ξ(τ) and interaction terms between them. Since long memory is de�ned in (3) by the shape of the

autocovariance function for τ → ∞, we can determine the memory of xtyt by �nding the limit

of γxy(τ). For τ → ∞, we can substitute γx(τ) and γy(τ) with Gxτ
2dx−1 and Gyτ

2dy−1 from

(3). The asymptotic properties of the cross-covariance function ξ(τ) can be derived from results

of Phillips and Kim (2007). In Theorem 1, they show that the autocovariance matrix ΓXX(τ) of

a q-dimensional multivariate fractionally integrated process Xt is

[ΓXX(τ)]ab =
2fuaub(0)Γ(1− da − db) sin(πdb)

τ1−da−db
+O

(
1

τ2−da−db

)
,

where Aab denotes the element in the ath row and bth column of the matrix A. The asymptotic

expansion of the Fourier integral used to derive this result is not speci�c to fractionally integrated

processes, but holds for long memory processes in general. It therefore follows, that ξ(τ) =

Gxyτ
da+db−1 + o(τda+db−1). Furthermore, since by Assumption 1 both xt and yt are causal,

ξ(−τ) = 0, so that the last term in (1) drops out.

Therefore, as τ →∞, we have

γxy(τ) =µ2
xGyτ

2dy−1 + µ2
yGxτ

2dx−1 + µxµyGxyτ
dx+dy−1 +GxGyτ

2(dx+dy−1) + o(τdx+dy−1).
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Now, considering the exponents and setting dx + dy − 1 = 2d̄3 − 1 and 2(dx + dy − 1) = 2d̄4 − 1

gives d̄3 = (dx + dy)/2 and d̄4 = (dx + dy − 1/2), so that

γxy(τ) =µ2
xGyτ

2dy−1 + µ2
yGxτ

2dx−1 + µxµyGxyτ
2d̄3−1 +GxGyτ

2d̄4−1 + o(τdx+dy−1). (4)

Since O(τp)+O(τ q) = O(τmax(p,q)), the autocovariance function γxy(τ) is dominated by the term

with the largest memory parameter, as τ → ∞. The approximation error o(τdx+dy−1) vanishes,

because dx, dy < 1/2. Depending on the values of µx and µy, di�erent cases can be distinguished.

1. If µx = µy = 0, (4) is reduced to γxy(τ) ≈ GxGyτ
2d̄4−1. Therefore, the memory of xtyt

would be given by d̄4 = (dx + dy − 1/2), which can be negative so that the decay rate of the

autocovariance function is that of an antipersistent LM process. However, in this case the

long memory de�nition is only ful�lled if the spectral density is zero at the origin, which is

equivalent to Sxy = 0. Otherwise the process is LM(0).

2. If µx = 0 6= µy, (4) becomes γxy(τ) ≈ µ2
yGxτ

2dx−1 +GxGyτ
2d̄4−1 and the dominating term

is the maximum of dx and d̄4 = (dx + dy − 1/2). This is dx, because dy < 1/2.

3. If µy = 0 6= µx, by the same arguments, the memory is dy.

4. Finally, if µx, µy 6= 0, the memory order is the maximum of dx, dy, (dx + dy)/2 and

dx+dy−1/2. Furthermore, since dx, dy < 1/2, max {dx, dy} will always be at least as large

as the other two terms.

If ρxy = 0, we have Gxy = 0, so that the third term in (4) is zero. However, this does not a�ect the

memory properties of the product series compared to the case when ρxy 6= 0, because the memory of

the third term is always dominated by that of the �rst two terms since max {dx, dy} ≥ (dx+dy)/2.

�

It can immediately be seen from Proposition 1, that the means of xt and yt play a crucial role.

If both means are non-zero, the asymptotic autocovariance function is dominated by the input

series with the larger memory parameter. If both means are zero, the �rst three terms in (4)

drop out, and the memory in zt is d̄4 = (dx + dy − 1/2). If one of the processes is mean zero, the

memory is equal to that of this process, because dx, dy > d̄4.

Intuitively, if one thinks of long range dependence in terms of the persistence of deviations from

the mean, it is obvious that this persistence vanishes if the series is multiplied with a zero mean
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iid -series. On the other hand, if the series is multiplied by a series with a non-zero mean,

consecutive observations of the product series are likely to be located at the same side of the

mean, so that the persistence remains intact.

Since the decay of the autocovariances of antipersistent LM -processes is initially very fast, the

condition Sxy = 0 is basically a condition on the �rst autocovariances γxy(τ). As can be seen

from (1), this is equal to the product γxy(τ) = γx(τ)γy(τ), if µx = µy = 0. The process can

therefore only be LM with negative d, if γx(τ) and γy(τ) have di�erent signs and the sum of their

product over the �rst leads and lags is close to the process variance. If γxy(τ) is negative but

Sxy 6= 0, the process has antipersistent short memory. Finally, if γxy(τ) is positive, the process

is simply LM(0) if dx + dy − 1/2 is negative.2

3 Memory of Squared Series

An important special case of Proposition 1 arises if xt = yt, so that the product becomes the

square of one series. This gives the following corollary.

Corollary 1. For xt satisfying Assumption 1, the square zt = x2
t is LM(dz) with

dz =


dx, if µx 6= 0

max {2dx − 1/2, 0} , if µx = 0.

Proof. Wecker (1978) shows that for x2
t equation (1) simpli�es to

γxx(τ) = 4µ2
xγx(τ) + 2γ2

x(τ).

For τ →∞, this gives

γxx(τ) ≈ 4µ2
xGxτ

2dx−1 + 2Gxτ
2(2dx−1). (5)

Again, from equating 2(2dx − 1) = 2dsq − 1 we have dsq = 2dx − 1/2 so that γxx(τ) ≈

4µ2
xGxτ

2dx−1 + 2Gxτ
2dsq−1. Since dx < 1/2, by Assumption 1, dsq < dx so that the �rst term in

(5) always dominates the second if µx 6= 0. For µx = 0, the memory is determined by the second

2A similar issue arises in Dittmann and Granger (2002). However, they consider pure fractionally integrated
processes and do not allow for short run dynamics. In this case all autocovariances are positive and the lower
bound for the memory of the transformed series is zero.
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term. This is max {dsq, 0}, for the reasons discussed in the proof of Proposition 1, above. Since

γx(τ)2 ≥ 0, the process cannot become antipersistent and the lower bound for the memory order

of the square is always zero. �

Corollary 1 shows, that the memory of a squared series will be reduced if the series is mean zero,

whereas the memory is una�ected by this non-linear transformation if it has a non-zero mean.

In case of a reduction, the memory will be zero, for dx ≤ 0.25.

The memory of the squared zero mean series is also a special case of the results in Dittmann and

Granger (2002). As discussed above, they derive the properties of non-linear transformations of

fractionally integrated time series with zero mean and unit variance under the restriction that the

non-linear transformation can be expressed as a �nite sum of Hermite polynomials. Corollary

1 shows that the mean zero assumption is critical, since squaring the series does not cause a

reduction in memory if it is not ful�lled.

Note that it is not possible to apply Proposition 1 together with Corollary 1 to determine the

memory of higher order power transformations such as x3
t , because the Gaussianity requirement

in Assumption 1 is no longer satis�ed by the squared series x2
t .

4 Products of Fractionally Cointegrated Time Series

Another interesting special case is the product of series with a common factor, such as fractionally

cointegrated series. Consider the following model

xt = βx + δxut + ηt (6)

yt = βy + δyut + εt, (7)

where ut is LM(du), ηt ∼ LM(dη) and εt ∼ LM(dε) ful�ll the conditions imposed in Assumption

1, and βx and βy are �nite real constants. Furthermore, let ηt and εt be mean zero, with

dη = du − b ≥ 0 and dε = du − b− ε ≥ 0, for some constants b, ε ≥ 0. Clearly, both yt and xt are

driven by the common long range dependent factor ut and they are both LM(du). We therefore

refer to them as series with common long memory. As before 0 ≤ du < 0.5 and of course δx,

δy 6= 0. We then obtain the following result.

Proposition 2. Let yt and xt have common long memory of order du, so that they can be

represented as in equations (6) and (7). Then the product xtyt is LM(du) if either (βxδy +βyδx)
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or µu is unequal zero and it is LM(max {2du − 1/2, 0}) if µx = µy = µu = 0.

Proof. By substituting the relationships in (6) and (7) and rearranging the terms, the product

xtyt is given by

xtyt = βxβy︸︷︷︸
I

+ (βxδy + βyδx)ut︸ ︷︷ ︸
II

+ δxδyu
2
t︸ ︷︷ ︸

III

+ (βx + δxut)εt︸ ︷︷ ︸
IV

+ (βy + δyut)ηt︸ ︷︷ ︸
V

+ ηtεt︸︷︷︸
V I

. (8)

Proposition 3 in Chambers (1998) states that a linear combination of fractionally integrated

processes is itself fractionally integrated, with an order of integration equal to the maximum of

those in the linear combination. Chamber's arguments extend readily to long memory processes

in general because they only make use of the long memory properties. More speci�cally, let

fX(λ) be the spectral density matrix of the multivariate long memory process Xt that ful�lls

[Re(fX(λ))]ab ∼ gab|λ|−da−db, as λ → 0. Than the linear combination St = w′Xt has spectral

density

fS(λ) = w′fX(λ)w ∼
q∑

a=1

w2
aGaa|λ|−2da +

∑
a6=b

wawbGab|λ|−da−db , (9)

as λ → 0. Since O(|λ|−2da) + O(|λ|−2db) = O(|λ|−2 max(da,db)), as λ → 0, and 2 max(da, db) >

da+db, the spectral density is proportionate to the largest term in the �rst sum on the right hand

side of (9).

The memory order of xtyt is therefore the maximum of the memory orders in terms I to VI in

(8) and the memory of these individual terms can be determined from the results in Proposition

1 and Corollary 1.

In Proposition 2, two cases are distinguished. In the �rst one, either µu or βxδy + βyδx are

unequal zero. In the second, µx = µy = µu = 0. These cases are considered separately.

1. Whenever µu 6= 0, III is LM(du), by Corollary 1. Since we know from Proposition 1

that none of the other terms can have stronger memory than the original series, it follows

directly from the result of Chambers (1998) that xtyt will be LM(du). The same holds true

if βxδy + βyδx 6= 0, since ut is LM(du).

2. If µx = µy = µu = 0, βx and βy in II are zero from (6) and (7) and term III is

LM(max {2du − 1/2, 0}), by Corollary 1. From Proposition 3 in Chambers (1998) the lower

bound for the memory of the linear combination in (8) is therefore zero. By Proposition

8



1, the reduced memory of the terms IV , V and V I is du + dε − 1/2, du + dη − 1/2 and

du + dε − 1/2, respectively. Since dε, dη < du, by de�nition, all of these terms are smaller

than 2du − 1/2. The memory of xtyt is therefore determined by that of term III. �

When comparing Propositions 1 and 2, one can see that the memory in the product series is less

fugacious if the factor series have common long memory. As before, the nature of the transmission

depends on the means of the series. However, since the square in term III determines the memory

of xtyt in equation (8), it is now the mean of the common factor that is crucial. Therefore, zt

can be du, even if µx = µy = 0.

5 Conclusion

This paper derives the memory of products of long memory time series. It is found that the

nature of the transmission critically hinges on the means of the factor series. While the memory

in the product series will be reduced if the means are zero, the memory of the more persistent

factor series will be directly propagated if the factor series have non-zero means. These �ndings

show that the property of long range dependence is less fugacious than it might seem from

previous results on non-linear transformations of long memory series obtained by Dittmann and

Granger (2002) that rely on a mean zero assumption.

One may conjecture that the transmission of long memory to other non-linear transformations

may similarly depend on the means. Further research on the memory properties of a broader

class of non-linear transformations would therefore be of great interest.
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