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Abstract

The persistence of inflation rates is of major importance to central banks due to the

fact that it determines the costs of monetary policy according to the Phillips curve.

This article is motivated by newly available econometric methods which allow for a

consistent estimation of the persistence parameter under low frequency contaminations

and consistent break point estimation under long memory without a priori assumptions

on the presence of breaks. In contrast to previous studies, we allow for smooth trends

in addition to breaks as a source of spurious long memory. We support the finding of

reduced memory parameters in monthly inflation rates of the G7 countries as well as

spurious long memory, except for the US. Nevertheless, only a few breaks can be located.

Instead, all countries exhibit significant trends at the 5% level with the exception of the

US.
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1 Introduction

The question to which extend inflation time series follow a long-memory or rather a

spurious long-memory process is still discussed. Spurious long memory exists when a

time series with a nonlinear property, such as structural breaks in the mean or smooth

trends, exhibits characteristics which can hardly be discriminated from a long-memory

process. For example, both types of processes can generate an almost identical hyper-

bolic behavior of the autocorrelation function (cf. Granger and Hyung, 2004; Kuensch,

1986). Many empirical studies show that inflation rates are characterized by a mixture

of long memory and breaks (cf. Bos et al., 1999; Kumar and Okimoto, 2007). Moreover,

allowing for breaks typically reduces the degree of persistence. However, contradictory

results have been presented about the number and location of break points in inflation

rates.

This article is motivated by newly available econometric methods which allow for a

consistent estimation of the persistence parameter under low frequency contaminations

and consistent break point estimation under long memory without a priori assumptions

on the presence of breaks. Moreover, the current empirical literature especially con-

centrates on abrupt structural breaks in inflation rates. Since the empirical literature

focuses mainly on shifts, we extent the class of nonlinear models by considering smooth

trends via a S EMIFAR model.

The early literature in the 1990s focuses on the difference of I(0) and I(1) inflation

processes. Instead of the aforementioned two specifications, many contributions conclude

that the inflation rates are well described by a fractionally integrated process, such as

an ARFIMA(p,d,q) model, among them Backus and Zin (1993), Hassler and Wolters

(1995), and Baum et al. (1999). In the following years the possibility of breaks or level

shifts in inflation series has been studied mainly. This branch of literature stresses the

aspect of spurious long memory in inflation rates. Bos et al. (1999) have been one of

the first to consider exogenous level shifts in addition to the long memory behavior.

Taking two level shifts into account, they reject the null hypothesis of no breaks for the

G7 countries, except for Germany and Japan. Morana (2002) finds evidence of long

memory and structural changes in European inflation rates. The empirical analysis of

Gadea et al. (2004) shows a reduced memory parameter if they allow for endogenous

structural changes, which can be interpreted as a first hint of spurious long memory. Hsu

(2005) proposes a test for long memory in case of mean shifts and an estimation method

for break points under long memory. However, the estimation method for the memory

parameter is inconsistent under low frequency contaminations. His results show that

the inflation rates of Italy and the US follow a long-memory process, whereas spurious

long memory is indicated for Germany and Japan. Baillie and Kapetanios (2007) prove
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the presence of nonlinear and long memory components in monthly inflation rates for

the majority of the G7 countries.

Beside changes in the mean, the second moment of a process gains more attention in the

latest literature. Baillie et al. (1996) find strong persistence in the conditional variance in

addition to the long memory behavior. Conrad and Karanasos (2005) also take persistent

conditional heteroskedasticity into account by applying an ARFIMA−FIGARCH model

and find support for a dual long memory model for ten European countries.

Additionally, models incorporating also changes in the order of fractional integration

have been proposed which can be interpreted as an effect of spurious long memory and

indirectly support the argument of breaks in the mean. The empirical results of Kumar

and Okimoto (2007) suggest a changing memory parameter d over time for the G7 coun-

tries, except for Japan. Charfeddine and Guégan (2012) examine the different behavior

in various subsamples of US and French monthly inflation rates. They conclude that

inflation data are best described by a mixture of long memory and switching processes

and further suggest a model with time-varying memory parameter. Before considering

changes in the persistence parameter and in the variance, Bos et al. (2014) concentrate

also on changes in the mean. They combine an ARFIMA model with a stochastic volatil-

ity model and find changes in the variance as well as in the memory parameter d for the

US inflation rate. Hassler and Meller (2014) propose a test for determining the timing of

multiple breaks in the memory parameter and find one significant break in the memory

parameter of the US inflation rate.

The previous empirical findings are either based on a priori assumptions for the break

point estimation or the time series are adjusted before determining the persistence due

to the lack of estimation methods of the memory parameter under structural breaks

in the mean (cf. Gadea et al., 2004; Charfeddine and Guégan, 2012). Gadea et al.

(2004) criticize the absence of a test to distinguish between long memory and structural

changes. Kumar and Okimoto (2007) highlight the need of formal testing and modeling

procedures in the case of structural changes for future work.

The aforementioned lacks in the empirical literature motivate our work and we con-

tribute to this literature by applying new econometric methods to distinguish between

long memory and spurious long-memory processes. By employing the test of Qu (2011),

we are able to differentiate between long memory and spurious long-memory processes,

such as random level shifts or smoothly varying trends. Further, we consider semipara-

metric estimation procedures to determine the order of fractional integration, the local

Whittle estimation approach and the modified method of Hou and Perron (2014). The

modified version is robust to a variety of low frequency contaminations under long mem-

ory. Further, we combine the estimation method of Hou and Perron (2014) with the

method of Lavielle and Moulines (2000) to determine the number and location of break
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points under long memory. Basically, the break points are estimated by ordinary least

squares (OLS ) like in Bai and Perron (1998, 2003), only the number of break points has

to be determined using the information criterion developed by Lavielle and Moulines

(2000). As an alternative to structural breaks, we apply a semiparametric fractional

autoregressive model to estimate smooth trends.

Our results indicate a reduced memory parameter in the case of low frequency con-

taminations for the G7 countries. We reject the null hypothesis of true long memory,

except for the US, and find almost no breaks, except for Japan. In contrast to other

empirical studies which are often entirely based on abrupt structural breaks, we focus

on smooth trends as another type of nonlinearity. The estimated trends provide a good

approximation of the real data and capture spurious long memory more appropriately

than structural breaks. With the exception of the US, all other countries exhibit sig-

nificant trends to the 5% level. Therefore, we conclude that the inflation rates are best

described by a smooth trend model with a reduced persistence parameter for Canada,

France, Germany, Italy, Japan, and the UK. In contrast, the US inflation rate follows

a long-memory process with no indication of nonlinearity, such as structural breaks or

smooth trends.

The rest of the paper is organized as follows. In Section 2 we stress the importance

of determining the correct degree of persistence by illustrating its effect on disinflation

costs. Section 3 gives a brief overview of the different methods used in the empirical

analysis. The results of the empirical study can be found in Section 4. Finally, Section

5 concludes.
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2 Inflation Persistence and the Costs of Monetary Policy

Being one of the key variables in macroeconomics, inflation is linked to output or unem-

ployment via the Phillips curve relation. This economic concept formulates the trade-off

between two competing economic aims: price stability and stable markets. Decreasing

inflation in order to guarantee price stability will always imply some costs in terms of

output losses or higher unemployment. The level of these monetary policy costs de-

pends on the persistence of inflation. The more persistent inflation rates are, the longer

or the more aggressive the policy has to be, leading to higher welfare losses. Using a

small scale economic model including a Phillips curve, we illustrate this effect of infla-

tion persistence on the costs of monetary policy. Thus, we emphasize the importance

of determining the degree of persistence inherent in inflation rates and further motivate

our paper.

2.1 The Phillips Curve

In the existing literature there are some competing versions of the Phillips curve. A

survey of the development of the Phillips curve literature can be found in Gordon (2011).

Due to the fact that we are only interested in the effect of inflation persistence on the

costs of monetary policy, we focus on the simplest form of the Phillips curve. It relates

inflation to expected inflation Eπt, an economic variable like the output gap yt, and an

error term εt,

πt = Eπt +γyt +εt. (2.1)

According to Gordon (2011) the expectation term in Equation (2.1) can either be

forward- or backward-looking or both.

Inserting lagged inflation for the expectation term, Eπt = πt−1, yields the persistent

Phillips curve. This model is backward-looking and thus produces the typical per-

sistence of inflation rates. Although yielding good empirical fit, the model does not

have any microeconomic foundation. The well known alternative is the New Keynesian

Phillips curve, where the expectation term is given by Eπt = Eπt+1|t. In this model the

expectations are purely forward-looking, resulting in a very flexible model. This is due

to the fact that expectations in contrast to inflation rates can immediately respond to

policy changes or shocks. However, a weakness of the New Keynesian Phillips curve is

that it cannot fully capture the persistence of inflation. Moreover, Fuhrer (1995) shows

that disinflations can be costless in this model framework which contradicts empirical

findings. As a result, the empirical power of the New Keynesian Phillips curve is rather

low. In order to reconcile these two approaches, Gaĺı and Gertler (1999) consider the hy-
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brid New Keynesian Phillips curve. This model includes backward- and forward-looking

terms, so the expectation term is replaced by Eπt = β f Eπt+1|t +βbπt−1. In fact, it is con-

troversially discussed which term is more important and whether both are significant

at all (cf. Gaĺı and Gertler, 1999; Rudd and Whelan, 2005, 2007; Malikane, 2014). An

alternative approach is mentioned by Fuhrer (1995). He points out that the flexible New

Keynesian Phillips curve may be correct but that the expectations are persistent. We

follow this argument and modify the New Keynesian Phillips curve. Instead of rational

expectations we assume that expectations of future inflation rates are constructed by

forecasting a fractionally integrated process with persistence parameter d (FI(d)),

(1−L)d(πt −π
∗) = εt,

which has the AR(∞) representation

πt = π∗+

∞∑
j=0

w j(πt− j−π
∗) +εt,

where εt forms a mean zero process and the autoregressive coefficients are given by

w j = Γ( j−d)/ (Γ(−d)Γ( j + 1)) (cf. Baillie, 1996).

We choose the FI(d) model to compute our forecasts of the inflation series due to the

fact that a stationary AR process exhibits not enough inflation persistence whereas a

unit root process exhibits too much persistence. Instead, the FI(d) specification in the

context of inflation rates is supported by Hassler and Wolters (1995) and Baum et al.

(1999).

The forecast of the inflation series using a FI(d) process is calculated as the target rate

π∗ plus an infinitely long weighted sum of the current and past deviations of the inflation

rate from its target,

π̂t+1|t = π∗+

∞∑
j=0

w j(πt− j−π
∗). (2.2)

We approximate this sum by using 100 lags. As a result, the expectations are persis-

tent since they depend on the memory parameter d via the weights w. The degree of

persistence is determined by d.

2.2 Simulation of Disinflation Costs

In order to assess the costs of monetary policy, we define the following model framework

according to Fuhrer (1995) and Fuhrer and Moore (1995). We consider a New Keynesian
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Phillips curve,

πt = Eπt+1|t +γyt,

with Eπt+1|t = π̂t+1|t which is the forecast of the inflation series using a FI(d) model. The

monetary policy reaction function is given by

it − it−1 = απ(πt −π
∗) +αyyt.

The higher the values of απ and αy, the more determined the central bank reacts to

deviations of the inflation rate from the target rate π∗ and to the output gap yt, re-

spectively by changing the nominal interest rate it. The Fisher equation describes the

relation between real interest rate, nominal interest rate and inflation,

rt = it −πt.

Finally, the transmission mechanism of the monetary policy to real output is given by

yt = λyt−1 +βrt−1.

We assume that the economy is in the steady state, i.e. πt = π∗ = 3% and yt = 0. Then,

in period t = 1 the target inflation rate is decreased to π∗ = 2%. As a result, the current

inflation rate exceeds the new target rate. Thus, the central bank reacts according to its

policy reaction function and increases the nominal interest rate. The rising interest rates

contract real output and the output gap becomes negative. In addition, the inflation

expectations change, yielding the new inflation rate. Finally, the inflation rate converges

to the new target rate and the output gap approaches zero from below (cf. Figure 2.1).

The speed of convergence depends on the memory parameter d. Figure 2.1 illustrates

the fact that with an increasing degree of persistence d, the inflation rate converges

more slowly to the new target rate. Naturally, the time horizons are rather long in

this example and we do not expect inflation to be as sluggish in reality. In fact, this

simulation aims at demonstrating the influence of inflation persistence. For a large

value of d = 0.4 (long-dashed line) the inflation rate needs more than twice as long as

for a small value of d = 0.1 (dashed line) to reach the new target rate. In case of short

memory d = 0 (solid line), the inflation expectations are completely flexible and drop

below the new target rate to converge from below (cf. Fuhrer, 1995). Furthermore, the

persistence determines how far the output falls under its potential and how long the

output gap is negative. For a small degree of persistence of d = 0.1 (dashed line) the

maximum absolute value of the output gap is about 1.3. If d = 0.4 (long-dashed line),
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Figure 2.1: Simulation of a disinflation for different memory parameters d with γ = 0.05,
απ = 0.4, αy = 0.2, λ = 0.5, and β = −0.36

the maximum absolute deviation from potential exceeds 1.5 and it takes almost twice

as long to reach the potential again.

Figure 2.1 thus illustrates that the degree of persistence inherent in inflation crucially

influences the costs of central bank policy measured as the shortfall of output below

its potential when the expected inflation equals the forecast of a FI(d) process. It is

therefore important to determine the correct degree of persistence of inflation rates in

order to be able to assess and compare the costs and the time until full implementation

of different policy measures.

- 8 -



3 Econometric Methods

This section gives a brief overview of the different econometric methods which are used

in our empirical analysis. First, we characterize the standard ARFIMA model and in-

troduce the well known semiparametric local Whittle estimator. Then, we consider the

test of Qu (2011) which distinguishes between long memory and spurious long mem-

ory. Further, we present the recently developed estimation method of Hou and Perron

(2014) for the memory parameter under low frequency contaminations. The estimation

method of Lavielle and Moulines (2000) to determine break points under long memory is

described as one source of spurious long memory. As an alternative to abrupt structural

changes we finally consider smooth trends fitted by a S EMIFAR model.

3.1 ARFIMA Model

The most popular model type to capture long-memory processes are ARFIMA models

and, therefore, we start with a short introduction to this model class. Many contributions

in the literature show that inflation rates are well described by an ARFIMA (p,d,q)
process which has been developed by Granger and Joyeux (1980) and Hosking (1981).

The ARFIMA model is defined as

Φ(L)(1−L)d xt = Θ(L)εt,

with εt ∼ iid(0,σ2
ε ), Φ(L) = 1−φ1L− . . .−φpLp being the autoregressive polynomial and

Θ(L) = 1−θ1L− . . .−θqLq the moving average polynomial with all roots lying outside the

unit circle. The order of fractional integration is given by d, L denotes the backshift

operator, and (1−L)d =
∑∞

j=0
Γ( j−d)L j

Γ(−d)Γ( j+1) with the Gamma function Γ(z). The interval 0 <
d < 0.5 implies long memory with a hyperbolically decaying autocorrelation function and

an unbounded spectral density function at frequencies close to the origin. For d = 0, xt

follows a short memory process with an exponentially decaying autocorrelation function

and a bounded spectral density function for zero frequencies. The ARFIMA process is

stationary for the interval −0.5 < d < 0.5 and mean reverting as well as invertible for

d < 1.

3.2 Local Whittle Estimator

In the following, the semiparametric estimator of Kuensch (1987) and Robinson (1995)

is presented since we are interested in the persistence of a series and whether the process

exhibits long memory. The local Whittle method, also known as the Gaussian semipara-

metric estimation method, is often applied in the empirical literature. It is the typical
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reference procedure since it requires only mild assumptions, such as non-Gaussianity,

and exhibits good asymptotic properties with a smaller variance compared to other

semiparametric methods. Due to its aforementioned flexibility several authors extend

this method, such as Hou and Perron (2014). As a semiparametric estimator the form

of the spectral density is not fully modified and considers frequencies only close to the

origin. The spectral density function of a stationary process xt at frequency λ is given

by

f (λ) ∼Gλ−2d as λ→ 0+, (3.1)

with G being a slowly varying function and d ∈ (−0.5,0.5). The periodogram is defined

as

I(λ j) = (2πT )−1

∣∣∣∣∣∣∣
T∑

t=1

xt exp(iλ jt)

∣∣∣∣∣∣∣
2

, (3.2)

with λ j = 2π j/T , j = 1, . . . , bT/2c are the Fourier frequencies and T being the sample size.

The estimator is based on the local Whittle likelihood function

Q(G,d) =
1
m

m∑
j=1

logGλ−2d
j +

I(λ j)

Gλ−2d
j

 , (3.3)

with the bandwidth parameter m = bT δc and δ = [1
3 ,

4
5 ]. Minimizing Q(G,d) w.r.t. G

leads to the profiled likelihood function

R(d) = logĜ(d)−
2d
m

m∑
j=1

logλ j with Ĝ(d) =
1
m

m∑
j=1

λ2d
j I(λ j). (3.4)

The local Whittle estimator is given by d̂ = argmin
d

R(d) and converges to a normal

distribution according to
√

m(d̂−d)
d
−→N

(
0, 1

4

)
.

3.3 Test of Spurious Long Memory

Due to the fact that the local Whittle estimator cannot detect spurious long-memory

processes, statistical tests can be applied to assess the properties of the time series.

In general, several tests exist in the literature to differentiate between spurious and

true long memory. Qu (2011) derives a spectral based test to distinguish between long

memory and spurious long memory because the typical characteristics of a persistent

process can also be a result of low frequency contaminations. Compared to other tests,

the Qu test provides some advantages which justify our choice and simulation studies
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stress the superior asymptotic properties (cf. Qu, 2011). The test is a score-type test

that can handle multiple structural breaks and uses the properties of the local Whittle

estimator with its mild assumptions. It is a flexible test as the alternative does not need

to be specified, i.e. information about the form of the trend or the number of breaks

under the alternative are not necessary.

The null hypothesis is described by a stationary long-memory process whereas under

the alternative the process is contaminated by structural breaks or smooth trends. The

general test idea is based on the different behavior of the fitted spectral density and the

periodogram for frequencies close to the origin (cf. Perron and Qu, 2010). Taking the

derivative of R(d) w.r.t. d from Equation (3.4) results in

∂R(d)
∂d

=
2G0
√

mĜ(d)

m− 1
2

m∑
j=1

ν j

 I(λ j)

G0λ−2d
j

−1


 with ν j = logλ j−

1
m

m∑
j=1

logλ j. (3.5)

In the rest of the paper the superscript 0 denotes the true value of a parameter. The

test statistic takes the supremum of the term in the big braces of Equation (3.5) for

different bandwidths bmrc < m, where r ∈ [ε,1] with ε > 0,

W = sup
r∈[ε,1]

 m∑
j=1

ν2
j


− 1

2
∣∣∣∣∣∣∣∣
bmrc∑
j=1

ν j

 I(λ j)

G(d̂)λ−2d̂
j

−1


∣∣∣∣∣∣∣∣ .

Note, that the local Whittle estimator d̂ is based on m bandwidth instead of bmrc

bandwidths as considered for the test statistic. Qu (2011) recommends to replace m−
1
2

from Equation (3.5) by
(∑m

j=1 ν
2
j

)− 1
2 for size correction and he introduces a small trimming

parameter ε. For a small sample size with less than 500 observations the author suggests

to set ε = 0.05 and for a larger sample ε = 0.02. Further, the test achieves good results

in terms of size and power by taking a higher bandwidth parameter, such as m = T 0.7

(cf. Qu, 2011).

3.4 Modified Local Whittle Estimator

Consequentially, when the test of Qu (2011) rejects the null hypothesis this indicates

spurious long memory, such as random level shifts or deterministic trends. In this case

the local Whittle estimator becomes inconsistent. Therefore, Hou and Perron (2014)

propose a consistent estimation method of the memory parameter under these types of

low frequency contaminations. Comparing the estimation results of the original with

the modified local Whittle method gives a first insight whether the time series follows

a long-memory or rather a spurious long-memory process. The modified local Whittle
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estimation method considers the following underlying process

zt = c + yt + ut,

with c being a constant, yt is either a short or long-memory process with d ∈ [0,0.5),
and ut captures low frequency contaminations which are typically characterized as level

shifts or as trend functions (cf. Hou and Perron, 2014). In case of the former process

ut =
∑T

t=1πT,t ηt with ηt ∼ i.i.d. N(0,σ2
η) and πT,t being an i.i.d. Bernoulli variable with

the shift probability p/T . For the latter process the low frequency contamination term

takes the form ut = g(t/T ) with g(·) being a trend function on [0,1]. Adding the new term

Guλ
−2/T to the standard form of Equation (3.1), a so called pseudo spectral density can

be written as

fz(λ) = Gλ−2d +Guλ
−2/T = G(λ−2d + (Gu/G)λ−2/T ) = G(λ−2d + θλ−2/T ),

with θ being the signal to noise ratio. Replacing xt by zt in Equation (3.2) yields the

periodogram Iz(λ j). The pseudo likelihood function is given by

Q(G,d, θ) =
1
m

m∑
j=1

{
log fz(λ j) +

Iz(λ j)
fz(λ j)

}
. (3.6)

Finally, the modified local Whittle estimator is defined as d̂ = argmin
d,θ

R(d, θ) with

R(d, θ) = log

 1
m

m∑
j=1

Iz(λ j)

λ−2d
j + θλ−2

j /T

+
1
m

m∑
j=1

log
(
λ−2d

j + θλ−2
j /T

)
.

Hou and Perron (2014) suggest to set the bandwidth parameter greater than m = T 5/9,

therefore, we consider higher bandwidths in our empirical study. In the absence of low

frequency contamination the form of the pseudo likelihood function in Equation (3.6)

reduces to the standard local Whittle likelihood function of Equation (3.3) by setting

fz(λ) = fy(λ) = Gλ−2d. Hence, no asymptotic efficiency loss exists since the asymptotic

properties remain identical to the standard local Whittle approach. In the presence

of low frequency contaminations Hou and Perron (2014) show that their estimation

method is characterized by the smallest bias and mean squared error compared to other

estimation approaches.
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3.5 Estimating Break Points

In the same way as the presence of structural breaks causes spurious long memory,

structural break tests will spuriously indicate the presence of mean shifts if the true

data generating process exhibits long memory (cf. Krämer and Sibbertsen, 2002). In

order to resolve this issue, the number and location of breaks is assumed to be known a

priori. However, if the true number of breaks differs from this assumption the resulting

estimates of the memory parameter d will be inconsistent.

For a given number of breaks b, Lavielle and Moulines (2000) show that ordinary least

squares (OLS ) estimates of the break locations remain consistent under long memory.

Therefore, the well known estimation methods of Bai and Perron (1998, 2003) can be

applied. Only the model selection procedure for the number of breaks has to be modified.

Denote the vector of break fractions by s = (τ1, ..., τb)′, such that τ0 = 0 < τ1 < ... < τb <

τb+1 = 1 and the breakpoints are given by bτiT c for i = 1, ...,b. The vector of the means

in each segment is given by µ = (µ1, ...,µb)′, so that in the case of b breaks the residual

sum of squares is given by

RSS(s,µ) =

b+1∑
i=1

bτiT c∑
t=bτi−1T c+1

(xt −µi)2.

The corresponding OLS estimate is

(ŝ(b), µ̂(b)) = argmin
s,µ

RSS(s, µ).

To consistently estimate the number of breaks in long-memory time series, Lavielle and

Moulines (2000) suggest a modified model selection criterion with a penalty term that

depends on the memory parameter d. The more persistent the series, the higher is

the penalty term, resulting in a parsimonious selection of break points. In contrast, for

antipersistent series a higher number of breaks is selected since the penalty term becomes

negative. The number of breaks is therefore estimated by minimizing the modified BIC,

BICLM = RSS(ŝ(b), µ̂(b)) + 4b
logT
T 1−2d .

If the memory parameter d was known, the number of breaks could be directly estimated

by minimizing the BICLM. However, in absence of a robust estimate of d, this method

remains infeasible. Combining the BICLM with the method of Hou and Perron (2014)

enables us to conduct a semiparametric analysis of spurious long memory in inflation

rates that does not require any a priori assumptions on the number or location of breaks.
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3.6 SEMIFAR Model

Additional to abrupt changes, such as structural breaks, smooth trends are another

potential source of spurious long memory. Since both low frequency contaminations

have similar impacts on the persistence of a process, we also consider a trend model.

A simplified version of the semiparametric fractional autoregressive (S EMIFAR) model

introduced by Beran (1999) and further developed by Beran and Feng (2002a,b) is a

combination of a fractional autoregressive model with a nonparametric trend and is

defined as

(1−L)d{xi−g(ti)} = εi,

with d ∈ (−0.5,0.5), ti = (i/T ) with i ∈ Z, and a trend function g on [0,1]. We obtain

this simplified version of the S EMIFAR model by setting the maximum autoregressive

order as well as the integration order equal to zero. The S EMIFAR model combines

deterministic trends, stochastic trends, short memory and long memory components.

Further, it incorporates nonparametric modeling of the trend function and a simulta-

neous parametric procedure for the dependence structure (cf. Beran and Feng, 2002b).

Fitting this simplified S EMIFAR model requires a maximum likelihood estimation for

the memory parameter and kernel smoothing for the trend function. We follow the

approach of Beran and Feng (2002a) for estimating the trend function

ĝ(t) =
1

Th

T∑
i=1

K
( t− ti

h

)
xi,

where h is the optimal bandwidth of a symmetric positive second-order kernel K. Ac-

cording to Beran and Feng (2002a) estimating ĝ depends on h. However, the optimal

bandwidth h also depends on the aforementioned memory parameter that is estimated

by maximum likelihood. This interdependence structure is solved by an iterative pro-

cedure which varies between kernel smoothing and parameter estimation. A variety of

estimation approaches exists. In our empirical analysis we apply the data-driven algo-

rithm of Beran and Feng (2002a) which is based on a full grid search with respect to

d in the interval [0,0.5) in steps of 0.025. The trend function g is estimated nonpara-

metrically using the uniform kernel K(u) = 1
21{|u|≤1}. The optimal bandwidth h for the

kernel estimation depends, among others, on the second derivative of the trend function

(cf. Beran, 1999). In order to estimate the second derivative, the following fourth order

kernel is used K(u) = 105
16

(
−5x4 + 6x2−1

)
1{|u|≤1} (cf. Gasser et al., 1985).
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4 Empirical Analysis

In this section we apply the previously introduced econometric methods to inflation

data of the G7 countries in order to distinguish the influence of true and spurious long

memory in inflation rates. We use month-on-month CPI and core CPI (excluding food

and energy) data from 1970:1 until 2015:2 available from Thomson Reuters Datastream.

Following Bos et al. (1999), Baillie et al. (1996), and Hassler and Wolters (1995) we

define the inflation rates as

πt = 100 ·
(
log(Pt)− log(Pt−1)

)
.

Thus, our data set consists of 541 observations. We use the R package X13 for seasonal

adjustment. Figure 4.1 illustrates the respective US inflation series as a typical example.
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Figure 4.1: US inflation rates

The properties of the series change over time (cf. Cecchetti et al., 2007 and Bos et al.,

2014). During the Great Inflation in the 1970s and early 1980s the inflation level is

relatively high combined with a high volatility. At the beginning of the 1980s there is

an overall decrease in the inflation level. In addition, the series appears to be more

stable. This period is referred to as the Great Moderation. Until the end of the 1990s

both inflation series exhibit a similar behavior, but later the CPI based inflation becomes

more volatile. In contrast, the core CPI based inflation preserves the low volatility of the

Great Moderation due to the fact that food and energy prices are excluded. The patterns

of the Great Inflation and Great Moderation can be found for the other G7 countries as

well. In the rest of this section we aim at finding a model that appropriately describes
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these features of inflation data. In a first step, we apply the local Whittle estimator to

each series in order to check whether inflation exhibits long memory. The estimation

results for different bandwidths are presented in Tables 4.1a and 4.1b.

δ 0.70 0.72 0.74 0.76 0.78 0.80

CAN 0.461 0.436 0.389 0.376 0.357 0.334

FRA 0.584 0.596 0.562 0.553 0.545 0.519

GBR 0.496 0.478 0.463 0.480 0.496 0.476

GER 0.400 0.410 0.369 0.342 0.349 0.321

ITA 0.577 0.562 0.551 0.559 0.557 0.558

JPN 0.443 0.431 0.393 0.359 0.361 0.352

USA 0.386 0.411 0.368 0.373 0.402 0.384

(a) CPI based inflation

δ 0.70 0.72 0.74 0.76 0.78 0.80

CAN 0.521 0.497 0.479 0.449 0.425 0.396

FRA 0.605 0.635 0.635 0.619 0.625 0.614

GBR 0.470 0.433 0.417 0.428 0.441 0.438

GER 0.443 0.448 0.427 0.380 0.370 0.346

ITA 0.617 0.573 0.595 0.597 0.519 0.519

JPN 0.519 0.508 0.475 0.426 0.428 0.413

USA 0.505 0.498 0.517 0.497 0.511 0.525

(b) Core CPI based inflation

Table 4.1: Local Whittle estimates for different bandwidths m = bT δc

All estimates of d lie in the interval [0.321,0.596] for CPI and in the interval [0.346,0.635]
for core CPI, respectively. This implies that the data can neither be properly described

by an ARMA nor by an ARIMA process. For increasing bandwidths the estimates of the

memory parameter decrease. Nevertheless, they appear to be significantly different from

zero and thus, may best be modeled by an ARFIMA process. For a large bandwidth

with δ = 0.8 most series exhibit stationary long memory. France, Italy, and the US

(only for core CPI) yield a long memory parameter exceeding 0.5, meaning they are

nonstationary but mean reverting. These results are supported by Hassler and Wolters

(1995) who estimate the persistence parameters of the European G7 countries and the

US to lie in the interval [0.35;0.50], where all countries exhibit stationary long memory

except Italy. In addition, Baum et al. (1999) estimate the memory parameters of the

G7 countries in the interval [0.362;0.563] for larger bandwidths where only the US and

French inflation rates exhibit nonstationary long memory. These findings suggest that

the inflation series of all G7 countries exhibit long memory.

However, as already mentioned there are some types of low frequency contaminations

that can lead to spurious long memory (cf. Granger and Hyung, 2004; Kuensch, 1986).

Therefore, we apply the Qu test in order to discriminate whether the large values of the

local Whittle estimates are due to true long memory or are only spurious. Under the null

hypothesis of the Qu test the series is a true long-memory process. If the test statistic

exceeds the critical value, the series follows no longer a true long memory-process. The

values of the test statistics depending on the bandwidth m are given in Tables 4.2a and

4.2b. As already mentioned in Section 3.3, bandwidths greater or equal to m with δ= 0.8
are excluded by Qu (2011). Considering a significance level of 5%, we are able to reject
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the null hypothesis of true long memory for all countries except for the US and for a

significance level of 1% for all countries except for the US, the UK (mostly for CPI), and

Japan for smaller bandwidths (only for CPI). The results of the Qu test are remarkably

stable across different bandwidths and significance levels and thus point out that the

inflation series are not true long-memory processes except for the US.

δ 0.70 0.72 0.74 0.76 0.78

CAN 1.607 1.823 2.305 2.381 2.572

FRA 1.972 1.793 2.110 2.148 2.185

GBR 1.286 1.395 1.475 1.257 1.069

GER 1.797 1.677 2.022 2.263 2.131

ITA 1.686 1.715 1.761 1.610 1.571

JPN 1.353 1.410 1.706 2.018 1.916

USA 1.143 0.882 1.289 1.191 0.885

(a) CPI based inflation

δ 0.70 0.72 0.74 0.76 0.78

CAN 1.751 1.932 2.059 2.355 2.595

FRA 2.238 1.861 1.674 1.808 1.667

GBR 1.474 1.748 1.848 1.666 1.464

GER 2.276 2.184 2.347 2.806 2.855

ITA 1.701 2.081 1.748 1.661 2.596

JPN 1.577 1.629 1.916 2.405 2.301

USA 1.242 1.280 1.051 1.232 1.039

(b) Core CPI based inflation

Table 4.2: Test statistics of the Qu test for different bandwidths m = bT δc. The critical values
for ε = 0.02 are 1.118, 1.252 and 1.517 for the respective significance levels of α = 10%,5%,1%
(cf. Qu, 2011).

Since the local Whittle estimator cannot successfully distinguish between true and spu-

rious long memory, the estimates are inconsistent and exaggerate the degree of persis-

tence. In order to capture the true degree of persistence, we apply the estimator of

Hou and Perron (2014) since it can discriminate between true long memory and low

frequency contaminations like random level shifts or smooth trends that yield spurious

long memory.

Tables 4.3a and 4.3b show the reestimated long memory parameters if the modified local

Whittle estimator is used. Comparing the results with the local Whittle estimates, the

reduced d becomes obvious. This implies that at least some of the memory found by the

local Whittle approach is spurious. Not depending on the bandwidth, all inflation series

are stationary, but for some countries the memory parameter estimate is negative which

can be interpreted as antipersistent memory. However, this is inconsistent with economic

theory. Therefore, we restrict d to the interval [0,0.5) in the following computations.

Limiting the interval of the modified local Whittle estimator does not affect the positive

estimates, whereas all negative values are estimated equal to the lower bound of zero.

Our findings are supported by similar results in the literature. Allowing for breaks,

Hsu (2005) hardly finds evidence for long memory in the inflation rates of Japan and

Germany. This is in line with our findings of a negative d in case of Germany and a

maximum d of 0.026 across bandwidths for Japan. Furthermore, Hsu (2005) shows that
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Italy and the US exhibit a relatively high degree of persistence after controlling for two

breaks. We identify the UK, Italy and the US as the countries with the most persistent

inflation rates, especially if we focus on larger bandwidths. This result is also supported

by Bos et al. (1999).

δ 0.70 0.72 0.74 0.76 0.78 0.80

CAN 0.021 0.016 -0.077 -0.042 -0.036 -0.046

FRA -0.202 0.086 0.042 0.115 0.169 0.146

GBR 0.203 0.192 0.199 0.302 0.372 0.344

GER -0.282 -0.080 -0.127 -0.129 -0.018 -0.036

ITA 0.116 0.144 0.189 0.286 0.329 0.372

JPN -0.411 -0.089 -0.161 -0.207 -0.039 0.015

USA 0.063 0.240 0.132 0.196 0.302 0.278

(a) CPI based inflation

δ 0.70 0.72 0.74 0.76 0.78 0.80

CAN -0.078 -0.064 -0.022 -0.048 -0.049 -0.076

FRA -0.120 0.169 0.273 0.286 0.367 0.381

GBR 0.173 0.098 0.104 0.194 0.268 0.288

GER -0.382 -0.198 -0.149 -0.216 -0.148 -0.140

ITA 0.237 0.141 0.292 0.351 0.142 0.200

JPN -0.123 0.025 -0.016 -0.150 -0.006 0.026

USA -0.136 0.035 0.298 0.266 0.364 0.426

(b) Core CPI based inflation

Table 4.3: Modified local Whittle estimates for different bandwidths m = bT δc

So far both, the test decisions of the Qu test and the reduced memory parameter esti-

mates of Hou and Perron (2014), point to the fact that the inflation rates are not true

long-memory processes but contain some spurious long memory components. A well

known explanation of this phenomenon is the existence of random level shifts in the

series. Therefore, we locate break points in the data. Gadea et al. (2004) apply the

method of Bai and Perron (1998, 2003) although they have found long memory in their

data. This approach is not appropriate because the number of breaks is overestimated

under long range dependence (cf. Lavielle and Moulines, 2000). Instead, we use the

method of Lavielle and Moulines (2000) due to the fact that most series still exhibit

long memory. The estimated number of break points are presented in Tables 4.4a and

4.4b.

δ 0.70 0.72 0.74 0.76 0.78 0.80

CAN - - - - - -

FRA 1 - 1 - - -

GBR - - - - - -

GER - - - - - -

ITA - - - - - -

JPN 1 1 1 1 1 1

USA - - - - - -

(a) CPI based inflation

δ 0.70 0.72 0.74 0.76 0.78 0.80

CAN - - - - - -

FRA 1 - - - - -

GBR - - - - - -

GER - - - - - -

ITA - - - - - -

JPN 1 1 1 1 1 1

USA - - - - - -

(b) Core CPI based inflation

Table 4.4: Number of break points for different bandwidths m = bT δc
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They show that we hardly find any break points at all. We locate one break for Japan

independent of the bandwidth at the end of the second oil crisis in 1981 (for CPI) and in

1977 (for core CPI). These findings differ from the results in Bos et al. (1999). However,

they only take exogenously fixed break dates into account and hence find two breaks for

Canada, France, Italy, UK, and the US. Allowing for four breaks they also find breaks for

Japan. Hsu (2005) reconsiders the empirical contribution of Bos et al. (1999) for the same

countries but for an updated sample period. Since he provides an estimation method

for the break points, the break dates are no longer exogenously determined. These

two adjustments reduce the evidence of breaks in the G7 countries. Canada, France,

Germany, Italy and the UK are still having two breaks, whereas the number of breaks

reduces for the US and Japan to one and three breaks, respectively. However, Hsu (2005)

selects the number of breaks using the information criterion of Lavielle and Moulines

(2000) which depends on an estimate of the persistence parameter. In fact, consistent

estimation of the memory parameter requires knowledge about the breaks. Therefore,

Hsu (2005) needs a priori assumptions about the number of breaks and computes the

memory parameter conditional on the break points. This explains the higher number

of located break points in Hsu (2005) in contrast to our empirical study. Contradictory

results to the aforementioned literature are given by Bos et al. (2014), who do not find

any mean shifts in the US inflation rate. This finding is in line with our breakpoint

estimates. All in all, our results differ from the majority of findings in the literature

which is due to the fact that we provide a consistent estimation approach without any a

priori assumptions about the number or location of break points in the inflation series.

Apart from Japan and France (only for small bandwidths), there are no level shifts in

the inflation series. However, we have found reduced memory parameters with the esti-

mator of Hou and Perron (2014) and also the Qu test suggests that there is spurious long

memory in all series (except for the US). This points to other low frequency contami-

nations different from abrupt level shifts. Therefore, we propose to account for smooth

changes in the modeling process of inflation rates that may be captured by fitting a

semiparametric fractional autoregressive (S EMIFAR) model instead of a random level

shift model.

Figures 4.2 and 4.3 depict the respective trends in CPI and core CPI based inflation. For

six out of seven countries a smooth trend (dashed line) can be detected in the inflation

rates, whereas the US trend is a flat line.
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Figure 4.2: Smooth trends in CPI
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Figure 4.2: Smooth trends in CPI
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Figure 4.3: Smooth trends in core CPI
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Figure 4.3: Smooth trends in core CPI
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In order to check whether the trends are significant, we construct pointwise acceptance

regions at a 5% significance level following Beran and Feng (2002b). The dotted lines

illustrate the borders and the band within these lines the acceptance region of a constant

trend. If the trend moves outside the band, it is significant. Our results show that for

six out of seven countries the S EMIFAR trend is significant. Only for the US, the trend

lies within the acceptance region. However, this confirms our previous results that the

US inflation follows a true long-memory process. For France, the UK (only for CPI),

and Italy (only for CPI) we find a significant trend only in the time period of the Great

Inflation.

Tables 4.5a and 4.5b give the corresponding estimated memory parameters of the S EMIFAR

estimation algorithm. In case of Canada and Germany the estimates are zero implying

short memory. The other countries’ inflation rates exhibit stationary long memory. The

comparison of the S EMIFAR estimates of d and the modified local Whittle estimates

with δ = 0.8 in Tables 4.3a and 4.3b emphasize the robustness of the results. Although,

the values are not identical, the scale is the same.

CAN FRA GBR GER ITA JPN USA

0.000 0.350 0.350 0.000 0.400 0.125 0.350

(a) CPI based inflation

CAN FRA GBR GER ITA JPN USA

0.000 0.375 0.275 0.000 0.175 0.125 0.425

(b) Core CPI based inflation

Table 4.5: Estimated memory parameters of SEMIFAR models

The idea to fit a S EMIFAR model to inflation data in order to capture other contam-

inations than level shifts is supported by the findings of Baillie and Kapetanios (2007)

who apply tests in order to detect unspecified nonlinearities in addition to long memory

components. They detect nonlinearity for all G7 countries except for Germany.

The application of S EMIFAR models is not common in the inflation persistence litera-

ture. In fact, to our knowledge we are the first to fit S EMIFAR models to inflation data.

Therefore, on the one hand it may give further insights into the inflation behavior but

on the other hand our results cannot be compared to previous findings of other authors.

Nevertheless, we put our main findings of hardly any breaks but significant smooth

trends into the context of the current literature. Recently, level shifts are considered as

the main source of spurious long memory, whereas other low frequency contaminations
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like trends are not that prominent. Thus, there are many contributions supporting the

existence of breaks in inflation rates. However, the number and location of the break

points is not unambiguous. This phenomenon can be easily explained due to the fact

that abrupt level shifts are a rough approximation of a smooth trend. Hence, the actual

low frequency contaminations are smooth trends which are neglected but breaks give a

first impression of the nonlinearities in the data.

We show that the persistence of inflation rates is overestimated if low frequency contam-

inations are not considered in the estimation procedure. This implies that the costs and

the time until full implementation of monetary policy are upwardly biased. If we control

for nonlinearities, the degree of persistence clearly decreases. Thus, policy actions do

not have to be as aggressive and need less time until full implementation. To conclude,

monetary policy is less costly by taking the correct type of nonlinearity into account.
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5 Conclusion

We find a reduction in the memory parameter by allowing for low frequency contami-

nations in the G7 inflation rates and we reject the null hypothesis of true long memory,

except for the US. In general, only a few breaks can be located and therefore we consider

another type of nonlinearity, smooth trends. The estimated trends provide a good ap-

proximation of the real data and capture spurious long memory more appropriately than

structural breaks. With the exception of the US, all other countries exhibit significant

trends at the 5% level. This result is in line with the earlier finding of a higher memory

parameter for the US and a non-rejection of the test for spurious long memory.

To conclude, we provide an analysis of different estimation methods without a priori

assumptions in case of spurious long memory in inflation rates. Although the existing

empirical literature focuses more on the possibility of structural breaks in inflation time

series, we show that smooth trend models, such as S EMIFAR models, are a promising

alternative approach in order to capture the characteristics of inflation rates. Therefore,

future research should be dedicated to the assessment of trends in inflation rates in

addition to breaks.
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