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Abstract

We propose a simple test on structural change in long-range dependent time series. It is
based on the idea that the test statistic of the standard CUSUM test retains its asymptotic
distribution if it is applied to fractionally differenced data. We prove that our approach
is asymptotically valid if the memory is estimated consistently under the null hypothesis.
Therefore, the well-known CUSUM test can be used on the differenced data without any
further modification. In a simulation study, we compare our test with a CUSUM test on
structural change that is specifically constructed for long-memory time series and show that
our approach performs well.
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1 Introduction

Testing for structural stability in linear time series regression is a widely studied field in the
financial and economic literature since parameter instability invalidates estimation and forecasts
(see Perron et al. (2006), Andreou and Ghysels (2009), among others).
One of the most prominent change-in-mean tests is the CUSUM test that was originally proposed
by Brown, Durbin, and Evans (1975). Here, we focus on the version of Krämer, Ploberger, and
Alt (1988) that is based on OLS residuals and tends to have better power properties than the
original version based on recursive residuals. However, our results also apply to the recursive
version of the test.
The standard CUSUM test has the shortcoming that it is developed for independent or serially
correlated series, but not for long-range dependent data. Long-memory time series and series
with shifts in mean are easily confused since they can show similar characteristics such as hy-
perbolically decaying autocorrelations or a pole in the periodogram at Fourier frequencies close
to zero (see for example Diebold and Inoue (2001) or Granger and Hyung (2004)). Therefore,
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several papers show that standard CUSUM tests are invalid in presence of long memory.
Wright (1998) and Krämer and Sibbertsen (2002) show that the limiting distribution of the
CUSUM test under long-memory is different to the short-memory case. This results in the fact
that the standard test always rejects asymptotically when d > 0. The normalization factor of the
CUSUM statistic needs to be larger to account for the slow convergence of the highly persistent
long-memory series. Furthermore, the limiting distribution in the short-memory case is based on
independent increments, whereas the increments in the long-memory limit distribution are not
independent.
A solution is to use another normalization factor and critical values from a fractional Brown-
ian bridge such that the statistic converges to a well defined process and has correct critical
values. For Gaussian processes this is done by Horváth and Kokoszka (1997) and extended by
Wang (2008) to a wider range of linear processes. However, the modified tests converge to non-
standard limiting distributions that depend on d.
This paper proposes a different approach as an intuitive alternative particularly for practition-
ers. In a two-step procedure we first estimate the long-memory parameter and then perform the
CUSUM test for structural change on the d̂ times differenced data. The local Whittle estimator
is used for estimating d which is consistent under the null hypothesis of no structural change.
We show theoretically that the well known CUSUM test can be used in long-memory times series
after fractional differentiation of the data. Hence, at least asymptotically, there is no need to use
the modified versions of the standard tests. This has the advantage that the standard CUSUM
test is implemented in most common software packages for statistical analyses.
The rest of the paper is organized as follows. Section 2 describes the model along with the
structural change tests considered here. Section 3 provides and discusses our new test based on
differenced data. In Section 4 a Monte-Carlo simulation is conducted and Section 5 concludes.

2 CUSUM type tests

We consider a signal-plus-noise model1 where the observations (yt)t≥1 are generated by the
stochastic process

yt = µt + εt. (1)

Here, the regression means (µt)t≥1 are assumed to be deterministic and fulfill |µt| < ∞, for all
t = 1, ..., T . For the error term we assume that εt = ∆−dvt, where vt is a mean zero martingale
difference sequence with finite variance, |d| < 1/2, and ∆d = (1−L)d is the fractional differencing
operator defined as

(1− L)d =

∞∑
k=0

πk(d)Lk =

∞∑
k=0

Γ(k − d)

Γ(−d)Γ(k + 1)
Lk. (2)

That means we consider a process with a possibly time varying mean and stationary fractionally
integrated errors εt.

1One could also assume a standard regression model with µt = β′txt and test whether βt = β.
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Given a specific time series y1, ..., yT our interest lies in testing the null hypothesis of a constant
unconditional mean

H0 : µ1 = ... = µT = µ (3)

against the alternative of a shift in mean

H1 : µt 6= µs for some 1 < t 6= s < T. (4)

The CUSUM test statistic under long memory (CUSUM-LM) proposed by
Horváth and Kokoszka (1997) and Wang (2008) is based on

ST (τ, d̂) =
1

σ̂cT 1/2+d̂

bτT c∑
t=1

ε̂t −
bτT c
T

T∑
t=1

ε̂t

 , τ ∈ [0, 1], (5)

where b·c denotes the integer part of its arguments, σ̂c and d̂ are consistent estimators of the
long run variance and the memory parameter and ε̂t is an estimate of the residuals from (1).
The test statistic is given by

QT = sup0≤τ≤1|ST (τ, d̂)|.

For T →∞ it converges in distribution to the supremum of a fractional Brownian bridge

QT
d→ sup0≤τ≤1|Bd(t)− tBd(1)| (6)

where Bd(t) is a fractional Brownian motion and d→ denotes convergence in distribution.
The statistic also nests the standard CUSUM test for short-memory time series data when d = 0

and σ̂c is an autocorrelation consistent (HAC) long run variance estimator (cf. for example
Newey and West (1987), Andrews (1991)). In this case the statistic converges to the supremum
of a standard Brownian bridge.

3 CUSUM test after fractional differentiation

Instead of using the modified CUSUM-LM test, we suggest to use the standard CUSUM test on
the fractionally differenced series

y∗t (d̂) = ∆d̂yt = ∆d̂µt + ∆d̂εt = µ∗t + v∗t . (7)

Now, denote the partial sum statistic from (5) calculated from v̂∗t and under the assumption that
d = 0, by S∗T (τ, 0). The corresponding CUSUM test statistic is denoted by Q∗T .

Both approaches, the CUSUM-LM test as well as ours, require a consistent estimate of d under
H0. Our test requires that for T → ∞ the differenced series y∗t (d̂) is I(0) and the CUSUM-LM
test needs an estimator of d directly in the denominator of the test statistic, and indirectly
to obtain the correct critical values. This estimate is usually obtained using the local Whittle
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estimator of Künsch (1987) and Robinson (1995).
By using fractional differences we implicitly assume that yt = µt and εt = 0, for t ≤ 0, which
means that the process was equal to its mean before the beginning of the sample period. This
corresponds to a fractionally integrated process of type II. Fractionally integrated processes of
type I, on the other hand, assume that εt has an infinite past. For a detailed discussion of type
I and type II fractional Brownian motions see Marinucci and Robinson (1999).
Different from our differencing approach, the CUSUM-LM test usually assumes a type-I process.
However, for 0 ≤ d < 1/2, type I and type II processes are asymptotically equivalent.
The following theorem provides the limiting distribution of the test statistic

Theorem 1. Suppose that d̂− d0 = oP (T−η), for some arbitrary small η > 0. Then under H0 :

Q∗T
d→ sup0≤τ≤1|B0(t)− tB0(1)|.

Proof. To prove the theorem, we show that the partial sum statistic S∗T (τ, 0) calculated from the
differenced error process converges in distribution to SvT (τ, 0) - the statistic based on the true
innovation sequence vt. Denote δ = d− d̂, then under H0 with εt = ∆−dvt and v∗t = ∆d̂εt from
(1) and (7), we have

v∗t = ∆−δvt = vt +
∞∑
k=1

θk(δ)vt−k,

where θk(δ) =
Γ(k + δ)

Γ(δ)Γ(k + 1)
.

Therefore, the difference between the fractionally differenced error series v∗t and the original
innovation sequence vt is given by

γt = v∗t − vt =
∞∑
k=1

θk(δ)vt−k. (8)

By a first order Taylor approximation of the θk(δ) around δ = 0, we have

γt = Op(δ)γ̃t = Op(δ)
∞∑
k=1

vt−k
k

, (9)

since

∂θk(δ)

∂δ
=
ψ0(δ + k)Γ(δ + k)

Γ(k + 1)Γ(δ)
− ψ0(δ)

Γ(δ)

Γ(k + δ)

Γ(k + 1)
,

Γ(0) = ∞, Γ(k)/Γ(k + 1) = 1/k, and ψ0(0)/Γ(0) = −1, where ψ0(δ) denotes the Digamma
function. Denote

k∗ = min
{
k :

1

k
<
kη−1

Γ(η)

}
, (10)
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then we can rewrite γ̃t from (9) as

γ̃t =

k∗−1∑
k=1

vt−k
k

+

∞∑
k=k∗

vt−k
k

= γ̃
(1)
t + γ̃

(2)
t ,

such that from (8) and δ = op(T
−η), we have

S∗T (τ, 0)− SvT (τ, 0) =
op(T

−η)

σ̂cT 1/2

bτT c∑
t=1

γ̃
(1)
t +

bτT c∑
t=1

γ̃
(2)
t −

bτT c
T

(
T∑
t=1

γ̃
(1)
t +

T∑
t=1

γ̃
(2)
t

) . (11)

Obviously, γ̃(1)
t is short memory, so that the partial sum grows with rateOp(

√
T ) and oP (T−η−1/2)∑bτT c

t=1 γ
(1)
t = op(T

−η). Furthermore, we have

γ̃
(2)
t =

∞∑
k=1

akvt−k,

where ak = k−1 for k ≥ k∗ and zero otherwise. Hence, by (10), we have ak ≤ kη−1

Γ(η) for all
k = 1, 2, ..., so that the growth rate of the partial sum of a long-memory process with parameter
η is an upper bound for that of γ̃(2)

t :

bτT c∑
t=1

γ̃
(2)
t ≤ Op(T 1/2+η).

Therefore, op(T−η)T−1/2
∑bτT c

t=1 γ
(2)
t ≤ Op(T

η)op(T
−η) = op(1). Together with the previous

results this implies S∗T (τ)− SvT (τ) = op(1) and consequently

Q∗T
d→ QvT .

The convergence of the supremum follows from the continuous mapping theorem.

Theorem 1 requires a consistent estimate of d that satisfies a minimal rate assumption. This
is fulfilled by standard semiparametric estimators such as the local Whittle estimator. Under
this condition, the standard CUSUM test applied to the differenced data converges to the usual
statistic.

Remark 1. In practice both ST (τ, d̂) and S∗T (τ, 0) are based on estimates ε̂t and ε̂∗t of the error
processes that are obtained by de-meaning the observed series yt and y∗t . To simplify the exposition
we did not consider the effect of estimation errors introduced by de-meaning in the proof of
Theorem (1). Nevertheless, the extension of the results is straightforward.

4 Simulation results

The finite sample size and power properties of our test are examined in a Monte Carlo simulation
study and compared with the CUSUM-LM test. We simulate fractionally integrated white noise
and choose d ∈ {0; 0.2; 0.4} and sample sizes T ∈ {250; 500; 1000; 2500}. We apply the local
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n/b 0.70 | 0.75 | 0.80 0.70 | 0.75 | 0.80
Size Power

d=0
I II | I II | I II I II | I II | I II

250 0.017 0.017 | 0.026 0.024 | 0.028 0.026 0.884 0.983 | 0.985 0.997 | 0.998 0.999
500 0.022 0.024 | 0.027 0.030 | 0.031 0.032 0.989 1.000 | 1.000 1.000 | 1.000 1.000
1000 0.029 0.033 | 0.033 0.037 | 0.036 0.039 1.000 1.000 | 1.000 1.000 | 1.000 1.000
2500 0.036 0.039 | 0.039 0.045 | 0.039 0.045 1.000 1.000 | 1.000 1.000 | 1.000 1.000

d=0.2
250 0.014 0.016 | 0.021 0.022 | 0.028 0.025 0.344 0.488 | 0.517 0.595 | 0.652 0.701
500 0.022 0.025 | 0.024 0.028 | 0.032 0.031 0.632 0.834 | 0.828 0.912 | 0.919 0.947
1000 0.026 0.029 | 0.030 0.034 | 0.038 0.042 0.897 0.986 | 0.982 0.997 | 0.995 0.998
2500 0.030 0.032 | 0.038 0.041 | 0.042 0.043 0.998 1.000 | 1.000 1.000 | 1.000 1.000

d=0.4
250 0.011 0.013 | 0.016 0.019 | 0.026 0.023 0.106 0.161 | 0.128 0.185 | 0.168 0.212
500 0.014 0.018 | 0.018 0.022 | 0.029 0.027 0.138 0.240 | 0.169 0.260 | 0.237 0.307
1000 0.016 0.022 | 0.024 0.028 | 0.036 0.036 0.178 0.323 | 0.249 0.370 | 0.328 0.411
2500 0.025 0.030 | 0.026 0.031 | 0.042 0.041 0.295 0.471 | 0.397 0.516 | 0.485 0.572

Table 1: Size and power results of the CUSUM test on d̂ times differenced data (I) and the
CUSUM-LM type test (II) applied on fractionally integrated white noise for different bandwidths
m = bT bc and memory parameters d.

Whittle estimator to estimate d using bandwidths m = bT bc with b ∈ {0.7; 0.75; 0.8}. The
nominal significance level is α = 5%, and we report the rejection frequencies obtained from
M = 10, 000 replications.
In Table 1 we see at the left hand side that the standard CUSUM test on differenced data (I)
as well as the CUSUM-LM test (II) do not exceed their nominal size for all bandwidths and
memory parameters and get close to 5% as the sample size increases. In most of the cases our
approach is slightly more conservative.
On the right hand side of Table 1 the power results are given for a break size of one standard
deviation in the middle of the sample. The power loss of our test is moderate especially at large
bandwidths. The power of both tests increases as the bandwidth increases and it decreases as
the memory parameter d increases. The latter is due to the fact that means of long-memory
processes converge only with a rate of T 1/2−d instead of the usual rate of

√
T . Therefore, it is

harder to identify changes of the mean in more persistent time series.

5 Conclusion

We conclude that our simple procedure delivers comparable results to the CUSUM-LM test for
most financial time series where large samples are available. Furthermore, it benefits from the
simplicity that it has a pivotal distribution which is independent of d̂. Hence, it is not necessary
to simulate new critical values for every possible value of d̂ and CUSUM tests implemented in
standard software can be used.
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