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Abstract

It is well known that standard tests for a mean shift are invalid in long-range dependent
time series. Therefore, several long memory robust extensions of standard testing principles
for a change-in-mean have been proposed in the literature. These can be divided into two
groups: those that utilize consistent estimates of the long-run variance and self-normalized
test statistics.

Here, we review this literature and complement it by deriving a new long memory robust
version of the sup-Wald test. Apart from giving a systematic review, we conduct an extensive
Monte Carlo study to compare the relative performance of these methods. Special attention is
paid to the interaction of the test results with the estimation of the long-memory parameter.
Furthermore, we show that the power of self-normalized test statistics can be improved
considerably by using an estimator that is robust to mean shifts.
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1 Introduction

Both long memory and mean shifts generate similar time series features such as significant
autocorrelations at large lags or a pole in the periodogram at Fourier frequencies local to zero (see
for example Diebold and Inoue (2001), Granger and Hyung (2004), Mikosch and Stărică (2004)).
If long memory is falsely detected in a short-memory time series contaminated by a mean shift,
it is referred to as ’spurious long memory’. Tests to distinguish spurious from true long memory
are, for example, proposed by Ohanissian, Russell, and Tsay (2008) and Qu (2011).

However, this ambiguity is not unidirectional. Traditional testing techniques for a mean shift
are similarly invalidated by long memory in the time series. The problem is that the standard
tests are developed for independent or serially correlated innovations. They do not allow for
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long-range dependence. Therefore, the limiting distributions of the tests are different and the
normalization factors are too small. It can be shown that these tests reject the null hypothesis of
a constant mean with probability of one, asymptotically, if long memory is present in the series
(see Wright (1998) and Krämer and Sibbertsen (2002), among others). The problem is circular.
Even if it is suspected that a structural break has taken place, and one therefore wants to test
this hypothesis, a series with a mean shift will always show features of long-memory processes.
The presence of long memory can therefore never be ruled out with certainty.

To circumvent this issue, it is necessary to use long memory robust tests against mean shifts.
This is why numerous studies modify existing standard change-in-mean tests such as CUSUM
tests originally proposed by Brown, Durbin, and Evans (1975), Wilcoxon-type rank tests (e.g.
Bauer (1972)), and sup-Wald type tests by Andrews (1993) to account for long memory.

An early attempt was made, for example, by Hidalgo and Robinson (1996) who modify the sup-
Wald test to be valid under long-memory, but under the assumption that the change point is
known. For breaks at an unknown point in time Horváth and Kokoszka (1997) propose a modified
CUSUM test statistic for Gaussian processes that uses a different normalization factor and long-
run variance under long memory. They show that it converges to a fractional Brownian bridge.
Therefore, both the normalization and the critical values depend on the memory parameter d.
Wang (2008) extends the results of Horváth and Kokoszka (1997) to a wider range of linear
processes and shows that one can use estimators of the long-run variance and d asymptotically.
Dehling, Rooch, and Taqqu (2013) derive the limiting distribution of a Wilcoxon-type test with
an appropriate long run variance estimator for d > 0.

All these methods have in common that they follow the traditional approach to employ a con-
sistent estimate of the long-run variance for the standardization of the test statistic. Another
series of contributions replaces this estimate by an inconsistent self-normalization, as advocated
for weakly correlated time series by Shao and Zhang (2010).

In the context of testing on a mean shift in long-memory time series the technique is applied
in the sup-Wald test of Shao (2011). Betken (2016) also uses self-normalization to standard-
ize a Wilcoxon-type test. Later, Iacone, Leybourne, and Taylor (2014) state that the self-
normalization is a special case of fixed-b estimation of the long-run variance, as proposed by
Kiefer and Vogelsang (2005) for short-memory processes and generalized by McElroy and Poli-
tis (2012) to long-memory processes. Iacone, Leybourne, and Taylor (2014) then introduce a
sup-Wald test on a change-in-mean under long memory based on a fixed-b estimator of the
long-run variance.

Here, we give a detailed review of this literature and close a gap by deriving a new long memory
robust version of the sup-Wald test of Andrews (1993). Our test falls into the first group that
utilizes a consistent estimate of the long-run variance. In this case it is based on regression with
long-memory errors as considered in Yajima (1988).

The main contribution, however, is made by means of an extensive Monte Carlo study that we
use to evaluate the relative performance of all the aforementioned methods in finite samples.
So far most of the contributions have made simulations for the proposed test alone, or pairwise
comparisons with only one of the previously available methods. It is therefore not possible to
make any recommendations for the selection of methods in practice. In regard of the extent of

- 2 -



the literature, and the recent surge of interest in this topic, the comparison made here will be
helpful as a reference for further research and as guidance for practical applications.

Previous studies have also mostly abstracted from the effect of estimating the memory parameter
that appears in the test statistics and/or the limit distributions. This is a crucial simplification
since d is not known in practice. Hence, we pay special attention to the interaction of the test
results with the estimation of d. Furthermore, we show that the power of self-normalized test
statistics can be improved considerably by using an estimator that is consistent under the null
hypothesis as well as under the alternative of a mean shift. A modified local Whittle estimator
with these properties was proposed by Hou and Perron (2014).

The rest of the paper is organized as follows. Section 2 gives the hypothesis of interest and
describes the first group of tests on change-in-mean under long memory with consistent normal-
izations. The second group that utilizes self-normalization is considered in Section 3. In Section
4 we discuss different estimation methods for the long-memory parameter. Section 5 presents the
Monte-Carlo simulation and makes recommendations for empirical applications. Finally, Section
6 concludes.

2 Change-in-mean tests under long memory

2.1 Model

We consider a single mean shift model where the stochastic process (yt)t≥1 is generated by

yt = µ+ β1(t ≥ t∗) + εt. (1)

Here, the sequence of regression means µt = µ+β1(t ≥ t∗) for t ≥ 0 is assumed to be deterministic
and fulfills |µt| < ∞. The coefficient β determines the magnitude of the possible mean shift,
1(t ≥ t∗) is an indicator function that depends on the location of the break point denoted by
t∗ = bτ∗T c, where b·c returns the integer part of its argument and τ∗ ∈ (0, 1) denotes the break
fraction. Finally, (εt)t≥1 is a stationary fractionally integrated error term εt = (1− L)−dvt with
long memory parameter |d| < 1/2 and vt is a stationary short memory sequence with continuous
and bounded spectrum and infinite past. The error term (εt)t≥1 is therefore a fractionally
integrated process of type I (cf. Marinucci and Robinson (1999)).

As usual,

(1− L)d =

∞∑
k=0

πk(d)Lk =

∞∑
k=0

Γ(k − d)

Γ(−d)Γ(k + 1)
Lk (2)

is the fractional differencing operator and Γ(·) denotes the Gamma function. For d ∈ (−0.5, 0)
⋃

(0, 0.5) the sequence εt satisfies

γ(k) ∼ Lγ(k)|k|2d−1 for k →∞ , (3)

Lγ(k) = 2G(k−1)Γ(1− 2d) sin(πd) ,

where γ(k) is the autocovariance function evaluated at lag k, and G(·) is a slowly varying function
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in Zygmund’s sense (such that for k →∞ the function G(·) is well approximated by a constant
G).
Now, given a specific time series y1, ..., yT the interest lies on testing the null hypothesis of a
constant unconditional mean

H0 : µ1 = ... = µT = µ

against the alternative of a change-in-mean

H1 : µt 6= µs for some 1 < t, s < T,

which is equivalent to test the null hypothesis H0 : β = 0 against the alternative H1 : β 6= 0 in
(1).

2.2 CUSUM tests under long memory

The standard CUSUM test rejects the null hypothesis of a constant mean if the correctly stan-
dardized partial sum of the estimated residuals from a linear regression is too high. Krämer and
Sibbertsen (2002), among others, show that the standardization of the CUSUM test is too small
and a different long-run variance estimator has to be used when highly persistent long-memory
time series are considered. Furthermore, the wrong limiting distribution is assumed. Together
this leads to an asymptotic rejection probability of one under H0 such that the test is not appli-
cable.
Hence, Horváth and Kokoszka (1997) modified the CUSUM test statistic for Gaussian processes,
which is extended by Wang (2008) to general linear processes. Both of these contributions replace
the wrong scaling parameter as well as the long-run variance estimator in the standard method
for d > 0 and derive the limiting distribution of the modified test. For |d| < 0.5 the test is based
on

SCLMT (t∗, d) =
1

σ̂T 1/2+d

t∗∑
t=1

ε̂t, (4)

where ε̂t is an estimate of the residuals from (1), and σ̂2 is a consistent estimator of the long-
run variance under long memory. This can be, for example, the memory and autocorrelation
consistent (MAC) estimator of Robinson (2005) and Abadir, Distaso, and Giraitis (2009). The
long-run variance is given by

σ2 =


Γ(1−2d)G 2sin(πd)

d(1+2d) , for d ∈ (−0.5, 0)
⋃

(0, 0.5),

2πG, for d = 0,

where G ∈ (0,∞) the constant from (3). The CUSUM under long memory (CUSUM-LM) test
statistic is then given by

QCLMT = sup
t∗∈(t∗1,...,t

∗
2)
|SCLMT (t∗, d)|
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and converges in distribution to a fractional Brownian bridge

QCLMT ⇒ sup
τ∈[τ1,τ2]

|Bd(τ)− τBd(1)|

where Bd(τ) is a fractional Brownian motion of type I. Convergence in distribution is denoted
by ” ⇒ ”. It is usual to restrict the search area to some interval (t∗1, ..., t

∗
2) = (bTτ1c, ..., bTτ2c)

in which the statistic is calculated. Andrews (1993) suggests using τ1 = 1− τ2 = 0.15.
The standard CUSUM test for short memory time series (d = 0) is nested in (4). In this case the
MAC estimator σ̂2 is replaced with a heteroscedasticity and autocorrelation consistent (HAC)
long-run variance estimator (cf. for example Newey and West (1987), and Andrews (1991)). The
limit distribution then simplifies to the supremum of a standard Brownian bridge.

2.3 Wilcoxon-type tests under long memory

Given a time series y1, ..., yT the non-parametric Wilcoxon two-sample rank test divides the
sample at some potential break point t∗ in two parts. For each observation in the first part, it
sums over the number of times for which it is smaller than the observations in the second part.

An adaption of the standard test to long-memory time series is made by Dehling, Rooch, and
Taqqu (2013) based on

SWLM
T (t∗, d) =

1

TΘT

∣∣∣∣∣∣
t∗∑
i=1

T∑
j=t∗+1

(
1(yi ≤ yj)−

1

2

)∣∣∣∣∣∣ . (5)

Here, ΘT is a scaling function given by

Θ2
T =

LγT
1+2d

d(1 + 2d)
, (6)

and Lγ is the slowly varying function from (3). The Wilcoxon long memory (WLM) test then
rejects for large values of the test statistic

QWLM
T = max

t∗∈(t∗1,...,t
∗
2)
|SWLM
T (t∗, d)|.

For practical implementation Lγ has to be estimated. In case of fractional white noise we have
ΘT = T 1/2+d. For d ∈ (0, 1/2) Dehling, Rooch, and Taqqu (2013) show that the test statistic
converges in distribution to a scaled fractional Brownian Bridge

QWLM
T ⇒ 1

2
√
π

sup
τ∈[τ1,τ2]

|Bd(τ)− τBd(1)|,

which is identical to the limiting distribution of the CUSUM-LM test - except for the multi-
plicative constant. One disadvantage of the test is that it does not allow for d ≤ 0. Under the
assumption that d is known Dehling, Rooch, and Taqqu (2013) compare the WLM test with the
CUSUM-LM test and find that the WLM delivers better results for heavy tailed data, but not
for fractionally integrated white noise.
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2.4 Sup-Wald tests under long memory

The idea of the sup-Wald test is to perform a t-test on the estimate of β in the single mean
shift model (1) for each possible break date t∗. Wright (1998) shows that the standard sup-Wald
test diverges under long memory. Here, as a new testing procedure, we suggest using a modified
sup-Wald test that allows for long-memory errors as in Yajima (1988) and uses the corresponding
estimate for the long-run variance in the denominator.

This approach closes a gap in the literature. While the long memory robust extensions of
the CUSUM and Wilcoxon tests (discussed above) employ consistent estimates of the long-run
variance, the existing sup-Wald tests under long memory (discussed in the next section) all use
self-normalizations.

With xt(t∗) := (1,1t(t
∗))′ and using the OLS estimate β̂(t∗) the test is based on

SSWLM
T (t∗, d) =

β̂(t∗)2

σ̂2cMxx(t∗)−1c′T 2d
, (7)

where c = (0, 1), Mxx(t∗) =
∑T

t=1 xt(t
∗)xt(t

∗)′, and σ̂2 is the MAC long-run variance estimator
of Robinson (2005). Our sup-Wald test statistic under long memory (sup-Wald-LM) is then
given by

QSWLM
t = sup

t∗∈(t∗1,...,t
∗
2)
|SSWLM
T (t∗, d)|. (8)

For this test we obtain the limit distribution stated in the proposition below.

Proposition 1. For yt as defined in (1) and QSWLM
t as in (8), we have

QSWLM
t ⇒ sup

τ∈[τ1,τ2]
Vd(τ),

where Vd(τ) =
(Bd(τ)− τBd(1))2

τ(1− τ)
.

Proof. The derivation of the limiting distribution proceeds in direct analogy to that of Theorem
3 in Andrews (1993), but using the long-run variance in regressions with long-range dependent
errors derived in Yajima (1988). It is thus omitted. �

The standard sup-Wald test by Andrews (1993) is nested in the sup-Wald-LM test for d = 0.
In this case a HAC-estimator can be used in the denominator of the test statistic and the test
converges to a functional of standard Brownian motions instead of fractional ones.

3 Self-normalized tests

Instead of using a consistent estimate of the long-run variance in the denominator of the test
statistic, the following approaches apply a self-normalization technique which was first introduced
by Shao (2010) in the context of inference in time series. Later, Shao and Zhang (2010) considered
it for structural change tests, but only in short-memory time series. The self-normalizer is not a
consistent estimate of the long-run variance, but proportional to it. By using it, one achieves a
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well-defined limiting distribution even when long memory is present in the time series.
The self-normalizer G(t∗) is given by

G(t∗) =

(
1

T

t∗∑
t=1

S2
t (1, t∗) +

1

T

T∑
t=t∗+1

S2
t (t∗ + 1, T )

)1/2

(9)

with St(j, t
∗) =

t∑
h=j

(Hh −Hj,t∗), and Hj,t∗ =
1

t∗ − j + 1

t∗∑
t=j

Ht, (10)

where H is the quantity the specific test is based on, for example Hi = Ri, for the Wilcoxon test
discussed below. In contrast to the consistent long-run variance estimates, one can see that the
self-normalization depends on the location of the mean shift and is therefore different for each
t∗.

For T →∞ the self-normalizer G(t∗) converges in distribution to

U(τ, d) =

(∫ τ

0
J2
d (s, 0, τ)ds+

∫ 1

τ
J2
d (s, τ, 1)ds

)1/2

,

where Jd(s, s1, s2) = Bd(s)−Bd(s1)− s−s1
s2−s1 (Bd(s2)−Bd(s1)), for s ∈ [s1, s2], and 0 < s1 < s2 < 1.

Note that the self-normalizer G(t∗) does not explicitly account for the memory d. Instead, the
dependence of the quantity on d is subsumed under the limit distribution U(τ, d), alone.

3.1 Self-normalized Wilcoxon tests

First, we consider the self-normalized Wilcoxon-type change point test by Betken (2016). It
modifies the WLM test from (5) by replacing the denominator with the self-normalizer in (9),
where the quantity of interest Hi is the rank statistic Ri =

∑T
j=1 1(yj ≤ yi). This leads to

SSNWT (t∗) =

∑t∗

i=1Ri −
t∗

T

∑T
i=1Ri

G(t∗)
. (11)

The numerator of the test statistic performs a CUSUM test in terms of ranks. Asymptotically
this is equivalent to the numerator of the WLM test statistic in (5). The self-normalized Wilcoxon
(SNW) test is then given by

QSNWT = sup
t∗∈(t∗1,...,t

∗
2)
|SSNWT (t∗)|.

Under H0 the test statistic converges in distribution to

QSNWT ⇒ sup
τ∈[τ1,τ2]

|Bd(τ)− τBd(1)|
U(τ, d)

.

Note that the fractional Brownian motions in U(τ, d) are the same as those appearing in the
enumerator. An advantage of the self-normalized version of the test compared to that in (5) is
that Lγ in (6) does not need to be estimated.
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3.2 Self-normalized sup-Wald tests

Shao (2011) proposes a modified sup-Wald type test where the denominator of the sup-Wald test
in (7) is replaced by the self-normalization as in (9), with Ht = yt. The test is based on

SSNSWT (t∗) =
|β̂(t∗)|
G(t∗)

. (12)

Again, the test statistic of the self-normalized sup-Wald (SNSW) test is the supremum of (12)
in a user-chosen search area

QSNSWT = sup
t∗∈(t∗1,...,t

∗
2)
SSNSWT (t∗),

with limiting distribution

QSNSWT ⇒ sup
τ∈[τ1,τ2]

|Bd(τ)/τ − {Bd(1)−Bd(τ)}/(1− τ)|
U(τ, d)

.

The limiting distribution only depends on the value of the long-memory parameter, but not on
nuisance parameters such as the long-run variance. Similar to the limit distribution of the self-
normalized Wilcoxon test, the distribution of the self-normalizer appears in the denominator,
whereas the enumerator differs due to the different testing principle.

3.3 Fixed-b sup-Wald tests

Nonparametric kernel based HAC estimators consistently estimate the long-run variance in short
memory and weakly correlated time series for a user chosen bandwidth M = bbT c. However,
they essentially assume that b → 0 as T → ∞. A different assumption is made by the fixed-b
approach (see Kiefer and Vogelsang (2005), Sun, Phillips, and Jin (2008), and Sun (2014), among
others), where b ∈ (0, 1] for T →∞, i.e. b is held fix. Similar to the self-normalization, the fixed-
b estimate is not a consistent estimate for the long-run variance, but converges to the long-run
variance multiplied by a functional of a Brownian bridge. It is dependent on the bandwidth and
kernel choice and so are the limiting distributions of test statistics using the fixed-b approach.
The advantage of using fixed-b is that it delivers more accurate results in finite samples than the
traditional HAC estimation.

Using the estimated sample autocovariances γ̂(t∗) = 1
T

∑T
t=j+1 ε̂t(t

∗)ε̂t−j(t
∗), one obtains the

fixed-b long-run variance via

σ̂2
b (t
∗) = γ̂0(t∗) + 2

T−1∑
j=1

k(j/M)γ̂j(t
∗), (13)

which must be estimated for each possible break point t∗. The kernel function k(j/M) and the
bandwidth parameter M = bbT c are user chosen.

Iacone, Leybourne, and Taylor (2014) modify the standard sup-Wald test by inserting the fixed-b
long-run variance estimator σ̂2

b (t
∗) in the denominator of (7) and dropping the term involving
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the sample size, such that

SFBSWT (t∗) =
β̂(t∗)2

σ̂2
b cMxx(t∗)−1c′

.

The fixed-b sup-Wald (FBSW) test is then given by

QFBSWT = sup
t∗∈(t∗1,...,t

∗
2)
SFBSWT (t∗).

They show that Quadratic Spectral, Daniell, Parzen, and Bartlett kernels can be applied, but
focus on the Bartlett kernel, that - according to Kiefer and Vogelsang (2005) - delivers the highest
power for large b. Under the null hypothesis, Iacone, Leybourne, and Taylor (2014) derive the
limiting distribution of the test statistic with t∗/T → τ∗, as T →∞. This is given by

QFBSWT ⇒ sup
τ∈[τ1,τ2]

Vd(τ)

Φd(b, τ)
.

In case of the Bartlett kernel we have

Φd(b, τ) =
2

b

∫ 1

0
Qd(s, τ)2ds− 2

b

∫ 1−b

0
Qd(s+ b, τ)Qd(s, τ)ds,

Qd(s, τ) = Bd(s)− (Bd(τ)/τ)s− Vd(τ)(s− τ)1(s > τ)

(Bd(τ)− τBd(1))
,

and Vd(τ) is defined as in Proposition 1.

Hence, the null limiting distribution is dependent on d, the kernel function, the bandwidth, and
the search area. As for the other self-normalized test statistics, the limit distribution is that of
the standard test statistic divided by that of the self-normalizier.

Since the SNSW test is based on the sup-Wald principle using the self-normalizer, it can be
subsumed under the FBSW tests using a Bartlett kernel with b = 1 (cf. Shao (2010)). Iacone,
Leybourne, and Taylor (2014) provide simulation results where they find that the FBSW test
using the Bartlett kernel and b = 0.1 provides better power results than the the SNSW test. This
can be explained by the bandwidth choice in fixed-b estimation. Kiefer and Vogelsang (2005)
show that the higher the bandwidth, the smaller the size distortions are, but the power decreases
as well.

4 Estimation of the memory parameter

The majority of the tests discussed above are derived under the assumption that d is known.
Unfortunately, this is not the case in practical applications, where it needs to be estimated. The
effect of estimation error in d on the performance of the tests is therefore of major importance.
This is one of the main topics in our Monte Carlo simulation.
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4.1 Local Whittle estimator

Due to its good asymptotic properties and mild assumptions, the local Whittle estimator by
Künsch (1987) and Robinson (1995a) is typically applied to estimate d. For d ∈ (−1

2 ,
1
2), it is

given by

d̂LW = argmind

log Ĝ(d)− 2d

m

m∑
j=1

logλj

 , (14)

where Ĝ(d) = 1
m

∑m
j=1 λ

2d
j IT,y(λj), IT,y(λj) = (2πT )−1|

∑T
t=1 yte

itλj |2 is the periodogram of
the series yt, and the λj = (2πj/T ) are the Fourier frequencies. The user-chosen bandwidth
m needs to fulfill 1/m + m/T → ∞, as T → ∞, to ensure consistency. Under strengthened
conditions especially on the bandwidth choice Robinson (1995a) shows that

√
m(d̂ − d0) ∼

N(0, 1/4), asymptotically. The asymptotic variance of 1/(4m) is smaller than that of the log-
periodogram estimator of Geweke and Porter-Hudak (1983) and Robinson (1995b), which is
π2/(24m). Therefore, the local Whittle estimator is usually preferred.

4.2 Modified local Whittle estimator

As shown by Diebold and Inoue (2001), Granger and Hyung (2004), Mikosch and Stărică (2004),
and Perron and Qu (2010), among others, series contaminated by mean shifts and smooth trends
display similar characteristics to long memory processes and hence long memory estimation
methods such as the local Whittle estimator in (14) are positively biased.

With increasing memory, it becomes easier to confuse mean shifts and long-range dependence.
This is why the critical values of the employed tests are monotonic in d. If d is overestimated, the
tests therefore lose power, which is always the case under the alternative with standard methods
- such as the local Whittle estimator.

We therefore analyze in our Monte Carlo simulation, how the tests perform if d is estimated
using the robust estimator of Hou and Perron (2014). They propose a modified local Whittle
estimator that is consistent in the presence as well as in the absence of mean shifts, i.e. under
the null hypothesis and under the alternative. It is given by

d̂mLW = argmind,θ

log Ĝ(d, θ) +
1

m

m∑
j=1

log(λ−2d
j + θλ−2

j /T )

 , (15)

where Ĝ(d, θ) = 1
m

∑m
j=1

IT,y(λj)

λ−2d
j +θλ−2

j /T
and θ reflects the scaling of the shifts. Consistency and

asymptotic normality are shown by Hou and Perron (2014) for m > T 5/9.

5 Simulation results

To our knowledge, there is no systematic evaluation of the relative performance of the reviewed
change-in-mean tests under long memory. Our main contribution is therefore to provide a com-
prehensive Monte Carlo simulation study of their finite sample size and power properties that
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allows to determine which test performs best in which situations.

Our second goal is to investigate the effect of long-memory parameter estimation, which is crucial
in practical applications. Therefore, we choose three different scenarios for the long-memory
parameter: (i) d is known, (ii) d is estimated by the local Whittle estimator d̂LW , and (iii) d is
estimated by the modified local Whittle estimator d̂mLW . We put special emphasis on (ii) and
(iii).

As the data generating process we use the following autoregressive fractional integrated processes
of type I

(1− φL)εt =(1− L)−dut

with φ ∈ {0; 0.5}. We choose d ∈ {0; 0.2; 0.4}, sample sizes T ∈ {100; 250; 500; 1000}, a nominal
significance level of α = 5%, and report the rejection frequencies obtained with M = 5, 000

replications.
Table 1 displays the size results of the introduced tests. On the left hand side of the table, for
a known d, and no short run dynamics (φ = 0), almost all tests reach their nominal size. Not
surprisingly, the WLM test suffers from substantial size distortions for negative d, since the test
is only constructed for stationary long memory with d > 0.
If we use the local Whittle estimator, the results for the WLM test get worse and it does not
maintain its nominal size - especially for large d. The sup-Wald-LM test, on the other hand, is
undersized. However, the other tests reach their nominal size when d is estimated.
When applying the modified local Whittle estimator, we see that the size gets higher for all
tests if the sample sizes are small. The WLM test has a liberal size at any value of d. The
CUSUM-LM test and the sup-Wald-LM test are also slightly oversized for small d and have
higher size distortions if d increases. However, the self-normalized and fixed-b approaches reach
their nominal size quickly as the sample size increases.

On the right hand side of the table, we consider additional autoregressive dynamics with φ = 0.5.
The size results when assuming a known d get worse for all tests except for the self-normalized
and fixed-b approaches. However, if d is estimated using the (modified) local Whittle estimators,
all tests except the WLM test are undersized. This can be explained due to the fact that d̂LW and
d̂mLW are positively biased in finite samples when applied to fractionally integrated processes
with additional autoregressive dynamics. Therefore, the critical values for the self-normalized
and fixed-b approaches are too high, since they increase with increasing d. For the tests that
are based on a consistent long-run variance estimation (WLM, CUSUM-LM, and sup-Wald-LM
tests) the critical values decrease as d increases, but the additional scaling in the CUSUM-LM
and sup-Wald-LM tests with increasing d balances this effect. For the WLM test this is also
true, but the compensation is too slow.

In Table 2 the power results of the introduced tests are given for a fractionally integrated process
of type I with one single shift. The shift occurs in the middle of the sample at τ = 0.5 and is
as large as the standard deviation of the simulated time series. In general, we observe that the
power decreases as d increases, which is due to the fact that means of long-memory processes
converge only with a rate of T 1/2−d instead of the usual rate of

√
T . This makes the detection

of mean shifts in the more persistent time series harder. Furthermore, we see that the power
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increases as the sample size increases.

If d is estimated with the local Whittle estimator, the sup-Wald-LM test has substantial power
losses for high values of d. As discussed in Section 4.2, this can be explained by the fact that the
local Whittle estimate is biased under the alternative hypothesis of a mean shift in the series.
Therefore, the critical values are chosen to high. In disregard of the WLM test that shows high
size distortions, the FBSW and SNW tests exhibit the highest power among all tests for sample
sizes T < 500 while the CUSUM-LM tests have the highest power for T ≥ 500.

If the modified local Whittle estimator is used, the power of the fixed-b and self-normalized
approaches increases substantially. This can be explained by the robustness of the modified
estimator discussed in Section 4.2. The power gain of the tests based on a consistent estimation
of the long run variance (CUSUM-LM, sup-Wald-LM, WLM) is especially pronounced, however,
as we observed above, this goes in hand with substantial size distortions.

As in the previous table, at the right hand side of Table 2, we consider additional autoregressive
dynamics with φ = 0.5. With the exception of the severely oversized WLM test, all procedures
lose power compared to the case with φ = 0. We now observe that the power loss of the CUSUM-
LM test is more severe, so that the self-normalized and fixed-b approaches outperform across all
sample sizes. The only exception is for large d in small samples, where CUSUM-LM now has the
highest power.

Applying the modified local Whittle estimator in this setup does not increase the power. This
can be explained by the fact that the estimator captures the short memory dynamics, if a
large bandwidth is used. Hou and Perron (2014) suggest using a smaller bandwidth such as
m = bT 0.6c in this situation. Of course in practical applications one does not have the luxury to
know whether autoregressive structures are present. Therefore, we keep the bandwidth fixed for
all simulations.

Altogether, the results when d is estimated are as follows. Regarding the size results we observe
that the self-normalized and fixed-b approaches can be used in applications where d is estimated
in any case. The CUSUM-LM and sup-Wald-LM tests should only be used if d̂LW is applied and
the WLM test does not control the size.

The power results show that, when no additional autoregressive component is present, and the
local Whittle estimator is used, the FBSW and SNW tests provide the best results in small
samples and the CUSUM-LM test in large samples. Furthermore, the power of the self-normalized
and fixed-b approaches can be increased significantly if the modified local Whittle estimator is
applied. With additional autoregressive components the self-normalized and fixed-b approaches
outperform the CUSUM-LM test at any sample size for most values of d.

Our recommendation for practical applications is to use the self-normalized and fixed-b ap-
proaches - in particular FBSW and SNW. These tests offer the best size control and also have
the highest power in many situations. Whether the local Whittle estimator or its modified ver-
sion should be applied, depends on the probability that the process exhibits strong autoregressive
dynamics. If these are present, the local Whittle estimator should be preferred - otherwise the
modified local Whittle estimator of Hou and Perron (2014) offers superior performance in terms
of power.
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6 Conclusion

In this article, we review recent developments in the area of change-in-mean tests for long-
memory time series. The tests are organized according to the testing principles used (CUSUM,
sup-Wald, and Wilcoxon) and according to the normalization technique employed (consistent
long-run variance estimates or self-normalization).

We then conduct an extensive Monte Carlo simulation study, that specifically addresses the effect
of the estimation of the memory parameter. It turns out that this is of particular importance,
since the properties of the tests change considerably.

We further find that the performance of the tests is mainly driven by the normalization technique.
Altogether, the self-normalized Wilcoxon test of Betken (2016) and the fixed-b sup-Wald test of
Iacone, Leybourne, and Taylor (2014) offer the best tradeoff between size control and power.

Finally, the Monte Carlo simulations demonstrate that in absence of strong autoregressive dy-
namics substantial power gains can be realized if the modified local Whittle estimator of Hou
and Perron (2014) is used.
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