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Abstract

The focus of the volatility literature on forecasting and the predominance of the con-

ceptually simpler HAR model over long memory stochastic volatility models has led to

the fact that the actual degree of memory estimates has rarely been considered. Es-

timates in the literature range roughly between 0.4 and 0.6 - that is from the higher

stationary to the lower non-stationary region. This difference, however, has important

practical implications - such as the existence or non-existence of the fourth moment of

the return distribution. Inference on the memory order is complicated by the presence

of measurement error in realized volatility and the potential of spurious long memory.

In this paper we provide a comprehensive analysis of the memory in variances of inter-

national stock indices and exchange rates. On the one hand, we find that the variance

of exchange rates is subject to spurious long memory and the true memory parameter is

in the higher stationary range. Stock index variances, on the other hand, are free of low

frequency contaminations and the memory is in the lower non-stationary range. These

results are obtained using state of the art local Whittle methods that allow consistent

estimation in presence of perturbations or low frequency contaminations.
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1 Introduction

Modeling and forecasting asset volatility is one of the central topics of financial econo-

metrics. While the early literature has focused on short memory GARCH models, to-

day it is well established that financial market volatility typically exhibits long memory.

Standard models that capture the long-memory feature are, for example, ARCH(∞) and

LARCH models (see Giraitis et al. (2007), Giraitis et al. (2009)), as well as stochastic

volatility models that make use of ARFIMA processes. The conceptually simpler HAR

model of Corsi (2009) can also approximate long memory by using a regression with

overlapping averages of past volatilities. While in the HAR model the actual degree of

memory remains unknown, the other models provide estimates of the memory parameter

d.

However, a problem arises when the volatility series are contaminated by level shifts

or deterministic trends, known as low frequency contaminations. In this case standard

estimation methods for d are positively biased.

The issue is that both long memory and mean shifts generate similar time series fea-

tures such as significant autocorrelations at large lags or a pole in the periodogram at

Fourier frequencies local to zero (cf. for example Diebold and Inoue (2001), Granger

and Hyung (2004), or Mikosch and Stărică (2004)). If long memory is falsely detected

in a short-memory time series subject to low frequency contaminations, it is referred

to as ’spurious long memory’. However, recently several methods have been proposed

that allow for robust estimation of d under these circumstances (see Iacone (2010), Mc-

Closkey and Perron (2013), Hou and Perron (2014)).

Another issue frequently discussed for volatility series is the effect of perturbations. Deo

and Hurvich (2001) and Arteche (2004) show that standard estimation methods are

negatively biased if a noisy volatility proxy is used. Local Whittle based methods that

reduce this bias are proposed of Hurvich et al. (2005) and Frederiksen et al. (2012),

among others.

Several studies have estimated the memory parameter in index- and exchange rate vari-

ance. However, most of them use standard estimation methods that do not account

for the issues discussed above. The estimates achieved are roughly in the range of

0.4 < d < 0.6, so in the higher stationary or in the lower non-stationary region (c.f. An-

dersen et al. (2003), Hurvich and Ray (2003), Martens et al. (2009), among others). It

is an important question whether d > 0.5 since the features of the underlying processes

are substantially different. In particular, if d > 0.5 the variance of the variance series

is infinite, so that the kurtosis of the returns does not exist. To see this, denote the

continuously compounded asset returns by rt and assume that they are mean zero with
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conditional heteroscedasticity of the form

rt = σtηt,

where σt denotes the volatility at day t and it is assumed that ηt
iid
∼ (0,1) with finite

kurtosis Kη. Then the return kurtosis (Kr) can be decomposed into the kurtosis of the

volatility process (Kσ) and that of the innovation sequence as follows

Kr =
E(r4

t )

E(r2
t )2

=
E(σ4

t )

E(σ2
t )2

E(η4
t )

E(η2
t )2

= KσKη.

If d > 0.5, we have

Var(σ2
t ) = E[σ4

t ]−E[σt]4 =∞

with E[σt]4 = E[σ2
t ]2 <∞. This implies

Kr =

(
Var(σ2

t )2

E[σ2
t ]2

+ 1
)

Kη =∞.

Here, we provide a comprehensive analysis of the memory of a wide range of international

stock indices and exchange rates using recently published robust estimation methods.

We find that the variance of exchange rates is in the higher stationary range while the

variance of stock indices is in the lower non-stationary range. Additionally, we find

that exchange rates are likely to be subject to low frequency contaminations which bias

standard estimation methods upwards, whereas the stock index variances are free of

spurious long memory.

The rest of the paper is structured as follows. In Section 2 we review the methodological

issues associated with the estimation of long memory in realized volatility time series.

This motivates the use of robust estimation methods reviewed in Section 3. Here, we

also provide a Monte Carlo simulation that analyzes the performance of the robust

estimation methods if there is potential for both - low frequency contaminations and

perturbations. Section 4 contains our empirical contribution that analyzes the memory

parameters of a large set of international stock indices and exchange rates. Finally,

Section 5 concludes.

2 The Effect of Perturbations and Level Shifts

ARCH-type models usually assume that the daily variance σ2
t is some function of the past

squared returns, so that σ2
t = h(rt−1,rt−2, ...). On the contrary, the stochastic volatility
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literature usually assumes that the log-variance logσ2
t is a function of the lagged returns

as well as an additional innovation sequence εt that is specific to the volatility process

logσ2
t = g(rt−1,rt−2, ..., εt, εt−1, ...).

To fit these models, one either has to rely on complicated unobserved component models

or it is necessary to employ a proxy for the unobserved volatility process σt.

Since high frequency data has become widely available, it has become standard practice

to use realized variance as a proxy. Realized variance was popularized (among others)

by Andersen et al. (2001) and Andersen et al. (2003). Recent examples of long memory

models for realized variance include Deo et al. (2006), Martens et al. (2009), and Chiriac

and Voev (2011).

Let the log-price pt of an asset be observed at regular intervals - N times per trading day

- and denote the i-th intraday log-return by ri,t = pi,t − pi−1,t, then the realized variance

is given by

zt =

N∑
i=1

r2
i,t,

so that zt = σ2
t (1 + wt), for some error sequence wt and therefore

logzt = logσ2
t + log(1 + wt) ≈ logσ2

t + wt, (1)

for small wt. It is clear from (1) that zt can be regarded as a perturbed version of the

underlying volatility process. The influence of this estimation error in the volatility

proxy on the accuracy of the estimated memory parameter is an important topic in the

long memory stochastic volatility literature.

Note however, that Barndorff-Nielsen and Shephard (2002) show that plim zt = σ2
t , as

N →∞, so that wt → 0. Therefore, zt is a relatively precise estimate of σ2
t and it is

sometimes treated as if it was a direct observation of the variance process. Nevertheless,

a careful analysis of the memory of volatilities as intended here should take these effects

into account.

Another issue that has to be taken into account is the possible presence of low frequency

contaminations such as level shifts or deterministic trends. Especially log-squared re-

turns have been a prominent example in the literature on spurious long memory, from

early contributions such as Granger and Ding (1996), Mikosch and Stărică (2004), or

Granger and Hyung (2004), to more recent contributions such as Lu and Perron (2010),

or Xu and Perron (2014).
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We therefore consider the following model for the realized variance

zt = c + yt + uT,t + wt, (2)

where the variance process zt consists of a short- or long-memory process yt, a constant

c, a so called low frequency contamination uT,t (e.g. a level shift process or trend), and

the additive, mean zero, short memory noise term wt with variance σ2
w <∞.

The low frequency contamination uT,t is assumed to be a random level shift process as

given by

uT,t =

T∑
t=1

δT,t, where δT,t = πT,tξt, (3)

with ξt ∼ N(0,σ2
ξ) and πT,t

iid
∼ B(p/T,1), for p ≥ 0. Here, πT,t and ξt are mutually inde-

pendent and they are also independent of yt and wt. To estimate the unknown memory

parameter d in applications, it is common to use the local Whittle estimator of Kün-

sch (1987) and Robinson (1995a). Compared to ARFIMA models this semiparametric

approach has the advantage that it is consistent irrespective of the form of the short

run dynamics. Furthermore, the asymptotic variance of the local Whittle estimator is

smaller than that of the log-periodogram estimator of Geweke and Porter-Hudak (1983)

and Robinson (1995b). The discussion in this paper is therefore focused on the local

Whittle estimator that is discussed in detail in the next section.

In absence of low frequency contaminations in model (2) - that is if ut,T = 0 for all

t = 1, ...,T - Arteche (2004) shows that the local Whittle estimator is biased downwards.

Bias corrected versions of the estimator have been proposed, among others, by Hurvich

et al. (2005) and Frederiksen et al. (2012).

Similarly, in absence of perturbations in (2) - that is when wt = 0 for all t = 1, ...,T -

Perron and Qu (2010) and McCloskey and Perron (2013) show that the periodogram of

zt can be decomposed into

Iz,T (λ j) = Iy,T (λ j) + Iu,T (λ j) + Iyu,T (λ j)

=
1

2πT

∣∣∣∣∣∣∣
T∑

t=1

yteiλ jt

∣∣∣∣∣∣∣
2

+
1

2πT

∣∣∣∣∣∣∣
T∑

t=1

uT,teiλ jt

∣∣∣∣∣∣∣
2

+
2

2πT

T∑
t=1

T∑
s=1

ytuT,tcos(λ j(t− s)).
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For λ j = o(1) they show that

Iz,T = Op

 1
λ2d

j

+ Op

 1
Tλ2

j

+ Op

 1
√

Tλ1+d
j

 . (4)

It follows that the part corresponding to the random level shift process uT,t dominates for

j = o(T (1−2d)/(2−2d)) while the part corresponding to the short- or long-memory process

yt dominates for jT (2d−1)/(2−2d)→∞.

Therefore, local Whittle estimates are biased upwards especially when small bandwidths

are used. This results in the aforementioned effect of spurious long memory.

For the model in (2), it is therefore well established that there are potential effects that

cause both upwards bias as well as downwards bias in the estimated memory parameters

if standard methods such as the local Whittle estimator are used.

3 Robust Long Memory Estimation

As argued in the previous section, it is likely that volatility measures are perturbed

(even though the perturbation is less pronounced when the realized variance is used)

and subject to low frequency contaminations. Therefore, robust methods against these

issues have to be used to estimate d.

The spectral density function fz(λ) of the perturbed volatility measure process under

low frequency contaminations in (2) at frequency λ is given by

fz(λ) = φy(λ)λ−2d +φw(λ) +φu(λ)λ−2/T (5)

where φa with a ∈ {y,w,u} corresponds to the spectral density of the short run components

in yt, wt, and ut,T . All local Whittle estimation methods are based on the local log-

likelihood as given by

Ra(d, θ) = logĜa−
2d

m− l + 1

m∑
j=1

logλ j +
1
m

m∑
j=1

log (ga), (6)

where Ĝa approximates the spectral density local to zero, m = bT bc is the bandwidth,

l is a trimming parameter which is equal to one except for the trimmed local Whittle

estimator, λ j = (2π j/T ) are the Fourier frequencies, ga is a function that controls for

perturbations and/or low frequency contaminations, and a ∈ {LW,LPWN,mLW, tLW}.

Depending on whether perturbations, low frequency contaminations, or both are present

in the volatility series, the spectral density in (5) has to be approximated differently local

to zero. Therefore, several estimators can be derived.
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For the standard local Whittle estimator it is assumed that there are no perturbations

and low frequency contaminations. Hence, the spectral density of the series zt in (5) is

approximated by a constant G. It follows that

ĜLW =
1
m

m∑
j=1

λ2d
j Iz(λ j) and gLW(d, θ,λ) = 0,

where the periodogram Iz(λ) is given by Iz(λ) = (2πT )−1|
∑T

t=1 zteitλ|2. The standard local

Whittle estimator suggested by Künsch (1987) is then given by

d̂LW = argmin
d

RLW(d). (7)

For 1/m+m/T →∞, as T →∞ and d ∈ (−0.5,0.5) consistency of d̂LW is shown by Robin-

son (1995a). Under strengthened assumptions (especially on the bandwidth choice) it

is also shown that
√

m(d̂LW − d) a
∼ N(0,1/4). Velasco (1999) extends these results and

shows that the local Whittle estimator is consistent for d ∈ (−0.5,1] and asymptotically

normal for d ∈ (−0.5,0.75].
In the case where the volatility measure exhibits short memory dynamics and perturba-

tions, the local polynomial Whittle with noise (LPWN) estimator of Frederiksen et al.

(2012) can be applied. They extend the idea of Andrews and Sun (2004) who approxi-

mate the spectral density local to zero by a polynomial instead of a constant to reduce

the finite sample bias of the local Whittle estimator. Frederiksen et al. (2012) add an

additional polynomial to approximate the spectrum φw(λ) of the perturbation in (5).

Other approaches that try to approximate the perturbation by a constant rather than a

polynomial are, for example, made by Hurvich and Ray (2003) who proposed the local

polynomial Whittle estimator with noise (LWN). This estimator is nested in the LPWN

estimator if the polynomials are chosen of order zero.

Precisely, Frederiksen et al. (2012) fit the following two polynomials

logφy(λ) ' logG + hy(θy,λ)

logφw(λ) ' logG + logθp + hw(θw,λ).

to approximate the logarithms of φy(λ) and φw(λ) in (5). Here θ = (θ′y, θρ, θ
′
w)′, θρ =

φw(0)/φy(0) is the long-run signal-to-noise ratio, ha(θa,λ) =
∑Ra

r=1 θa,rλ
2r, and a ∈ {y,w}.

- 7 -



Therefore,

ĜLPWN =
1
m

m∑
j=1

λ2d
j Iz(λ j)

gLPWN(d, θ,λ j)

and gLPWN(d, θ,λ) = exp(hy(θy,λ)) + θρλ
2dexp(hw(θw,λ)).

The estimator is given by

(d̂LPWN , θ̂) = argmin
d∈[d1,d2],θ∈Θ

RLPWN(d, θ),

where 0 < d1 < d2 < 1 is assumed to be stationary, and Θ is a compact and convex set

in RRy × (0,∞)×RRw . For a properly chosen m and d ∈ (0,1) Frederiksen et al. (2012)

show in their Theorem 2 under some regularity conditions that the memory estimator

is consistent. They further show for d ∈ (0,0.75) that it converges in distribution to the

normal distribution when perturbations are present. Compared with the local Whittle

estimator the asymptotic variance increases by a multiplicative constant, but the bias

through perturbation and short memory dynamics is reduced.

In case that the volatility series is subject to level shifts or other low frequency contam-

inations, the trimmed local Whittle (tLW) estimator of Iacone (2010) and the modified

local Whittle (mLW) estimator of Hou and Perron (2014) can be applied.

The idea of the trimmed local Whittle estimator of Iacone (2010) is to use a trimming

of the l lowest frequencies where the contaminations have their biggest effect on the

spectral density of the series according to (4). Therefore, we obtain

ĜtLW =
1

m− l + 1

m∑
j=1

λ2d
j Iz(λ j) and gtLW(d, θ,λ) = 0,

where 1 ≤ l < m ≤ bT/2c, so that

d̂tLW = argmin
d

RtLW(d).

In case l = 1 the estimator is reduced to the standard local Whittle. Under suitable as-

sumptions on the bandwidth and trimming parameter Iacone (2010) shows consistency

and asymptotic normality of d̂tLW for d ∈ (0,0.5). Its asymptotic variance is the same as

that of the local Whittle estimator.

The modified local Whittle estimator uses another approach to achieve consistent esti-

mates of d under low frequency contaminations. It adds an additional term to account

for φu(λ)λ−2/T - the influence of the low frequency contamination in the spectral density

function of the variance zt. Hou and Perron (2014) also provide an additional exten-
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sion of the modified local Whittle estimator to account for both the perturbation and

the low frequency contamination. In this case they approximate the spectral density

φw(λ) of the perturbation by a constant term following the approach of Hurvich et al.

(2005). Denoting θ = (θw, θu)′ as the signal-to-noise ratios of the perturbation and the

low frequency contamination the estimator uses

ĜmLW =
1
m

m∑
j=1

Iz(λ j)
gmLW(d, θ,λ j)

and gmLW(d, θ,λ) = (λ−2d + θw + θuλ
−2/T )

and is given by

(d̂mLW , θ̂) = argmin
d,θ

RmLW(d, θ).

If θw = 0, we have the modified local Whittle estimator (mLW) and if θw , 0 we have the

modified local Whittle plus noise estimator (mLWN). For θw = 0, a properly chosen m

which needs to be larger than T 5/9 and d ∈ (0,0.5), Hou and Perron (2014) show consis-

tency and under strengthened assumptions asymptotic normality of the estimator. The

estimator possesses the same asymptotic variance as the local Whittle estimator. The

consistency of these methods for d > 0.5 is addressed in our simulations below.

A prominent test to distinguish true from spurious long memory is the Lagrange multiplier-

type test of Qu (2011). Its null hypothesis incorporates all second-order stationary short-

or long-memory processes. Under the alternative, the process is contaminated by some

low frequency contamination, for example a random level shift as given in (3). The test

statistic uses the difference between the rates given in (4) and it is based on the local

Whittle likelihood function. It is given by

W = sup
r∈[ε,1]

 m∑
j=1

ν2
j


−1/2

∣∣∣∣∣∣∣∣∣
[mr]∑
j=1

ν j

 Iz(λ j)

G(d̂LW)λ−2d̂LW
j

−1


∣∣∣∣∣∣∣∣∣ , (8)

with ν j = logλ j− (1/m)
∑m

j=1 logλ j, and a small trimming parameter ε. Qu (2011) derives

the consistency and the limiting distribution of (8) for d ∈ (0,0.5). Sibbertsen et al.

(2017) show via simulations that the test also works in the low non-stationary range for

d. Qu (2011) reports critical values for ε ∈ {0.02,0.05}, where the first value is recom-

mended for sample sizes T > 500. It is further recommended to use m = bT 0.7c frequency

ordinates. The test of Qu (2011) has several desirable properties such as not requiring

Gaussianity, allowing for conditional heteroskedasticity, not requiring a precise specifica-

tion of the low frequency contamination due to its score-type nature and displaying high

finite sample power results compared to competing tests (c.f. Leccadito et al. (2015)).
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Bias standard deviation

d 0.4 0.6 0.4 0.6

σw/ση 0 1 2 0 1 2 0 1 2 0 1 2

LW

0 0.00 0.08 0.17 0.00 0.04 0.10 0.03 0.06 0.09 0.03 0.05 0.07

0.1 0.00 0.08 0.17 0.00 0.04 0.10 0.03 0.06 0.09 0.03 0.05 0.07

0.25 -0.01 0.07 0.16 -0.02 0.03 0.09 0.03 0.06 0.09 0.03 0.05 0.07

0.5 -0.03 0.05 0.14 -0.06 -0.02 0.05 0.03 0.06 0.09 0.02 0.05 0.07

mLW

0 -0.01 -0.01 -0.01 -0.02 -0.01 0.02 0.02 0.03 0.04 0.02 0.04 0.07

0.1 -0.01 -0.01 -0.01 -0.03 -0.02 0.01 0.02 0.03 0.04 0.02 0.04 0.07

0.25 -0.03 -0.03 -0.03 -0.08 -0.08 -0.08 0.02 0.03 0.04 0.04 0.05 0.08

0.5 -0.07 -0.07 -0.08 -0.20 -0.22 -0.24 0.02 0.03 0.04 0.06 0.06 0.07

tLW

0 -0.01 0.01 0.04 -0.01 0.01 0.04 0.03 0.04 0.05 0.03 0.04 0.05

0.1 -0.01 0.01 0.04 -0.01 0.00 0.03 0.03 0.04 0.05 0.03 0.04 0.05

0.25 -0.02 -0.01 0.03 -0.05 -0.04 0.00 0.03 0.03 0.05 0.03 0.04 0.05

0.5 -0.06 -0.05 -0.02 -0.15 -0.14 -0.10 0.03 0.03 0.05 0.04 0.04 0.06

LWN

0 0.02 0.12 0.23 0.01 0.06 0.12 0.03 0.08 0.10 0.03 0.05 0.07

0.1 0.02 0.12 0.23 0.01 0.06 0.12 0.03 0.08 0.10 0.03 0.05 0.07

0.25 0.01 0.12 0.23 0.01 0.06 0.13 0.04 0.08 0.11 0.04 0.06 0.08

0.5 0.01 0.13 0.24 0.01 0.06 0.13 0.04 0.09 0.11 0.04 0.06 0.08

mLWN

0 0.01 0.03 0.11 0.01 0.05 0.11 0.03 0.07 0.15 0.03 0.06 0.08

0.1 0.01 0.03 0.11 0.01 0.04 0.11 0.03 0.07 0.15 0.03 0.06 0.09

0.25 0.00 0.03 0.11 0.00 0.03 0.10 0.04 0.07 0.16 0.05 0.07 0.10

0.5 -0.01 0.02 0.11 -0.01 0.03 0.11 0.05 0.09 0.17 0.06 0.09 0.11

Table 1: Bias and standard deviation of the long-memory estimators.

To evaluate the finite sample performance of the estimators discussed above in the

situation we are facing in our empirical application, we conduct a small Monte Carlo

simulation. The data generating process (DGP) is based on (2), where yt is a fractionally

integrated process of order d, wt is white noise with variance σ2
w, p = 5, and T = 4000,

which approximately mirrors the sample sizes in our empirical application. Since the

variance of the perturbations can be expected to be small, we set σw ∈ {0,1/10,1/4,1/2},
whereas yt is scaled so that the variance of the process is one. Furthermore, we set σ2

η ∈

{0,1,2}, since we do not have any a priori knowledge about the magnitude of potential

mean shifts. The bandwidth parameters are chosen as in the empirical application

following the recommendations of the authors who proposed the respective methods.

For the local Whittle estimator we set m = bT 0.7c.

The results reported in Table 1 are based on 5000 Monte Carlo replications. Starting
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with the local Whittle estimator, we can observe the expected result that there is a

positive bias if level shift components are present and the perturbations cause only a

slight negative bias due to their moderate scale. It is worth noting that the bias of the

local Whittle estimator is smaller for d = 0.6 than for d = 0.4, so that all the estimated

ds are in the range between 0.5 and 0.7.

Turning to the mLW estimator of Hou and Perron (2014), we observe that the estimator

successfully mitigates the bias caused by the level shift components. However, with

increasing magnitude of the perturbation, the estimator suffers a strong negative bias -

much stronger than the original local Whittle estimator.

Similar results hold true for the tLW estimator of Iacone (2010), but the magnitude of

the perturbation bias is considerably smaller than that of the mLW estimator.

The LWN estimator behaves similarly, but in the contrary direction. It successfully

mitigates the downward bias caused by perturbations, but it suffers from a stronger

upward bias in case of level shift components than the local Whittle estimator.

Finally, the mLWN estimator seems to be mitigating the perturbation bias, but it does

not control the spurious long memory bias to its full extend.

The results of the mLW and tLW estimators for d = 0.6 show that the consistency extends

to the lower non-stationary region - exactly like that of the LW and LPWN.

With regard to the variation of the estimators, we can observe that all methods become

increasingly variable as the influence of the level shifts increases. The mLW estimator

turns out to have slightly less variance than the tLW estimator of Iacone (2010) for

d = 0.4, but higher variance for d = 0.6. The LWN estimator is more variable than the

LW estimator and the mLWN estimator is extremely volatile in presence of level shifts

in a stationary long-memory sequence with d = 0.4.

4 The Memory of Realized Volatility

We consider daily realized variances of 41 major stock indices and 10 nominal exchange

rates relative to the US Dollar. The data for the indices is obtained from the ’Oxford-

Man Institute’s realised library’ and was compiled by Heber et al. (2009). The series

start between 1996 and 2000 and they end on 9 June 2017. An overview of the symbols

is given in Table 5 and a summary of the start and end dates as well as the length of

the series is given in Table 7 in the appendix.

To construct similar series for the exchange rates, we use 5-minute returns obtained from

the Thomson Reuters Tick History database. The data is cleaned following the recom-

mendations of Barndorff-Nielsen et al. (2009) to account for the typical high frequency

data quality issues. Similar to the procedure of Heber et al. (2009), some additional

manual edits are made so that the data is suitable for statistical inference. Since there
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is no market closure for exchange rates the log-realized variance is calculated based on

all 5-minute log-returns within each 24-hour period. As for the indices, an overview

of the meaning of the symbols is given in Table 6 and starting dates of the resulting

series and the number of observations are given in Table 8. The last observation of all

exchange rate series is from 31 January 2017.

The results of the different long-memory estimators applied to the log-realized variances

log zt of the indices are given in Tables 2 and 3. Starting with the local Whittle esti-

mates, we observe that they tend to decrease as the bandwidth increases from m = bT 0.6c

to m = bT 0.8c. Even though this decrease has a magnitude of up to 0.2 for some of the

series, it is moderate for the majority of them. Nevertheless, this could be seen as an

indication for low frequency contaminations in the respective series. The intuition be-

hind this is given in Section 2: the long-memory component of a contaminated series

dominates the low frequency contamination at higher frequencies such that the positive

bias of the estimated d decreases if a larger bandwidth is chosen.

Nearly all point estimates are within the lower non-stationary region between 0.5 and

0.6 and the vast majority of asymptotic confidence intervals are completely in the non-

stationary region as well. If the impact of perturbations and low frequency contamina-

tions is low, this is strong evidence that the memory of the indices is larger than 0.5.

Turning to the LPWN estimates, we first observe that the estimates are very stable

across the different specifications of the estimator. The level of the estimates tends to

be higher than that of the local Whittle estimates. Most of them are in the range be-

tween 0.6 and 0.7. This further supports the previous finding that the index variances

possess non-stationary long memory and points to the fact that the measurement error

in the log-realized variance still has a magnitude so that it causes downward bias in the

local Whittle estimator.

The right hand side of Tables 2 and 3 shows the results of the mLW and tLW estimators

of Hou and Perron (2014) and Iacone (2010) as well as the mLWN estimator. In all cases

the mLW estimates are smaller than the local Whittle estimates and in some series the

memory drops by a considerable amount. The same holds true for the tLW estimator of

Iacone (2010), but the reduction in memory compared to the local Whittle estimates is

of a smaller magnitude. This could be seen as evidence for low frequency contaminations

in the variances. However, the results of the mLWN estimator are more in line with those

of the LPWN estimators and the test of Qu (2011) fails to reject the null hypothesis of

true long memory for the vast majority of index series. At the 5% significance level the

test of Qu (2011) only rejects for GSPTSE, HSI, MSCIBE, MSCIDE, and MSCIJP.

Having in mind that the mLW and tLW estimators are severely downward biased in the

presence of moderate perturbations, we therefore conclude that there is no evidence for

spurious long memory. Hence, the LPWN estimator is most suitable to give the best
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LW0.6 LW0.7 LW0.8 LWN LPWN(1,0) LPWN(0,1) LPWN(1,1) mLW mLWN tLW Qu0.75

AEX 0.625 0.635 0.577 0.659 0.661 0.670 0.669 0.568 0.658 0.567 0.575

(0.542 0.709) (0.581 0.688) (0.543 0.612) (0.624 0.694) (0.626 0.696) (0.636 0.705) (0.634 0.704) (0.533 0.602) (0.623,0.693) (0.506,0.627)

AORD 0.553 0.586 0.460 0.650 0.611 0.617 0.611 0.344 0.648 0.444 1.061

(0.469 0.637) (0.532 0.640) (0.426 0.495) (0.615 0.685) (0.576 0.646) (0.582 0.652) (0.576 0.646) (0.309 0.379) (0.613,0.683) (0.383,0.505)

BVSP 0.549 0.521 0.475 0.561 0.530 0.522 0.530 0.462 0.561 0.484 0.555

(0.464 0.633) (0.467 0.575) (0.440 0.510) (0.526 0.597) (0.495 0.565) (0.487 0.558) (0.495 0.565) (0.426 0.497) (0.526,0.597) (0.423,0.545)

DJI 0.622 0.586 0.534 0.624 0.594 0.572 0.594 0.488 0.624 0.539 0.610

(0.538 0.706) (0.533 0.640) (0.499 0.569) (0.589 0.659) (0.559 0.629) (0.537 0.607) (0.559 0.629) (0.453 0.523) (0.589,0.659) (0.479,0.600)

FCHI 0.605 0.624 0.564 0.643 0.646 0.656 0.655 0.518 0.642 0.550 0.616

(0.521 0.688) (0.571 0.678) (0.529 0.599) (0.609 0.678) (0.611 0.681) (0.621 0.691) (0.620 0.689) (0.483 0.552) (0.607,0.677) (0.490,0.610)

FTSE 0.650 0.640 0.569 0.672 0.677 0.691 0.691 0.487 0.671 0.544 0.677

(0.566 0.733) (0.586 0.694) (0.534 0.604) (0.637 0.707) (0.643 0.712) (0.656 0.726) (0.656 0.726) (0.452 0.522) (0.636,0.706) (0.483,0.604)

FTSEMIB 0.600 0.607 0.547 0.632 0.626 0.631 0.627 0.522 0.631 0.548 0.557

(0.517 0.684) (0.553 0.660) (0.512 0.582) (0.597 0.667) (0.591 0.661) (0.596 0.666) (0.592 0.662) (0.488 0.557) (0.596,0.665) (0.487,0.609)

GDAXI 0.653 0.637 0.564 0.663 0.667 0.728 0.728 0.471 0.662 0.499 0.722

(0.569 0.736) (0.584 0.691) (0.529 0.598) (0.629 0.698) (0.632 0.702) (0.693 0.762) (0.694 0.763) (0.436 0.506) (0.627,0.697) (0.438,0.559)

GSPTSE 0.603 0.565 0.490 0.642 0.647 0.639 0.651 0.375 0.593 0.451 1.264*

(0.514 0.691) (0.509 0.622) (0.453 0.527) (0.605 0.679) (0.610 0.684) (0.602 0.676) (0.614 0.689) (0.338 0.412) (0.556,0.630) (0.387,0.515)

HSI 0.640 0.557 0.503 0.640 0.646 0.649 0.649 0.384 0.638 0.446 1.461*

(0.554 0.726) (0.502 0.613) (0.467 0.539) (0.604 0.676) (0.610 0.682) (0.613 0.685) (0.613 0.686) (0.348 0.420) (0.602,0.674) (0.383,0.509)

IBEX 0.593 0.596 0.545 0.611 0.617 0.632 0.631 0.510 0.576 0.525 0.858

(0.509 0.677) (0.542 0.649) (0.510 0.580) (0.576 0.645) (0.583 0.652) (0.597 0.666) (0.597 0.666) (0.475 0.544) (0.541,0.611) (0.465,0.586)

IXIC 0.644 0.598 0.552 0.628 0.623 0.579 0.625 0.493 0.625 0.542 0.535

(0.560 0.728) (0.545 0.652) (0.517 0.587) (0.593 0.662) (0.588 0.657) (0.544 0.614) (0.590 0.660) (0.458 0.527) (0.590,0.660) (0.481,0.603)

KS11 0.692 0.622 0.548 0.686 0.691 0.718 0.743 0.407 0.684 0.510 1.181

(0.607 0.776) (0.567 0.676) (0.512 0.583) (0.651 0.721) (0.656 0.726) (0.683 0.753) (0.708 0.778) (0.372 0.442) (0.649,0.720) (0.448,0.571)

MIB30 0.608 0.613 0.550 0.662 0.656 0.661 0.657 0.510 0.661 0.562 0.640

(0.516 0.700) (0.553 0.673) (0.511 0.590) (0.623 0.702) (0.617 0.695) (0.622 0.700) (0.618 0.696) (0.471 0.549) (0.622,0.700) (0.458,0.596)

MIBTEL 0.667 0.622 0.532 0.735 0.686 0.693 0.687 0.343 0.735 0.536 1.002

(0.562 0.773) (0.552 0.692) (0.486 0.579) (0.689 0.782) (0.640 0.733) (0.646 0.739) (0.640 0.733) (0.296 0.389) (0.689,0.782) (0.493,0.630)

MID 0.712 0.637 0.564 0.727 0.730 0.754 0.754 0.373 0.726 0.530 1.160

(0.620 0.804) (0.577 0.697) (0.525 0.603) (0.687 0.766) (0.691 0.770) (0.714 0.793) (0.714 0.793) (0.333 0.412) (0.687,0.765) (0.453,0.618)

MSCIAU 0.659 0.606 0.499 0.731 0.698 0.701 0.698 0.297 0.728 0.470 0.721

(0.555 0.762) (0.538 0.674) (0.454 0.545) (0.685 0.776) (0.653 0.743) (0.655 0.746) (0.653 0.743) (0.252 0.343) (0.682,0.773) (0.460,0.599)

MSCIBE 0.730 0.656 0.536 0.805 0.738 0.733 0.790 0.160 0.804 0.501 1.349*

(0.628 0.832) (0.589 0.723) (0.492 0.581) (0.760 0.849) (0.693 0.782) (0.688 0.777) (0.745 0.834) (0.116 0.204) (0.759,0.848) (0.389,0.550)

MSCIBR 0.629 0.567 0.501 0.677 0.670 0.671 0.675 0.358 0.675 0.503 0.628

(0.511 0.747) (0.488 0.645) (0.448 0.555) (0.624 0.730) (0.617 0.723) (0.618 0.724) (0.622 0.729) (0.304 0.411) (0.622,0.728) (0.422,0.580)

MSCICA 0.681 0.614 0.503 0.765 0.680 0.683 0.676 0.215 0.763 0.512 0.636

(0.572 0.789) (0.543 0.686) (0.454 0.551) (0.716 0.813) (0.632 0.728) (0.635 0.731) (0.628 0.724) (0.167 0.263) (0.715,0.811) (0.407,0.599)

MSCICH 0.730 0.676 0.565 0.782 0.724 0.720 0.719 0.263 0.782 0.546 1.103

(0.629 0.832) (0.609 0.743) (0.521 0.610) (0.738 0.827) (0.680 0.768) (0.675 0.764) (0.675 0.764) (0.218 0.307) (0.737,0.826) (0.426,0.598)

Table 2: Estimated long-memory coefficients of the log-realized variances for different indices.
Theoretical confidence intervals are given in brackets below. For the Qu-test bold-faced values
indicate significance at the nominal 10% level; an additional * (**) indicates significance at
the nominal 5% (1%) level.

estimate of the true memory of the variances of the stock indices under consideration.

We therefore find, that the memory of stock index variance is non-stationary. Most stock

index variances display memory parameters in the range between 0.6 and 0.7, which is

far in the non-stationary region.

In Table 4 we report the results for the realized variance of exchange rates. Here, we

observe some major differences compared to the results for the variances of indices,

discussed above. First of all, the local Whittle estimates decrease heavily when the

bandwidth increases. Again, this can be seen as an indication of low frequency contami-

nations by the same arguments as discussed above. The assertion that the exchange rate

variances exhibit spurious long memory is further supported by the fact that both the

mLW estimator of Hou and Perron (2014) and the tLW estimator of Iacone (2010) are

reduced compared to the local Whittle estimates. But most importantly, the Qu (2011)
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LW0.6 LW0.7 LW0.8 LWN LPWN(1,0) LPWN(0,1) LPWN(1,1) mLW mLWN tLW Qu0.75

MSCIDE 0.680 0.639 0.521 0.781 0.695 0.670 0.680 0.191 0.780 0.493 1.468*

(0.578 0.782) (0.573 0.706) (0.476 0.565) (0.737 0.826) (0.650 0.739) (0.626 0.715) (0.635 0.724) (0.147 0.236) (0.736,0.825) (0.467,0.625)

MSCIES 0.640 0.623 0.519 0.716 0.653 0.656 0.651 0.359 0.714 0.524 0.616

(0.539 0.742) (0.556 0.690) (0.474 0.563) (0.672 0.761) (0.608 0.697) (0.611 0.700) (0.606 0.695) (0.314 0.403) (0.669,0.758) (0.414,0.572)

MSCIFR 0.656 0.619 0.522 0.761 0.680 0.645 0.680 0.237 0.761 0.537 1.054

(0.554 0.758) (0.553 0.686) (0.477 0.566) (0.717 0.806) (0.635 0.724) (0.601 0.690) (0.635 0.724) (0.193 0.281) (0.717,0.806) (0.445,0.603)

MSCIGB 0.693 0.643 0.544 0.773 0.697 0.687 0.676 0.246 0.772 0.542 1.013

(0.591 0.794) (0.576 0.710) (0.499 0.588) (0.729 0.817) (0.652 0.741) (0.643 0.731) (0.631 0.720) (0.202 0.290) (0.728,0.816) (0.458,0.615)

MSCIIT 0.633 0.628 0.532 0.728 0.674 0.680 0.673 0.352 0.727 0.532 1.113

(0.532 0.735) (0.562 0.695) (0.488 0.577) (0.684 0.773) (0.630 0.718) (0.635 0.724) (0.629 0.718) (0.307 0.396) (0.683,0.772) (0.463,0.621)

MSCIJP 0.685 0.568 0.514 0.619 0.626 0.691 0.696 0.437 0.594 0.455 1.372*

(0.581 0.790) (0.499 0.637) (0.468 0.560) (0.573 0.665) (0.580 0.672) (0.645 0.737) (0.650 0.742) (0.391 0.483) (0.548,0.640) (0.454,0.611)

MSCIKR 0.695 0.625 0.534 0.691 0.638 0.639 0.625 0.407 0.689 0.512 0.785

(0.591 0.800) (0.556 0.694) (0.488 0.580) (0.645 0.737) (0.592 0.684) (0.593 0.685) (0.579 0.671) (0.361 0.453) (0.643,0.735) (0.373,0.536)

MSCIMX 0.669 0.603 0.494 0.768 0.705 0.709 0.714 0.184 0.767 0.491 0.967

(0.552 0.786) (0.525 0.681) (0.441 0.547) (0.715 0.821) (0.652 0.758) (0.656 0.762) (0.661 0.767) (0.132 0.237) (0.715,0.820) (0.431,0.593)

MSCINL 0.672 -0.635 0.534 0.772 0.704 0.631 0.704 0.208 0.772 0.574 0.729

(0.571 0.774) (0.569 0.702) (0.490 0.579) (0.728 0.817) (0.660 0.749) (0.586 0.675) (0.660 0.749) (0.163 0.252) (0.727,0.816) (0.396,0.585)

MSCIWO 0.600 0.528 0.445 0.661 0.582 0.582 0.591 0.291 0.658 0.468 0.482

(0.494 0.707) (0.457 0.599) (0.398 0.493) (0.614 0.708) (0.534 0.629) (0.535 0.630) (0.543 0.638) (0.243 0.338) (0.610,0.705) (0.495,0.652)

MXX 0.575 0.503 0.441 0.601 0.576 0.576 0.624 0.343 0.599 0.418 0.848

(0.491 0.659) (0.449 0.557) (0.406 0.476) (0.566 0.636) (0.541 0.611) (0.541 0.611) (0.589 0.659) (0.308 0.378) (0.564,0.634) (0.357,0.479)

N2252 0.618 0.557 0.514 0.589 0.598 0.636 0.636 0.477 0.588 0.504 0.949

(0.533 0.703) (0.502 0.611) (0.478 0.549) (0.554 0.625) (0.563 0.633) (0.601 0.672) (0.601 0.672) (0.442 0.513) (0.553,0.624) (0.442,0.565)

NSEI 0.572 0.515 0.497 0.537 0.549 0.601 0.617 0.470 0.465 0.455 0.622

(0.484 0.660) (0.458 0.572) (0.460 0.534) (0.500 0.574) (0.512 0.586) (0.564 0.638) (0.580 0.654) (0.433 0.507) (0.428,0.502) (0.390,0.520)

RUA 0.646 0.583 0.539 0.663 0.664 0.667 0.665 0.440 0.662 0.541 0.534

(0.554 0.738) (0.524 0.643) (0.499 0.578) (0.623 0.702) (0.624 0.703) (0.627 0.706) (0.626 0.704) (0.400 0.479) (0.622,0.701) (0.385,0.552)

RUI 0.644 0.580 0.537 0.657 0.660 0.665 0.664 0.444 0.657 0.539 0.520

(0.551 0.736) (0.521 0.640) (0.498 0.577) (0.618 0.697) (0.621 0.700) (0.626 0.705) (0.625 0.703) (0.405 0.484) (0.618,0.697) (0.472,0.611)

RUT2 0.549 0.551 0.501 0.574 0.549 0.527 0.549 0.471 0.573 0.494 0.658

(0.465 0.633) (0.497 0.605) (0.466 0.536) (0.539 0.609) (0.515 0.584) (0.492 0.562) (0.515 0.584) (0.436 0.506) (0.538,0.608) (0.434,0.555)

SPTSE 0.681 0.600 0.508 0.742 0.660 0.643 0.652 0.275 0.742 0.485 1.169

(0.581 0.781) (0.534 0.665) (0.464 0.551) (0.698 0.785) (0.617 0.704) (0.599 0.687) (0.608 0.696) (0.231 0.318) (0.698,0.785) (0.470,0.608)

SPX2 0.623 0.586 0.548 0.610 0.591 0.573 0.568 0.534 0.608 0.546 0.562

(0.539 0.707) (0.532 0.640) (0.514 0.583) (0.575 0.645) (0.556 0.626) (0.538 0.608) (0.533 0.603) (0.499 0.569) (0.573,0.643) (0.485,0.607)

SSMI 0.656 0.671 0.590 0.694 0.695 0.707 0.705 0.581 0.693 0.573 1.119

(0.572 0.740) (0.617 0.725) (0.555 0.625) (0.659 0.729) (0.660 0.730) (0.672 0.742) (0.670 0.740) (0.546 0.616) (0.659,0.728) (0.512,0.634)

STOXX50E 0.591 0.594 0.527 0.613 0.618 0.637 0.637 0.480 0.611 0.494 0.828

(0.507 0.675) (0.540 0.647) (0.492 0.562) (0.578 0.647) (0.584 0.653) (0.603 0.672) (0.602 0.672) (0.445 0.514) (0.576,0.646) (0.433,0.554)

Table 3: Estimated long-memory coefficients of the log-realized variances for different indices.
Theoretical confidence intervals are given in brackets below. For the Qu-test bold-faced values
indicate significance at the nominal 10% level; an additional * (**) indicates significance at
the nominal 5% (1%) level.

test rejects strongly for all currencies considered. This is clear evidence for the presence

of spurious long memory. Only the mLWN estimator does not show evidence for a lower

degree of memory. However, the results show a very high variability and we know from

the simulations in the previous section that the estimator fails to control the spurious

long memory bias, if the level shift component is large. Finally, the LPWN estimates are

much higher compared to the local Whittle estimates, which is also consistent with the

observation that the LPWN estimators have a larger spurious long memory bias than

the standard local Whittle estimator, as shown in our simulations.

If we now consider the mLW and tLW estimators that are most likely to give consistent

estimates in this setup, we observe that all estimates are in the stationary region. In

particular the estimator of Iacone (2010) gives estimates that lie consistently between

0.3 and 0.4. The results for the Hou and Perron (2014) estimator are a bit more variable

and are found to be in the range between 0.05 and 0.4.
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LW0.6 LW0.7 LW0.8 LWN LPWN(1,0) LPWN(0,1) LPWN(1,1) mLW mLWN tLW Qu0.75

AUD 0.648 0.558 0.404 0.782 0.625 0.507 0.889 0.051 0.782 0.367 2.765**

(0.575 0.722) (0.512 0.605) (0.375 0.433) (0.753 0.811) (0.596 0.655) (0.477 0.536) (0.859 0.918) (0.022 0.080) (0.753,0.811) (0.317,0.417)

BRL 0.615 0.554 0.465 0.635 0.641 0.630 0.640 0.329 0.634 0.400 1.924**

(0.530 0.699) (0.500 0.608) (0.430 0.500) (0.600 0.670) (0.606 0.677) (0.595 0.665) (0.605 0.675) (0.293 0.364) (0.599,0.670) (0.339,0.461)

CAD 0.676 0.560 0.438 0.766 0.693 0.680 0.838 0.140 0.765 0.335 3.447**

(0.603 0.749) (0.514 0.606) (0.408 0.467) (0.737 0.795) (0.663 0.722) (0.651 0.709) (0.809 0.867) (0.111 0.170) (0.735,0.794) (0.285,0.385)

CHF 0.586 0.522 0.406 0.674 0.601 0.597 0.678 0.222 0.673 0.384 2.542**

(0.513 0.659) (0.476 0.568) (0.377 0.435) (0.645 0.703) (0.572 0.630) (0.567 0.626) (0.649 0.707) (0.192 0.251) (0.644,0.703) (0.334,0.434)

EUR 0.619 0.508 0.372 0.765 0.646 0.602 0.794 0.090 0.764 0.316 3.132**

(0.544 0.695) (0.460 0.555) (0.342 0.403) (0.734 0.795) (0.616 0.677) (0.571 0.632) (0.764 0.825) (0.059 0.120) (0.733,0.794) (0.264,0.369)

GBP 0.662 0.566 0.406 0.824 0.713 0.676 0.835 0.023 0.823 0.355 3.388**

(0.590 0.735) (0.520 0.611) (0.377 0.435) (0.794 0.853) (0.684 0.742) (0.647 0.705) (0.806 0.864) (-0.006 0.052) (0.794,0.852) (0.305,0.405)

INR 0.517 0.498 0.445 0.539 0.549 0.596 0.626 0.375 0.380 0.384 2.259**

(0.436 0.597) (0.447 0.550) (0.412 0.478) (0.506 0.572) (0.516 0.582) (0.563 0.629) (0.593 0.659) (0.342 0.408) (0.347,0.413) (0.327,0.441)

JPY 0.561 0.462 0.416 0.558 0.499 0.462 0.499 0.342 0.555 0.405 1.466*

(0.488 0.633) (0.417 0.508) (0.387 0.445) (0.529 0.587) (0.470 0.528) (0.433 0.491) (0.470 0.528) (0.313 0.371) (0.526,0.584) (0.356,0.455)

RUB 0.708 0.567 0.503 0.708 0.707 0.852 0.919 0.286 0.703 0.334 2.908*

(0.617 0.798) (0.509 0.626) (0.464 0.541) (0.669 0.746) (0.669 0.746) (0.813 0.890) (0.881 0.957) (0.248 0.324) (0.664,0.741) (0.267,0.401)

ZAR 0.758 0.679 0.538 0.842 0.751 0.726 0.886 0.113 0.842 0.481 3.178**

(0.682 0.833) (0.631 0.727) (0.508 0.569) (0.811 0.872) (0.721 0.782) (0.696 0.757) (0.856 0.916) (0.083 0.143) (0.811,0.872) (0.429,0.534)

Table 4: Estimated long-memory coefficients of the log-realized variances for different exchange
rates. Theoretical confidence intervals are given in brackets below. For the Qu-test bold-faced
values indicate significance at the nominal 10% level; an additional * (**) indicates significance
at the nominal 5% (1%) level.

To ensure the robustness of our findings, we consider a variety of alternative specifica-

tions. The results of these exercises are given in the appendix. First, we consider realized

kernels instead of realized variances for the indices. Realized kernels are a measure of

variance that is more robust to market microstructure effects. The results are given in

Tables 9 and 10 in the appendix. Furthermore, in Tables 11 and 12, we construct con-

fidence intervals for the local Whittle estimator using the frequency domain bootstrap

procedure of Arteche and Orbe (2016). Finally, we apply the trimmed log-periodogram

regression of McCloskey and Perron (2013) as an alternative to estimate the memory

robust to spurious long memory. These results can be found in Tables 13 and 14. The

results of all these analyses are remarkably similar to those presented here, which high-

lights the robustness of our findings.

Considering these results, we are able to establish a number of key findings. First of

all, there is a considerable difference between the behavior of stock index variances and

exchange rate variances. The stock index variances exhibit true long memory in the non-

stationary range between 0.6 and 0.7. In contrast to that, the exchange rate variances

show clear signs of spurious long memory and the true long memory of the series are

only around 0.3.

- 15 -



5 Conclusion

In Section 2 we discuss the effect of measurement error and level shifts on estimates

of the memory parameter in log-realized variances using the local Whittle estimator of

Künsch (1987) and Robinson (1995a). In the recent literature a large number of new local

Whittle estimators has been proposed that are robust to these effects, most importantly

those of Hurvich et al. (2005) and Frederiksen et al. (2012), Iacone (2010) and Hou and

Perron (2014). These are discussed in Section 3, where we also conduct a simulation

study to evaluate the performance of these methods if both of these complications are

incurred at the same time. We find that, while the estimators are successful in mitigating

the bias they are build to address, they become more vulnerable to the bias they do

not account for. That means the LPWN estimator has a larger bias due to spurious

long memory than the standard local Whittle estimator and the modified and trimmed

local Whittle estimators have a larger bias in presence of perturbations. In our empirical

application we are able to establish some new stylized facts about the memory in realized

variances. Considering a wide range of stock indices, we find that the index variances

are true long-memory processes with a memory parameter between 0.6 and 0.7, which

is in the non-stationary range. As discussed in the introduction, this means that long

memory stochastic volatility models are able to reproduce the finding that the kurtosis

of stock market returns is infinite. Exchange rate variances, however, exhibit spurious

long memory and the true memory parameters are between 0.3 and 0.4, which is far in

the stationary region.
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6 Appendix

AEX AEX Index MSCIDE MSCI Germany

AORD All Ordinaries MSCIES MSCI Spain

BVSP Bovespa Index MSCIFR MSCI France

DJI Dow Jones Industrials MSCIGB MSCI UK

FCHI CAC 40 MSCIIT MSCI Italy

FTSE FTSE 100 MSCIJP MSCI Japan

FTSEMIB FTSE MIB MSCIKR MSCI South Korea

GDAXI German DAX MSCIMX MSCI Mexico

GSPTSE S&P/TSX Composite Index MSCINL MSCI Netherlands

HSI Hang Seng MSCIWO MSCI World

IBEX Spanish IBEX MXX IPC Mexico

IXIC Nasdaq 100 N2252 Nikkei 250

KS11 KOSPI Composite Index NSEI S&P CNX Nifty

MIB30 Milan MIB 30 RUA Russell 3000

MIBTEL Italian MIBTEL RUI Russell 1000

MID S&P 400 Midcap RUT2 Russell 2000

MSCIAU MSCI Australia SPTSE S&P TSE

MSCIBE MSCI Belgium SPX S&P 500

MSCIBR MSCI Brazil SSMI Swiss Market Index

MSCICA MSCI Canada STOXX50E Euro STOXX 50

MSCICH MSCI Switzerland

Table 5: Identification codes of the indices.
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AUD USD/Australian Dollar

BRL USD/Brazilian Real

CAD USD/Canadian Dollar

CHF USD/Swiss Franc

EUR USD/Euro

GBP USD/British Pound

INR USD/Indian Rupee

JPY USD/Japanese Yen

RUB USD/Russian Rouble

ZAR USD/South African Rand

Table 6: Identification codes of the exchange rates.

Symbol start date obs Symbol start date obs

AEX 03-01-2000 4440 MSCIDE 02-07-1999 2427

AORD 04-01-2000 4358 MSCIES 02-07-1999 2441

BVSP 03-01-2000 4266 MSCIFR 02-07-1999 2416

DJI 03-01-2000 4360 MSCIGB 09-06-1999 2448

FCHI 03-01-2000 4441 MSCIIT 02-07-1999 2443

FTSE 04-01-2000 4379 MSCIJP 05-12-1999 2430

FTSEMIB 03-01-2000 4398 MSCIKR 06-12-1999 2231

GDAXI 03-01-2000 4413 MSCIMX 07-10-2002 2253

GSPTSE 02-05-2002 3772 MSCINL 02-07-1999 1602

HSI 03-01-2000 4026 MSCIWO 12-02-2001 2447

IBEX 03-01-2000 4406 MXX 03-01-2000 4361

IXIC 03-01-2000 4362 N2252 04-01-2000 4225

KS11 04-01-2000 4290 NSEI 06-01-2000 3780

MIB30 03-01-1996 3261 RUA 03-01-1996 2091

MIBTEL 04-07-2000 3289 RUI 03-01-1996 3262

MID 03-01-1996 2176 RUT 03-01-2000 4359

MSCIAU 05-12-1999 3258 SPTSE 04-01-1999 3262

MSCIBE 02-07-1999 2314 SPX 03-01-2000 4357

MSCIBR 07-10-2002 2435 SSMI 04-01-2000 4364

MSCICA 13-02-2001 1577 STOXX50E 03-01-2000 4417

MSCICH 10-06-1999 2003

Table 7: Starting dates and available observations of the indices.
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Symbol start date obs

AUD 01-01-1996 6700

BRL 27-10-2000 4311

CAD 02-01-1996 6754

CHF 02-01-1996 6781

EUR 05-05-1998 6090

GBP 01-01-1996 6856

INR 01-01-1998 5001

JPY 02-01-1996 6866

RUB 06-01-2005 3483

ZAR 15-02-1996 6087

Table 8: Starting dates and available observations of the exchange rates.

LW0.6 LW0.7 LW0.8 LWN LPWN(1,0) LPWN(0,1) LPWN(1,1) mLW mLWN tLW Qu0.75

AEX 0.618 0.630 0.576 0.654 0.652 0.656 0.654 0.566 0.654 0.573 0.561

(0.535 0.702) (0.576 0.683) (0.541 0.610) (0.619 0.689) (0.618 0.687) (0.621 0.691) (0.619 0.688) (0.531 0.601) (0.619,0.689) (0.513,0.634)

AORD 0.555 0.593 0.471 0.647 0.613 0.619 0.613 0.364 0.645 0.458 1.003

(0.471 0.639) (0.539 0.647) (0.436 0.506) (0.612 0.682) (0.578 0.648) (0.584 0.654) (0.578 0.648) (0.329 0.399) (0.610,0.680) (0.398,0.519)

BVSP 0.548 0.522 0.475 0.566 0.532 0.530 0.532 0.458 0.566 0.482 0.521

(0.464 0.633) (0.468 0.577) (0.440 0.510) (0.531 0.601) (0.496 0.567) (0.495 0.565) (0.496 0.567) (0.423 0.493) (0.531,0.601) (0.421,0.544)

DJI 0.631 0.605 0.561 0.631 0.610 0.590 0.610 0.548 0.630 0.568 0.730

(0.547 0.715) (0.551 0.659) (0.526 0.596) (0.596 0.666) (0.576 0.645) (0.555 0.624) (0.576 0.645) (0.513 0.583) (0.595,0.665) (0.507,0.629)

FCHI 0.608 0.623 0.553 0.645 0.648 0.659 0.658 0.494 0.644 0.536 0.668

(0.525 0.692) (0.569 0.676) (0.518 0.587) (0.610 0.680) (0.613 0.683) (0.624 0.693) (0.623 0.692) (0.459 0.528) (0.609,0.678) (0.476,0.597)

FTSE 0.650 0.650 0.591 0.673 0.674 0.671 0.671 0.578 0.671 0.588 0.663

(0.566 0.733) (0.596 0.704) (0.557 0.626) (0.638 0.707) (0.639 0.709) (0.636 0.706) (0.636 0.706) (0.543 0.613) (0.636,0.706) (0.527,0.649)

FTSEMIB 0.597 0.624 0.555 0.643 0.622 0.630 0.622 0.532 0.642 0.565 0.581

(0.513 0.680) (0.570 0.677) (0.520 0.589) (0.608 0.678) (0.588 0.657) (0.595 0.665) (0.588 0.657) (0.497 0.566) (0.607,0.676) (0.504,0.625)

GDAXI 0.649 0.643 0.573 0.668 0.673 0.715 0.715 0.487 0.667 0.524 0.714

(0.566 0.733) (0.590 0.697) (0.538 0.607) (0.634 0.703) (0.638 0.707) (0.680 0.749) (0.681 0.750) (0.452 0.522) (0.633,0.702) (0.464,0.585)

GSPTSE 0.612 0.578 0.509 0.640 0.648 0.653 0.653 0.404 0.563 0.462 1.281*

(0.524 0.701) (0.521 0.635) (0.472 0.546) (0.603 0.677) (0.611 0.685) (0.616 0.690) (0.616 0.690) (0.367 0.441) (0.526,0.600) (0.398,0.527)

HSI 0.641 0.561 0.522 0.616 0.624 0.669 0.701 0.433 0.503 0.460 1.261*

(0.555 0.727) (0.506 0.617) (0.486 0.558) (0.580 0.652) (0.588 0.660) (0.633 0.705) (0.665 0.737) (0.397 0.470) (0.467,0.539) (0.397,0.523)

IBEX 0.593 0.596 0.552 0.608 0.615 0.624 0.624 0.518 0.604 0.533 0.763

(0.509 0.676) (0.542 0.650) (0.517 0.586) (0.574 0.643) (0.581 0.650) (0.589 0.659) (0.589 0.659) (0.483 0.553) (0.570,0.639) (0.473,0.594)

IXIC 0.657 0.608 0.570 0.634 0.625 0.594 0.603 0.545 0.584 0.562 0.578

(0.573 0.741) (0.554 0.661) (0.535 0.605) (0.599 0.669) (0.590 0.660) (0.559 0.629) (0.568 0.638) (0.510 0.580) (0.549,0.619) (0.501,0.623)

KS11 0.699 0.632 0.558 0.680 0.684 0.735 0.739 0.430 0.678 0.518 1.420*

(0.614 0.783) (0.578 0.686) (0.523 0.594) (0.644 0.715) (0.649 0.719) (0.699 0.770) (0.704 0.774) (0.395 0.465) (0.643,0.713) (0.457,0.579)

MIB30 0.601 0.605 0.530 0.671 0.651 0.657 0.650 0.444 0.670 0.541 0.653

(0.509 0.694) (0.545 0.665) (0.491 0.569) (0.632 0.711) (0.612 0.690) (0.618 0.696) (0.611 0.690) (0.405 0.483) (0.631,0.709) (0.466,0.604)

MIBTEL 0.659 0.611 0.513 0.737 0.686 0.693 0.686 0.297 0.736 0.515 1.038

(0.554 0.765) (0.541 0.681) (0.466 0.559) (0.691 0.784) (0.640 0.733) (0.647 0.740) (0.639 0.732) (0.251 0.344) (0.689,0.782) (0.472,0.610)

MID 0.713 0.634 0.560 0.729 0.733 0.756 0.756 0.362 0.728 0.524 1.204

(0.621 0.806) (0.575 0.694) (0.521 0.600) (0.690 0.768) (0.693 0.772) (0.717 0.796) (0.716 0.795) (0.323 0.401) (0.689,0.768) (0.433,0.598)

MSCIAU 0.638 0.588 0.476 0.727 0.684 0.687 0.683 0.265 0.724 0.445 0.696

(0.535 0.742) (0.520 0.656) (0.431 0.521) (0.682 0.773) (0.639 0.729) (0.642 0.732) (0.638 0.728) (0.220 0.311) (0.679,0.770) (0.455,0.593)

MSCIBE 0.715 0.631 0.511 0.793 0.731 0.731 0.757 0.154 0.792 0.467 1.240

(0.613 0.817) (0.564 0.698) (0.466 0.555) (0.749 0.837) (0.687 0.776) (0.686 0.775) (0.712 0.801) (0.109 0.198) (0.747,0.836) (0.364,0.525)

MSCIBR 0.603 0.548 0.490 0.644 0.649 0.654 0.653 0.382 0.641 0.481 0.447

(0.485 0.720) (0.469 0.626) (0.437 0.543) (0.590 0.697) (0.596 0.703) (0.601 0.707) (0.600 0.706) (0.329 0.435) (0.588,0.694) (0.388,0.546)

MSCICA 0.660 0.598 0.483 0.749 0.673 0.677 0.670 0.223 0.747 0.484 0.641

(0.551 0.769) (0.526 0.670) (0.435 0.531) (0.701 0.797) (0.624 0.721) (0.629 0.726) (0.622 0.718) (0.175 0.271) (0.699,0.795) (0.385,0.577)

MSCICH 0.706 0.646 0.537 0.772 0.720 0.722 0.743 0.237 0.771 0.505 1.125

(0.604 0.807) (0.579 0.713) (0.492 0.581) (0.727 0.816) (0.675 0.764) (0.677 0.766) (0.698 0.787) (0.192 0.281) (0.727,0.815) (0.398,0.570)

Table 9: Estimated long-memory coefficients of the log-realized kernels. Theoretical confidence
intervals are given in brackets below. For the Qu-test bold-faced values indicate significance
at the nominal 10% level; an additional * (**) indicates significance at the nominal 5% (1%)
level.
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LW0.6 LW0.7 LW0.8 LWN LPWN(1,0) LPWN(0,1) LPWN(1,1) mLW mLWN tLW Qu0.75

MSCIDE 0.666 0.630 0.502 0.779 0.711 0.707 0.761 0.179 0.778 0.443 0.678

(0.564 0.768) (0.563 0.696) (0.457 0.546) (0.734 0.823) (0.666 0.755) (0.663 0.752) (0.717 0.806) (0.135 0.224) (0.733,0.822) (0.426,0.584)

MSCIES 0.628 0.604 0.499 0.706 0.654 0.657 0.653 0.339 0.703 0.488 0.673

(0.526 0.730) (0.537 0.671) (0.454 0.543) (0.662 0.751) (0.609 0.698) (0.613 0.702) (0.609 0.698) (0.295 0.384) (0.658,0.747) (0.364,0.522)

MSCIFR 0.649 0.614 0.501 0.767 0.679 0.675 0.726 0.194 0.766 0.490 1.302*

(0.548 0.751) (0.548 0.681) (0.457 0.546) (0.723 0.811) (0.635 0.724) (0.631 0.720) (0.682 0.770) (0.150 0.239) (0.722,0.810) (0.409,0.568)

MSCIGB 0.674 0.629 0.524 0.765 0.696 0.696 0.720 0.237 0.764 0.514 1.113

(0.572 0.776) (0.562 0.696) (0.480 0.568) (0.720 0.809) (0.651 0.740) (0.652 0.741) (0.676 0.765) (0.193 0.281) (0.719,0.808) (0.411,0.568)

MSCIIT 0.625 0.609 0.510 0.725 0.672 0.677 0.675 0.315 0.723 0.496 1.260*

(0.524 0.727) (0.542 0.676) (0.466 0.555) (0.680 0.769) (0.628 0.717) (0.633 0.722) (0.631 0.720) (0.271 0.360) (0.679,0.767) (0.436,0.593)

MSCIJP 0.673 0.568 0.508 0.628 0.634 0.682 0.686 0.457 0.624 0.453 1.362*

(0.568 0.777) (0.499 0.637) (0.462 0.554) (0.582 0.674) (0.588 0.680) (0.636 0.728) (0.640 0.732) (0.411 0.503) (0.578,0.670) (0.417,0.575)

MSCIKR 0.678 0.602 0.519 0.673 0.621 0.605 0.601 0.400 0.671 0.494 0.925

(0.574 0.782) (0.533 0.671) (0.473 0.564) (0.628 0.719) (0.575 0.667) (0.559 0.651) (0.555 0.647) (0.354 0.446) (0.625,0.716) (0.371,0.534)

MSCIMX 0.640 0.576 0.470 0.748 0.669 0.673 0.678 0.189 0.747 0.464 0.930

(0.523 0.757) (0.499 0.654) (0.417 0.523) (0.696 0.801) (0.616 0.722) (0.620 0.725) (0.626 0.731) (0.136 0.242) (0.695,0.800) (0.414,0.575)

MSCINL 0.662 -0.621 0.522 0.755 0.678 0.641 0.678 0.252 0.755 0.532 0.825

(0.561 0.764) (0.555 0.688) (0.478 0.566) (0.711 0.800) (0.634 0.722) (0.597 0.685) (0.634 0.722) (0.208 0.296) (0.710,0.799) (0.370,0.559)

MSCIWO 0.596 0.526 0.428 0.675 0.599 0.600 0.597 0.247 0.672 0.432 0.540

(0.490 0.703) (0.455 0.597) (0.381 0.475) (0.628 0.722) (0.552 0.646) (0.553 0.647) (0.550 0.644) (0.200 0.294) (0.625,0.719) (0.454,0.611)

MXX 0.585 0.522 0.447 0.620 0.629 0.625 0.634 0.329 0.618 0.404 0.692

(0.501 0.669) (0.468 0.576) (0.412 0.482) (0.585 0.655) (0.594 0.664) (0.590 0.660) (0.599 0.669) (0.294 0.364) (0.583,0.653) (0.343,0.465)

N2252 0.627 0.552 0.512 0.579 0.588 0.643 0.643 0.498 0.577 0.496 1.005

(0.542 0.712) (0.498 0.607) (0.477 0.548) (0.543 0.614) (0.552 0.623) (0.607 0.678) (0.607 0.678) (0.462 0.533) (0.542,0.613) (0.434,0.558)

NSEI 0.579 0.518 0.523 0.539 0.552 0.596 0.611 0.500 0.500 0.492 0.628

(0.492 0.667) (0.461 0.575) (0.486 0.560) (0.502 0.576) (0.515 0.589) (0.559 0.633) (0.574 0.648) (0.463 0.537) (0.462,0.537) (0.427,0.557)

RUA 0.648 0.582 0.540 0.659 0.664 0.669 0.668 0.444 0.659 0.539 0.558

(0.556 0.741) (0.523 0.642) (0.501 0.579) (0.620 0.699) (0.625 0.703) (0.630 0.709) (0.629 0.707) (0.404 0.483) (0.620,0.699) (0.348,0.516)

RUI 0.646 0.580 0.538 0.655 0.660 0.668 0.667 0.446 0.655 0.536 0.555

(0.554 0.738) (0.520 0.640) (0.498 0.577) (0.616 0.694) (0.621 0.700) (0.628 0.707) (0.627 0.706) (0.406 0.485) (0.616,0.694) (0.470,0.608)

RUT 0.567 0.564 0.514 0.589 0.563 0.540 0.563 0.479 0.587 0.506 0.654

(0.483 0.651) (0.510 0.618) (0.479 0.549) (0.554 0.624) (0.529 0.598) (0.505 0.575) (0.529 0.598) (0.444 0.514) (0.552,0.622) (0.445,0.567)

SPTSE 0.672 0.589 0.503 0.729 0.653 0.633 0.641 0.290 0.728 0.479 0.909

(0.572 0.772) (0.523 0.655) (0.459 0.547) (0.685 0.773) (0.609 0.697) (0.589 0.676) (0.597 0.685) (0.246 0.333) (0.684,0.772) (0.467,0.606)

SPX 0.628 0.596 0.564 0.618 0.603 0.588 0.581 0.550 0.617 0.567 0.480

(0.544 0.712) (0.542 0.650) (0.529 0.599) (0.583 0.653) (0.568 0.638) (0.553 0.623) (0.546 0.616) (0.516 0.585) (0.582,0.652) (0.506,0.628)

SSMI 0.658 0.688 0.615 0.706 0.705 0.714 0.712 0.560 0.706 0.611 0.861

(0.574 0.742) (0.634 0.741) (0.580 0.650) (0.671 0.741) (0.670 0.740) (0.679 0.749) (0.677 0.747) (0.525 0.595) (0.671,0.741) (0.550,0.672)

STOXX50E 0.598 0.594 0.533 0.614 0.619 0.638 0.639 0.484 0.612 0.503 0.678

(0.514 0.681) (0.541 0.648) (0.499 0.568) (0.579 0.648) (0.585 0.654) (0.604 0.673) (0.604 0.673) (0.450 0.519) (0.577,0.647) (0.443,0.564)

Table 10: Estimated long-memory coefficients of the log-realized kernels. Theoretical confi-
dence intervals are given in brackets below. For the Qu-test bold-faced values indicate signifi-
cance at the nominal 10% level; an additional * (**) indicates significance at the nominal 5%
(1%) level.
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LW0.6 LW0.7 LW0.8 LW0.6 LW0.7 LW0.8

AEX 0.625 0.635 0.577 MSCIDE 0.680 0.639 0.521

(0.525 0.721) (0.580 0.693) (0.540 0.613) (0.616 0.818) (0.607 0.742) (0.525 0.612)

AORD 0.553 0.586 0.460 MSCIES 0.640 0.623 0.519

(0.466 0.629) (0.526 0.635) (0.424 0.498) (0.583 0.788) (0.574 0.711) (0.463 0.573)

BVSP 0.549 0.521 0.475 MSCIFR 0.656 0.619 0.522

(0.450 0.626) (0.466 0.587) (0.440 0.509) (0.531 0.732) (0.555 0.683) (0.460 0.571)

DJI 0.622 0.586 0.534 MSCIGB 0.693 0.643 0.544

(0.535 0.696) (0.527 0.637) (0.502 0.569) (0.533 0.763) (0.546 0.688) (0.466 0.573)

FCHI 0.605 0.624 0.564 MSCIIT 0.633 0.628 0.532

(0.526 0.681) (0.569 0.676) (0.530 0.599) (0.596 0.792) (0.570 0.713) (0.493 0.593)

FTSE 0.650 0.640 0.569 MSCIJP 0.685 0.568 0.514

(0.559 0.730) (0.579 0.693) (0.533 0.606) (0.541 0.728) (0.560 0.691) (0.479 0.581)

FTSEMIB 0.600 0.607 0.547 MSCIKR 0.695 0.625 0.534

(0.512 0.686) (0.549 0.656) (0.510 0.584) (0.571 0.794) (0.488 0.641) (0.466 0.560)

GDAXI 0.653 0.637 0.564 MSCIMX 0.669 0.603 0.494

(0.544 0.757) (0.573 0.697) (0.523 0.601) (0.596 0.794) (0.555 0.687) (0.492 0.581)

GSPTSE 0.603 0.565 0.490 MSCINL 0.672 -0.635 0.534

(0.508 0.681) (0.506 0.621) (0.452 0.528) (0.553 0.777) (0.523 0.675) (0.436 0.550)

HSI 0.640 0.557 0.503 MSCIWO 0.600 0.528 0.445

(0.546 0.724) (0.500 0.604) (0.467 0.541) (0.562 0.765) (0.573 0.695) (0.480 0.590)

IBEX 0.593 0.596 0.545 MXX 0.575 0.503 0.441

(0.498 0.668) (0.542 0.651) (0.504 0.576) (0.506 0.661) (0.448 0.558) (0.406 0.470)

IXIC 0.644 0.598 0.552 N2252 0.618 0.557 0.514

(0.564 0.708) (0.545 0.648) (0.516 0.586) (0.509 0.701) (0.497 0.609) (0.474 0.549)

KS11 0.692 0.622 0.548 NSEI 0.572 0.515 0.497

(0.604 0.767) (0.570 0.672) (0.510 0.582) (0.475 0.656) (0.456 0.567) (0.464 0.533)

MIB30 0.608 0.613 0.550 RUA 0.646 0.583 0.539

(0.537 0.703) (0.511 0.633) (0.491 0.567) (0.489 0.729) (0.429 0.615) (0.381 0.511)

MIBTEL 0.667 0.622 0.532 RUI 0.644 0.580 0.537

(0.509 0.681) (0.551 0.670) (0.512 0.589) (0.558 0.722) (0.517 0.641) (0.502 0.575)

MID 0.712 0.637 0.564 RUT 0.549 0.551 0.501

(0.571 0.746) (0.558 0.683) (0.475 0.582) (0.459 0.625) (0.497 0.603) (0.468 0.534)

MSCIAU 0.659 0.606 0.499 SPTSE 0.681 0.600 0.508

(0.626 0.802) (0.574 0.701) (0.526 0.603) (0.554 0.719) (0.517 0.634) (0.500 0.571)

MSCIBE 0.730 0.656 0.536 SPX 0.623 0.586 0.548

(0.547 0.741) (0.540 0.672) (0.452 0.544) (0.540 0.693) (0.528 0.638) (0.516 0.581)

MSCIBR 0.629 0.567 0.501 SSMI 0.656 0.671 0.590

(0.636 0.823) (0.594 0.714) (0.490 0.577) (0.561 0.742) (0.618 0.718) (0.558 0.624)

MSCICA 0.681 0.614 0.503 STOXX50E 0.591 0.594 0.527

(0.552 0.753) (0.489 0.642) (0.448 0.557) (0.498 0.685) (0.541 0.644) (0.491 0.560)

MSCICH 0.730 0.676 0.565

(0.542 0.782) (0.524 0.689) (0.444 0.574)

Table 11: Estimated long-memory coefficients of the log-realized variances. Confidence inter-
vals using the bootstrap procedure of Arteche and Orbe (2016) are given in brackets below.
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LW0.6 LW0.7 LW0.8 LW0.6 LW0.7 LW0.8

AEX 0.618 0.630 0.576 MSCIDE 0.680 0.639 0.521

(0.512 0.711) (0.573 0.687) (0.536 0.611) (0.616 0.818) (0.607 0.742) (0.525 0.612)

AORD 0.555 0.593 0.471 MSCIES 0.640 0.623 0.519

(0.464 0.635) (0.534 0.647) (0.436 0.507) (0.583 0.788) (0.574 0.711) (0.463 0.573)

BVSP 0.548 0.522 0.475 MSCIFR 0.656 0.619 0.522

(0.459 0.620) (0.468 0.577) (0.436 0.510) (0.531 0.732) (0.555 0.683) (0.460 0.571)

DJI 0.631 0.605 0.561 MSCIGB 0.693 0.643 0.544

(0.539 0.702) (0.548 0.655) (0.525 0.599) (0.533 0.763) (0.546 0.688) (0.466 0.573)

FCHI 0.608 0.623 0.553 MSCIIT 0.633 0.628 0.532

(0.518 0.692) (0.569 0.676) (0.515 0.587) (0.596 0.792) (0.570 0.713) (0.493 0.593)

FTSE 0.650 0.650 0.591 MSCIJP 0.685 0.568 0.514

(0.552 0.728) (0.590 0.701) (0.556 0.627) (0.541 0.728) (0.560 0.691) (0.479 0.581)

FTSEMIB 0.597 0.624 0.555 MSCIKR 0.695 0.625 0.534

(0.509 0.683) (0.565 0.672) (0.519 0.590) (0.571 0.794) (0.488 0.641) (0.466 0.560)

GDAXI 0.649 0.643 0.573 MSCIMX 0.669 0.603 0.494

(0.53 0.763) (0.577 0.702) (0.533 0.612) (0.596 0.794) (0.555 0.687) (0.492 0.581)

GSPTSE 0.612 0.578 0.509 MSCINL 0.672 -0.635 0.534

(0.508 0.688) (0.522 0.630) (0.470 0.545) (0.553 0.777) (0.523 0.675) (0.436 0.550)

HSI 0.641 0.561 0.522 MSCIWO 0.600 0.528 0.445

(0.543 0.715) (0.509 0.609) (0.486 0.556) (0.562 0.765) (0.573 0.695) (0.480 0.590)

IBEX 0.593 0.596 0.552 MXX 0.575 0.503 0.441

(0.493 0.675) (0.544 0.646) (0.514 0.587) (0.506 0.661) (0.448 0.558) (0.406 0.470)

IXIC 0.657 0.608 0.570 N2252 0.618 0.557 0.514

(0.577 0.722) (0.552 0.659) (0.536 0.602) (0.509 0.701) (0.497 0.609) (0.474 0.549)

KS11 0.699 0.632 0.558 NSEI 0.572 0.515 0.497

(0.608 0.777) (0.576 0.679) (0.526 0.591) (0.475 0.656) (0.456 0.567) (0.464 0.533)

MIB30 0.601 0.605 0.530 RUA 0.646 0.583 0.539

(0.495 0.676) (0.542 0.661) (0.489 0.564) (0.489 0.729) (0.429 0.615) (0.381 0.511)

MIBTEL 0.659 0.611 0.513 RUI 0.644 0.580 0.537

(0.560 0.738) (0.545 0.672) (0.458 0.557) (0.558 0.722) (0.517 0.641) (0.502 0.575)

MID 0.713 0.634 0.560 RUT 0.549 0.551 0.501

(0.624 0.796) (0.566 0.693) (0.518 0.597) (0.459 0.625) (0.497 0.603) (0.468 0.534)

MSCIAU 0.638 0.588 0.476 SPTSE 0.681 0.600 0.508

(0.535 0.727) (0.521 0.646) (0.430 0.518) (0.554 0.719) (0.517 0.634) (0.500 0.571)

MSCIBE 0.715 0.631 0.511 SPX 0.623 0.586 0.548

(0.607 0.814) (0.564 0.695) (0.462 0.553) (0.540 0.693) (0.528 0.638) (0.516 0.581)

MSCIBR 0.603 0.548 0.490 SSMI 0.656 0.671 0.590

(0.526 0.713) (0.471 0.627) (0.436 0.548) (0.561 0.742) (0.618 0.718) (0.558 0.624)

MSCICA 0.660 0.598 0.483 STOXX50E 0.591 0.594 0.527

(0.521 0.771) (0.517 0.670) (0.423 0.544) (0.498 0.685) (0.541 0.644) (0.491 0.560)

MSCICH 0.706 0.646 0.537

(0.607 0.793) (0.582 0.708) (0.494 0.583)

Table 12: Estimated long-memory coefficients of the log-realized kernels. Confidence intervals
using the bootstrap procedure of Arteche and Orbe (2016) are given in brackets below.
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AEX 0.570 MSCIDE 0.510

(0.525, 0.614) (0.537, 0.651)

AORD 0.433 MSCIES 0.507

(0.385, 0.481) (0.452, 0.569)

BVSP 0.467 MSCIFR 0.541

(0.420, 0.514) (0.448, 0.566)

DJI 0.559 MSCIGB 0.601

(0.514, 0.604) (0.484, 0.597)

FCHI 0.569 MSCIIT 0.557

(0.525, 0.614) (0.544, 0.658)

FTSE 0.554 MSCIJP 0.538

(0.510, 0.599) (0.500, 0.614)

FTSEMIB 0.557 MSCIKR 0.566

(0.512, 0.601) (0.478, 0.597)

GDAXI 0.573 MSCIMX 0.509

(0.529, 0.618) (0.507, 0.625)

GSPTSE 0.458 MSCINL 0.563

(0.409, 0.508) (0.438, 0.579)

HSI 0.503 MSCIWO 0.401

(0.455, 0.550) (0.506, 0.620)

IBEX 0.557 MXX 0.444

(0.513, 0.602) (0.397, 0.491)

IXIC 0.575 N2252 0.487

(0.531, 0.620) (0.440, 0.534)

KS11 0.541 NSEI 0.478

(0.496, 0.586) (0.429, 0.527)

MIB30 0.578 RUA 0.569

(0.522, 0.623) (0.332, 0.469)

MIBTEL 0.548 RUI 0.567

(0.528, 0.629) (0.518, 0.619)

MID 0.579 RUT2 0.506

(0.488, 0.608) (0.460, 0.552)

MSCIAU 0.487 SPTSE 0.513

(0.528, 0.629) (0.517, 0.618)

MSCIBE 0.545 SPX2 0.564

(0.427, 0.547) (0.520, 0.609)

MSCIBR 0.481 SSMI 0.596

(0.488, 0.602) (0.551, 0.641)

MSCICA 0.503 STOXX50E 0.526

(0.408, 0.553) (0.481, 0.570)

MSCICH 0.594

(0.439, 0.567)

Table 13: Estimated long-memory coefficients of the log-realized variances applying the esti-
mator of McCloskey and Perron (2013). Theoretical confidence intervals are given in brackets
below.
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AUD 0.406

(0.366, 0.447)

BRL 0.441

(0.394, 0.489)

CAD 0.390

(0.349, 0.431)

CHF 0.352

(0.310, 0.394)

EUR 0.260

(0.211, 0.309)

GBP 0.313

(0.269, 0.357)

INR 0.433

(0.388, 0.478)

JPY 0.401

(0.361, 0.441)

RUB 0.423

(0.370, 0.476)

ZAR 0.506

(0.467, 0.546)

Table 14: Estimated long-memory coefficients of the log-realized variances applying the esti-
mator of McCloskey and Perron (2013). Theoretical confidence intervals are given in brackets
below.

- 24 -



References

Andersen, T. G., Bollerslev, T., Diebold, F. X., and Labys, P. (2001). The distribution

of realized exchange rate volatility. Journal of the American Statistical Association,

96(453):42–55.

Andersen, T. G., Bollerslev, T., Diebold, F. X., and Labys, P. (2003). Modeling and

forecasting realized volatility. Econometrica, 71(2):579–625.

Andrews, D. W. and Sun, Y. (2004). Adaptive local polynomial whittle estimation of

long-range dependence. Econometrica, 72(2):569–614.

Arteche, J. (2004). Gaussian semiparametric estimation in long memory in stochastic

volatility and signal plus noise models. Journal of Econometrics, 119(1):131–154.

Arteche, J. and Orbe, J. (2016). A bootstrap approximation for the distribution of the

local whittle estimator. Computational Statistics & Data Analysis, 100:645–660.

Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A., and Shephard, N. (2009). Realized

kernels in practice: Trades and quotes. The Econometrics Journal, 12(3).

Barndorff-Nielsen, O. E. and Shephard, N. (2002). Econometric analysis of realized

volatility and its use in estimating stochastic volatility models. Journal of the Royal

Statistical Society: Series B (Statistical Methodology), 64(2):253–280.

Chiriac, R. and Voev, V. (2011). Modelling and forecasting multivariate realized volatil-

ity. Journal of Applied Econometrics, 26(6):922–947.

Corsi, F. (2009). A simple approximate long-memory model of realized volatility. Journal

of Financial Econometrics, 7(2):174–196.

Deo, R., Hurvich, C., and Lu, Y. (2006). Forecasting realized volatility using a long-

memory stochastic volatility model: estimation, prediction and seasonal adjustment.

Journal of Econometrics, 131(1):29–58.

Deo, R. S. and Hurvich, C. M. (2001). On the log periodogram regression estimator

of the memory parameter in long memory stochastic volatility models. Econometric

Theory, 17(4):686–710.

Diebold, F. X. and Inoue, A. (2001). Long memory and regime switching. Journal of

Econometrics, 105:131–159.

- 25 -



Frederiksen, P., Nielsen, F. S., and Nielsen, M. Ø. (2012). Local polynomial whittle

estimation of perturbed fractional processes. Journal of Econometrics, 167(2):426–

447.

Geweke, J. and Porter-Hudak, S. (1983). The estimation and application of long memory

time series models. Journal of Time Series Analysis, 4(4):221–238.

Giraitis, L., Leipus, R., and Surgailis, D. (2007). Recent advances in arch modelling. In

Long Memory in Economics, pages 3–38. Springer.

Giraitis, L., Leipus, R., and Surgailis, D. (2009). Arch infinity models and long memory

properties. In Handbook of Financial Time Series, pages 71–84. Springer.

Granger, C. W. and Ding, Z. (1996). Varieties of long memory models. Journal of

Econometrics, 73(1):61–77.

Granger, C. W. and Hyung, N. (2004). Occasional structural breaks and long memory

with an application to the s&p 500 absolute stock returns. Journal of Empirical

Finance, 11(3):399–421.

Heber, G., Lunde, A., Shephard, N., and Sheppard, K. (2009). Oxford-man institute’s

realized library, version 0.2. Oxford-Man Institute, University of Oxford.

Hou, J. and Perron, P. (2014). Modified local Whittle estimator for long memory pro-

cesses in the presence of low frequency (and other) contaminations. Journal of Econo-

metrics, 182(2):309–328.

Hurvich, C. M., Moulines, E., and Soulier, P. (2005). Estimating long memory in

volatility. Econometrica, 73(4):1283–1328.

Hurvich, C. M. and Ray, B. K. (2003). The local whittle estimator of long-memory

stochastic volatility. Journal of Financial Econometrics, 1(3):445–470.

Iacone, F. (2010). Local whittle estimation of the memory parameter in presence of

deterministic components. Journal of Time Series Analysis, 31(1):37–49.
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