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Abstract

This paper presents a small theoretical model to compare school systems that seg-
regate students by ability (“tracking”) with comprehensive ones, which allow for
mixing of differently skilled students into same classes. The outcomes of interest are
the achievement levels of weaker and better students, and the average achievement
of all students. In the model, the instructional pace is tailored to the skill distri-
bution of a class, and higher-achieving peers are an additional source of learning.
The results show that differences in both the share of high-achievers and degree
of interaction between student types can explain the mixed (quasi-)experimental
evidence on the effect of de-tracking on student achievement. As changes in peer
quality affect good and weak students’ achievement in very different ways, the term
“peer effect” should be used with caution.
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1 Introduction

This paper presents a small theoretical model to investigate the impact of de-tracking on

achievement levels of low-achievers, high-achievers, and the entire student body.1 Propo-

nents of tracking argue that grouping students by ability allows teachers to match their

instruction more closely to their students’ learning capabilities which benefits both good

and weak students: good students are not slowed down by under-performing classmates,

and teachers must not worry about losing weaker students. Opponents point out that

tracking prevents weaker students from interacting with their higher-achieving peers, who

might provide help and serve as role models. As a consequence, tracking may preserve

economic inequalities.

(Quasi-)experimental empirical evidence on the impact of de-tracking is inconclu-

sive, see Table 1. For example, results from a tracking experiment in Kenya (Duflo et al.

2011) suggest that both lower- and higher-achieving pupils are better off in tracked sys-

tems. Somewhat similar to that, Card and Giuliano (2016) report that ability-tracking is

beneficial for students enrolled in the upper track without having negative consequences

for those remaining in the lower-level track. In both studies, therefore, average achieve-

ment is maximized if students are segregated by ability. On the other hand, Pekkarinen

et al. (2013) find that de-tracking raises average achievement in their sample of Finish

secondary students.

One may wonder why some studies find positive while others report negative de-

tracking effects. Obviously, de-tracking increases the within-class heterogeneity in achieve-

ment levels. Though it is much less clear how de-tracking affects the educational progress

of various student types. The model presented here assumes that increases in the share

of good students induce teachers to instruct at a more demanding level (pace effect). It

is further assumed that better students create skill-externalities which have a positive

1 In tracked school systems, students are segregated by academic achievement into different school types
or separate classrooms within schools. By contrast, de-tracked/mixed/comprehensive systems are char-
acterized by greater within-class-heterogeneity in skills. Throughout, the terms ability, achievement
and skills are used interchangeably.
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effect on weaker students’ learning (spillover effect).

This paper provides four findings. First, as the current instructional pace is too low

(high) for better (weaker) students, the pace effect turns out to be positive (negative) for

better (weaker) students. Weaker students, however, additionally benefit from spillover

effects – the net impact of better classmates therefore depends on whether the negative

pace effect is offset by the positive spillover effect. This result suggests that the term

“peer effect” should be used with caution.

Second, good students are better off in ability-tracked than in comprehensive school

systems, which is in line with most of the empirical evidence. Third, lower-achieving stu-

dents also prefer tracking if both the share of better students and the extent of interaction

between student types are small. Fourth, mixing can maximize average achievement if

both the share of good students and extent of interaction are high.

This paper contributes to the literature in two ways. First, the results suggest that

differences in both the share of high-achievers and degree of interaction between higher-

and lower-achieving students may explain why some empirical studies in Table 1 find

positive de-tracking effects while others report negative ones.

Second, to the best of my knowledge, this paper is the first that decomposes “peer

effects” into a pace and spillover effect. The few theoretical papers on de-tracking, which

are summarized in Table 1, also take peer effects into account by augmenting a student’s

educational production function with the mean achievement level of her peers – a change

in peer achievement levels is then referred to as “the” peer effect without further distinc-

tion. As already mentioned, however, increases in the share of better students may affect

higher- and lower-achieving students in quite different ways.2

The remainder of the paper is as follows. The model is derived in Section 2. Com-

parative statics analyzes are presented in Section 3. Section 4 concludes.
2 Such “monotonous” or “one-dimensional” peer effects are employed in both empirical investigations of
ability peer effects (see Ding and Lehrer 2007, Carrell et al. 2009, or Imberman et al. 2012) as well as
theoretical papers on, for example, effort formation (Foster and Frijters (2009)), school competition
(Fraja and Landeras 2006) or residential segregation (Epple and Romano 1998). Throughout this
paper, students are female and teachers are male. The gender of students and teachers was decided
by coin toss.
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2 The Model

2.1 Determinants of final achievement

There are two student types

θ ∈ {l, h} = {"low", "high"}

with h > l > 0. A student’s learning capability or potential

pθ ≡ θ + sθ (1)

is determined by two factors: her type θ and the extent of spillovers

sθ ≡ n i (h− θ)

which is a function of the exogenous variables n, i, h and θ. n ∈ [0, 1] is the share of

h-types in a class. i ∈ [0, 1] denotes the extent of interaction between h-types and l-types,

and is discussed below in more detail.

The definition of sθ comprises two implicit assumptions. First, only l-types are

assumed to benefit from spillovers because sh = 0 but sl = n i (h− l) ≥ 0. For example,

l-types may benefit from h-types trough collaborations/study partnerships (Carrell et al.

2009, Arcidiacono et al. 2012, Jain and Kapoor 2015). Exposure to h-types may also

have a positive effect on l-types’ effort levels (Eisenkopf 2010, Foster and Frijters 2010,

Bursztyn and Jensen 2015). Generally speaking, h-types may serve as role models.3

Second, sl > 0 if (i) the class contains at least one h-type (i.e., n > 0) who (ii)

is actually willing to interact with her weaker peers (i > 0). Depending on how social

groups are formed, the extent of interaction i may vary across classes. If, for example,

social group formation is mainly determined by gender, then lower-achieving boys (girls)

3 As will be shown later, better peers also have an indirect positive effect on h-types’ achievement.
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may easily establish friendships with their higher-achieving male (female) peers, which

would be reflected by a high value of i (Whitmore 2005, Eisenkopf et al. 2015). In the

context of black and white students, however, one would expect i to be small because

reference groups are often race-based and black students tend to have lower achievement

levels (Hoxby 2000, Fruehwirth 2013).4

Evaluation of (1) for each type yields

ph = h

pl = l + n i (h− l). (2)

ph ≥ pl even though h-types do not receive any spillovers. As long as n < 1 or i < 1,

an h-type’s (learning) potential exceeds the potential of an l-type. Both ∂pl

∂n
and ∂pl

∂i
are

positive, i.e., an l-type’s learning potential is increasing in n and i as both variables affect

sl positively.

In this study, the outcome of interest is a student’s (final) achievement

aθ(p) ≡ pθ − |p− pθ| (3)

which is a function of her potential pθ and the (instructional) pace p. The pace reflects

the amount of material covered during a school year, and is set by the teacher.5 One can

see that

aθ(p = pθ) = pθ > aθ(p 6= pθ) (4)

that is, the highest achievement level type θ can reach is her potential pθ = max{aθ}.

However, aθ is depressed whenever the teacher’s pace deviates from θ’s potential. Intu-

itively, p 6= pθ means that the student cannot develop her full potential because of either

4 Weinberg (2007) shows empirically that students have stronger social ties with peers who are “similar”
to them (known as “homophily” in the sociological literature). Halliday and Kwak (2012) further sug-
gest that mean achievement levels of a student’s reference group matter most for her own achievement.

5 Alternatively, one might hold the curriculum fixed and think of p as the “depth” of coverage in the
sense of Carrell and West (2010).
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being over-challenged (p > pθ) or bored (p < pθ). The larger the mismatch |p− pθ|, the

more aθ(p) is depressed. As aθ(p) is maximized at p = pθ, one can interpret pθ as both

θ’s potential and optimal pace.

2.2 Teacher’s choice of the instructional pace p

Instruction is assumed to be teacher-centered, i.e., teachers never split their time to

exclusively instruct sub-populations of their classes. Therefore p is the same for all

students. Because (i) h-types’ potential exceeds that of l-types, see (2), and (ii) each

type’s achievement is maximized at p = pθ (see (4)), teachers cannot choose a pace that

maximizes achievement of both types at the same time. It is therefore assumed that

teachers are trying their best to “match” their instructional pace to the skill distribution

in their classes. These considerations are modeled as follows. Let

mθ(p) ∈ [0, 1]

denote the (quality of the) match between θ’s optimal pace pθ and the actual pace p

chosen by the teacher. mθ(p) lies in the unit interval with mθ(p = pθ) = 1 denoting

a perfect match which is only realized if p = pθ. Consequently, because teachers value

achievement gains of any student type, their pace must be constrained to values between

pl and ph. These notions impose the following structure on mθ(p):

mθ(p) =


1 p = pθ

0 p = p−θ

.

That is, mh(ph) = 1 and mh(pl) = 0. Thus, as p increases, mh(p) will also increase

because p is approaching ph from below. The same logic applies to the quality of the

match for l-types: because ml(ph) = 0 and ml(pl) = 1, the quality of the match for

l-types ml(p) will improve as p decreases.
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As already mentioned, teachers cannot maximize both type’s achievement in mixed

classes because pl 6= ph whenever 0 < n < 1. Therefore, when choosing p, it is assumed

that the best teachers can do is to weight each type’s match by its share. This motivates

the following Cobb-Douglas representation of teacher preferences:

u(p) ≡ mh(p)n ·ml(p)1−n. (5)

The teacher’s only choice variable – the instructional pace p – maps into both, the quality

of the match for h-types and l-types. As already shown, increases in p benefit h-types

but hurt l-types, and vice versa. Teachers account for this trade-off by weighting each

type’s match by its share: mh(p) is weighted by the share of high-achievers n, and ml(p)

by the share of low-achievers 1− n.

To solve (5) for the teacher’s optimal pace p∗ at which u(p) is maximized, the func-

tional form of mθ(p) has to be specified. The simplest choice is

mθ(p) ≡
|p− p−θ|
ph − pl

,

which yields mh(p) = p−pl

ph−pl
for h-types. This function possesses all required properties:

(i)mh(p) lies in the unit interval withmh(ph) = 1 indicating a perfect match. From this it

becomes apparent that the sole purpose of the denominator (ph−pl) is to normalizemh(p).

(ii) As long as p < ph, any increase in p improves the quality of the match as p approaches

ph from below. Regarding l-types, their (quality of the) match is ml(p) = ph−p
ph−pl

: the

smaller p becomes, the larger the value of ml(p), i.e., the more p matches l’s optimal pace

pl.

Under these functional form choices for mh(p) and ml(p), teacher utility (5) is max-

imized at

p = n ph + (1− n) pl =: p∗ (6)

which becomes quickly apparent from deriving the log of (5), and solving the FOC for
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p. (6) states that the optimal pace p∗ that maximizes teacher utility is simply a convex

combination of each student type’s optimal pace. If n = 0 (n = 1), teachers will choose

p = pl (p = ph). For 0 < n < 1, however, teachers weight each type’s optimal pace by

her share.6

2.3 Tracked and mixed school systems

Once the teacher’s problem is solved, one can proceed with modeling the two school

systems (tracked and mixed). In tracked systems, students are segregated by type, i.e.,

h-types (l-types) are enrolled in an upper (lower) level track. Segregation by ability

allows teachers to perfectly tailor their instructional pace to each type’s optimal pace,

however, spillovers are absent. In mixed (or comprehensive) school systems, h-types and

l-types are classmates which generates gains from spillovers, but teachers are now forced

to set a pace that lies between each type’s optimal pace. With atr
θ (amix

θ ) denoting final

achievement of type θ in a tracked (mixed) school system, these notions translate into

atr
h ≡ ah(p∗|n=1) = h amix

h ≡ ah(p∗|n∈(0,1)) = p∗ (7)

atr
l ≡ al(p∗|n=0) = l amix

l ≡ al(p∗|n∈(0,1)) = 2pl − p∗.

The four functions are plotted in Figure 1. School systems are represented in the model

by the values of n at which the teacher’s optimal pace p∗ is evaluated. In tracked systems,

there exist only classes with n ∈ {0, 1}, which simplifies (3) to atr
θ = θ. Comprehensive

(or mixed) systems are characterized by 0 < n < 1. Both amix
h and amix

l result from

evaluating (3) at p∗ while keeping in mind that pl < p∗ < ph in mixed systems.

6 Alternatively, one could have based teacher utility directly on student achievement aθ(p) and suggested
u(p) = ah(p)n · al(p)1−n to represent teacher preferences. However, that utility function is maximized
at p∗ = 2n pl. Therefore, as long as n ≤ 0.5, teachers will choose p∗ = pl. This means that teachers will
perfectly match l-types’ optimal pace as long as n is smaller than 50%, which is implausible. Preference
is further given to u(p) = mh(p)n · ml(p)1−n to (greatly) increase the analytical tractability of the
model. Regarding the main findings presented in Section 3, however, numerical simulations under
u(p) = ah(p)n · al(p)1−n turn out to produce very similar results. That is, results are qualitatively the
same, regardless whether u(p) = mh(p)nml(p)1−n or u(p) = ah(p)n al(p)1−n is employed.
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3 Comparative statics

Each of the following three subsections establishes one main finding. I first investigate

the marginal impact of better peers on each type’s final achievement. I then proceed

with the effect of “de-tracking”, i.e., the shift from a tracked school system towards

a comprehensive one. The third subsection derives the condition under which average

achievement of all students is maximized under mixing.

3.1 The effect of better peers on final achievement

This subsection investigates how changes in the share of high-achievers n affect each

type’s final achievement aθ(p). As this implies n ∈ (0, 1) rather than n ∈ {0, 1}, the

analysis here is entirely based on amix
h = p∗ and amix

l = 2pl − p∗ from (7).

Let’s first consider the marginal effect of n on h-types. Because (i) ph > pl as long

as n < 1 or i < 1, and (ii) p∗ = n ph + (1 − n) pl, the marginal effect ∂amix
h

∂n
= ∂p∗

∂n
must

be positive. ∂amix
h

∂n
= ∂p∗

∂n
> 0 means that increases in n induce teachers to set a more

demanding pace, which raises h-types’ final achievement.

For l-types, the marginal impact of better peers is the sum of two effects:

∂amix
l

∂n
= −∂p

∗

∂n︸ ︷︷ ︸
1.

+ 2∂pl
∂n︸ ︷︷ ︸
2.

. (8)

The first effect, −∂p∗

∂n
< 0, is called (negative) pace effect. Contrary to h-types, the pace

effect ∂p∗

∂n
has a negative impact on l-types’ achievement. This makes sense because l-types

– who were already struggling with the current pace (as p∗ > pl whenever n > 0) – now

face even greater difficulties in keeping up. The second effect, 2∂pl

∂n
= 2∂sl

∂n
= 2i(h− l) > 0,

called spillover effect, is positive because increases in n raise the extent of spillovers sl

which are beneficial for low-achievers. Taken together, marginal increases in n raise

amix
l only if the negative pace effect is overcompensated by the positive spillover effect.

Therefore,
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Proposition 1. Let n, i ∈ (0, 1). Then, increases in the share of better students are

beneficial for l-types only in classes (n, i) where

i >
1

1 + 2n =: i∗1

and detrimental otherwise. h-types always benefit from better peers because the pace effect

is positive for them.

This can be shown easily. First note that the partial derivative of amix
l from (7)

w.r.t. n, i.e. ∂amix
l

∂n
= (h − l)(−1 + i + 2in), is negative for small n. The explanation for

this is captured by (8): ∂amix
l

∂n
< 0 for small values of n as the (positive) spillover effect is

dominated by the (negative) pace effect. However, because ∂2amix
l

∂n2 = 2i(h− l) > 0 for any

n, one can further infer that the relative impact of spillover effects must be increasing

in n. Therefore, solving ∂amix
l

∂n
= 0 for i yields the combination of n and i at which the

negative pace effect is fully offset by the positive spillover effect. The positive impact of

better peers on h-type’s achievement follows from the fact that amix
h = p∗ and ph > pl

(as long as n, i < 1), which implies that p∗ = n ph + (1 − n) pl must become larger as n

increases.

Proposition 1 suggests that marginal increases in n are beneficial for lower-achieving

students only in classes (n, i) where i > i∗1. For h-types, however, the pace effect is

positive. Therefore, even though h-types do not benefit from spillovers, increases in the

share of better students always positively affect their achievement.

So far the analysis shows that marginal increases in n shape each type’s final achieve-

ment in very different ways. As mentioned in Section 1, theoretical (empirical) investiga-

tions of peer effects usually assume (estimate) models where own and peer achievement

are positively related. The parameter on peer achievement is then interpreted as “the”

peer effect. As shown here, changes in peer achievement levels – or, equivalently, in n

– affect each type’s final achievement in different ways, suggesting that the term “peer
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effect” should be used with caution.

3.2 How does de-tracking affect each type’s achievement?

A closer inspection of amix
l reveals that (i) the pace is too challenging for l-types under

mixing because – whenever n < 1 or i < 1 – the teacher’s pace must exceed l’s optimal

pace, i.e., p∗ > pl. This implies amix
l = 2pl − p∗ < pl: an l-type’s final achievement

therefore lies below her potential under mixing. (ii) However, as stated in the following

proposition, this does not necessarily imply that l-types are hurt from mixing:

Proposition 2. Let n, i ∈ (0, 1). Then, l-types are better off in mixed systems, i.e.

amix
l > atr

l , if

i >
1

1 + n
=: i∗2.

h-types always prefer tracked systems because atr
h = h > amix

h = p∗.

First note that the precondition n, i ∈ (0, 1) implies ∂amix
l

∂n
< 0 for small n, and

∂2amix
l

∂n2 > 0 (for any n) for the same reasons given in Proposition 1. Hence, for i =

i∗2, the positive sign of ∂2amix
l

∂n2 means that spillover effects might be strong enough to

overcompensate both the negative pace effect and the mismatch between current and

l’s optimal pace.7 i∗2 is obtained by solving amix
l = atr

l for i. The statement concerning

h-types can be directly inferred from (7) by comparing atr
h with amix

h because p∗ < ph = h

for n, i < 1.

Proposition 2 suggests that mixed systems are preferred by l-types in classes (n, i)

where both the extent of interaction and the share of h-types are sufficiently high. The

required level of interaction at which l-types are indifferent between tracking and mixing is

decreasing in n because ∂i∗2
∂n

< 0. h-types are hurt under mixing as their weaker classmates

induce teachers to set a pace that is below their learning potential ph = h.

7 For illustrative purposes, one can further compare the graphs of atr
l and amix

l in Figure 1.
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3.3 The impact of de-tracking on average achievement

The last policy-relevant variable investigated here is the average achievement level of all

students

ā ≡ n ah(p∗) + (1− n) al(p∗),

which is a weighted average of each type’s final achievement under p∗. In tracked systems,

i.e. for n ∈ {0, 1} within each single class, average achievement of all students equals

ātr ≡ nh + (1 − n)l. To be more elaborate: if the size of the entire student body is

normalized to unity, then the share of classes composed solely of h-types and l-types

becomes n and (n− 1), respectively. Regarding mixed school systems, one can interpret

āmix ≡ n amix
h + (1− n)amix

l as the final achievement level of a single representative class.

Comparability between ātr and āmix is therefore established by normalizing of the size of

the (entire) student body to unity.

Both ātr and āmix are plotted in Figure 2. The graph of āmix turns out to be S-

shaped: for n smaller than some threshold n∗, average achievement in mixed systems is

smaller than in tracked ones. However, for n ≥ n∗, mixed systems yield higher average

achievement levels, which is formalized in the following proposition:

Proposition 3. Let n, i ∈ (0, 1). Average achievement is greater in mixed systems if

āmix > ātr or, equivalently,

i >
2

1 + 2n =: i∗3.

As shown in Proposition 1, ∂amix
l

∂n
< 0 for small n. At the same time, ∂ātr

∂n
> 0 for

all n because h > l. Therefore, both limn→0
∂āmix

∂n
= limn→0

∂amix
l

∂n
< 0 < ∂ātr

∂n

∣∣∣
n=0

and

limn→0 ā
mix = ātr

∣∣∣
n=0

imply ātr > āmix for small values of n. Consequently, if āmix = ātr

can be solved for i (which will denote i∗3), there must be a value n∗ at which both

āmix
∣∣∣
n∗

= ātr
∣∣∣
n∗

and ∂āmix

∂n

∣∣∣
n∗
> ∂ātr

∂n

∣∣∣
n∗

must hold. Because of that, it must be the case
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that āmix
∣∣∣
n
> ātr

∣∣∣
n
for n ∈ (n∗, 1), with n∗ simply denoting the inverse of i∗3.

Classes (n, i) with i > i∗3 exhibit higher average achievement levels if students are

allowed to learn together instead of being segregated by ability. As expected, i∗3 > i∗2 for

any n because spillovers on l-types now have to overcompensate the suboptimal pace for

both student types.

The three propositions are summarized in Figure 3. From the model’s perspective,

a class (n, i) can be classified into one of the following three categories. In category

I, de-tracking rises both average achievement and l-types’ achievement. De-tracking is

still beneficial for l-types in category II, but average achievement is depressed. Students

should be segregated by ability if classes (n, i) fall into category III.

4 Summary and conclusions

This paper investigates the impact of de-tracking on achievement levels of low-achievers,

high-achievers, and the entire student body by means of a small theoretical model. Fi-

nal achievement is modeled as a function of a student’s type (low or high), knowledge-

spillovers, and the instructional pace, which is tailored to the skill distribution of a class.

Four findings emerge. First, student types respond in different ways to changes in

the skill composition of a class. Better peers lead to an increase in the instructional pace

(pace effect), which is beneficial for good students. Weak students, however, are struggling

with the more demanding pace but are also exposed to additional positive knowledge-

externalities (spillover effect). Therefore, as the impact of better peers crucially depends

on a student’s type, the term “peer effect” should be used with caution. Second, good

students are better off in ability-tracked than in mixed school systems, which is in line with

most of the empirical evidence. Third, lower-achieving students learn more under tracking

if both the share of good students and the extent of interaction between student types are

small. This may explain why some (quasi-)experimental studies find negative de-tracking

effects for any student type. Fourth, mixing can maximize average achievement if both
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the share of good students and extent of interaction are high.

This paper highlights that transmission mechanisms and behavioral adjustments of

decision makers should be taken into consideration when evaluating the expected impact

of changes in the school system. Carrell et al. (2013), for example, use reduced form esti-

mates of ability peer effects from a quasi-experimental setting to design student grouping

policies that are aimed at helping weaker students. Follow-up assessments, however, re-

veal that – compared to non-treated weaker students – targeted students were actually

hurt by their intervention. The authors therefore conclude that “[the use of] reduced-form

estimates to make out-of-sample policy predictions can lead to unanticipated outcomes”.8

The model suggests that comprehensive school systems become more attractive if

both the share of high-achievers and extent of interaction are increased. Probably the

extent of interaction could be raised in less time (say, the medium run) at a lower cost.

To make school system choices more informed, further research could additionally inves-

tigate whether a country’s economic prosperity is primarily determined by the average

achievement level of its population, or the abilities of (a small number of) exceptionally

talented individuals.9

8 This quote is taken from the abstract of the working-paper version Carrell et al. (2011). In the context
of educational production, careful empirical investigations of transmission channels are becoming more
common. See, for example, Fraja et al. (2010), Lavy and Schlosser (2011), or Pop-Eleches and Urquiola
(2013).

9 The importance of top-achievers for a country’s technological and scientific progress is investigated
by, among others, Squicciarini and Voigtländer (2015) and Ellison and Swanson (2016). On the other
hand, cross-country comparisons conducted by Hanushek and Kimko (2000) and Jamison et al. (2007)
show that a one standard deviation increase in average math test scores can boost annual GDP growth
by up to 1.0pp.
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Figures

Figure 1: Final achievement of h- and l-types in tracked and mixed school systems

0 1

amix
l and amix

h are functions of n, see (7). In tracked systems, atr
θ = θ. The values of the

exogenous parameters i and h > l are held fixed in this figure.

Figure 2: Average achievement levels in mixed and tracked school systems

āmix (ātr) is represented by the solid (dashed) line. One can observe that āmix ≥ ātr only for n
greater than n∗.
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Figure 3: Summary of findings
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III: āmix < ātr and amix
l < atr

l
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∗
3 = 2

1+2n . For classes (n, i) that belong to category I, de-tracking rises both average
achievement and final achievement of low-achievers. De-tracking is still beneficial for l-types in
category II, but average achievement is depressed. Students enrolled in classes (n, i) that fall
into category III should be segregated by ability.

17



Tables

Table 1: De-tracking effects in empirical and theoretical studies

Study Country Impact of de-tracking on...

Low-ach. High-ach. Mean ach.

Empirical (tracking experiments)

Lovell (1960) USA − −− ∗∗∗ − ∗∗

Duflo et al. (2011) Kenya − ∗∗ − ∗∗ − ∗∗

Card and Giuliano (2016) USA none − ∗∗∗ − n.a.

Marascuilo and McSweeney (1972) USA ++ ∗∗ − +

Pekkarinen et al. (2013) Finland ++ ∗∗ + + ∗∗

Theoretical

Hidalgo-Hidalgo (2011) + − −

Arnott and Rowse (1987) + − ±

This paper ± − ±

Meier (2004) ± ± ±

This table reports signs and significance levels of estimated de-tracking effects on low-achievers,
high-achievers, and mean achievement levels, based on (quasi-)experimental empirical studies.
“De-tracking” refers to a scenario where ability-tracked school systems are replaced by compre-
hensive ones. A + (−) sign indicates a positive (negative) de-tracking effect at the ∗10%, ∗∗5%,
or ∗∗∗1% significance levels. A doubled sign (e.g., ++) means that the effect is strong compared
to other outcomes in the same study. Betts (2011) and Slavin (1990) provide comprehensive
surveys of the empirical tracking literature.
Depending on the values of the exogenous parameters, the theoretical models in the bottom
panel can produce a range of de-tracking effects. ± means that a model can generate either
negative, none, or positive de-tracking effects.
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