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Abstract

This paper examines long memory volatility in the cross-section of stock returns.

We show that long memory volatility is widespread in the U.S. and that the degree

of memory can be related to firm characteristics such as market capitalization,

book-to-market ratio, prior performance and price jumps. Long memory volatility

is negatively priced in the cross-section. Buying stocks with shorter memory and

selling stocks with longer memory in volatility generates significant excess returns of

1.71% per annum. Consistent with theory, we find that the volatility of stocks with

longer memory is more predictable than stocks with shorter memory. This makes

the latter more uncertain, which is compensated for with higher average returns.
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I Introduction

In this paper we investigate the memory of volatility in the cross-section of U.S. stocks.

To the best of our knowledge, we are the first to analyze the asset pricing implications

of long memory volatility. We show that long memory is prevalent in the volatility of

individual stock returns. Long memory can be related to the size, past performance and

jump intensity of a firm. Moreover, we provide time-series and cross-sectional evidence

for a negative price of long memory volatility in the cross-section of stock returns.

We shed new light on the implication of long memory by combining three strands of

literature. First, we extend the research on documenting long memory, which, so far, has

only focused on indices or some large firms by investigating the complete cross-section of

U.S. stocks. Second, we analyze the time-variation of long memory in volatility. Third,

long memory has so far only been analyzed in the time-series dimension, not in the cross-

sectional one. We discuss and investigate possible microeconomic fundamentals, which

may explain long memory and examine whether memory is a priced factor.

We find that 95% of stocks possesses long memory in volatility with an average mem-

ory parameter of 0.22. At the firm level, higher volatility memory estimates are related

to larger size, worse prior performance and fewer price jumps. Following the investment

strategy of holding stocks with shorter memory in volatility and shorting stocks with

longer memory in volatility generates excess returns of 1.71% per annum. This result is

supported by cross-sectional regression tests. We find a significant risk premium for the

memory parameter where stocks with anti-persistent volatility can earn up to 4.7% per

annum more than stocks with long memory in volatility. We show that the volatility of

stocks with higher memory parameters is more predictable than stocks with low mem-

ory parameters. This indicates that lower uncertainty of stocks with longer memory, i.e.

more persistent volatility, results in the negative premium.1 Our results are robust to

controling for idiosyncratic volatility, size, and other characteristics, as well as to various

further tests. At the same time we verify our memory estimates by showing that fore-

casting volatility for stocks with longer memory works better than for stocks with shorter

memory. We also relate our results to existing theoretical models, which show how long

1In recent studies, Baltussen et al. (2016) and Hollstein & Prokopczuk (2017) show that volatility-
of-volatility is priced in the cross-section of stock returns. Although one might think that volatility-of-
volatility is related to the degree of long memory in volatility, we empirically show that (i) it is not, and
(ii) it is priced separately.
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memory is generated through heterogeneity in the market.

Long memory processes (also referred to as long-range dependent processes) are

present in numerous sciences and fields such as physics, geophysics, hydrology, clima-

tology, biology and, most importantly for the subject of this project, economics and

finance. Long memory processes can be described as long-range dependent time series

with a hyperbolic decaying autocorrelation function, as opposed to the exponential func-

tion of short memory processes such as autoregressive processes. The introduction of

long memory processes created a huge wave of new time-series models and methodologies

to analyze, estimate, and predict them, since the old methods used for short memory

time series were no longer appropriate. The first study to mention is perhaps Hurst

(1951), who examines the Nile River in order to understand the persistence of stream

flow data. There also exist several papers dealing with long memory in economics and

finance. Baillie (1996) provides a detailed survey and review for this purpose. The most

common models are the autoregressive fractionally integrated moving average (ARFIMA)

model by Granger & Joyeux (1980), Granger (1981) and Hosking (1981) and the frac-

tionally integrated generalized autoregressive conditional heteroskedasticity (FIGARCH)

model introduced by Baillie et al. (1996). These are extensions of the short memory

ARMA and GARCH models, respectively. Long memory properties have been analyzed

comprehensively in returns and volatilities and our paper draws from several strands of

literature.

The first focuses on the estimation and detection of long memory in the volatility

of stock returns. Shortly after the introduction of the FIGARCH model, Bollerslev &

Mikkelsen (1996) and Ding & Granger (1996) show that the conditional variance and

absolute returns of the S&P 500 index, respectively, possess long memory. Breidt et al.

(1998) also find long memory in the variance of equally weighted and value-weighted

Center for Research in Security Prices (CRSP) stock market index returns. Lobato &

Savin (1998) investigate the long memory properties of the U.S. stock market index and

thirty individual stock returns in the U.S., while Sadique & Silvapulle (2001) and Henry

(2002) consider the long memory property of various international stock indices, including

Germany, Japan, Korea, New Zealand, Malaysia, Singapore, Taiwan and the U.S.

Another strand of the literature analyzes breaks in the long memory parameter, and

hence allows memory to vary over time. Leybourne et al. (2007) consider long memory
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dynamics and introduce a test for a break from stationary long memory to non-stationary

long memory. Their test is improved by Sibbertsen & Kruse (2009), since the results may

be distorted when the data-generating process exhibits long memory. They apply the test

to U.S. inflation data and find a break in the early 1980s. Sibbertsen et al. (2014) test

for the persistence of EMU government bond yields for France, Italy and Spain, using

the same methodology, and find breaks between 2006 and 2008.

Our paper is mostly related to the asset pricing literature. The research and discovery

of anomalies and effects that can explain the cross-section of expected returns is constantly

growing since the introduction of the capital asset pricing model (CAPM) (Sharpe, 1964;

Lintner, 1965; Mossin, 1966; Black, 1972). In addition to the market portfolio, Fama &

French (1993) show that size and book-to-market ratio are better able to capture the

cross-sectional variation in average stock returns. Carhart (1997) adds a momentum

factor, and more recently, Fama & French (2015) extend their three-factor model by

profitability and investment factors. The list of potential explanatory variables for the

cross-sectional variation of stock returns is ongoing. For example, to name only two,

Amihud (2002) finds a positive relationship between the illiquidity of stocks and future

excess returns while Ang et al. (2006b) show that idiosyncratic volatility is negatively

priced in the cross-section. Hou et al. (2014) propose the q-factor model including market,

size, investment and profitability factors, and show that the performance of their model

is at least as good as the models proposed by Fama & French (1993) and Carhart (1997).

The rest of the paper is organized as follows. Section II describes our data set and

estimation procedure for long memory. Section III examines the cross-section of U.S.

stocks. Section IV relates long memory to predictability. Section V theoretically discusses

the origin of long memory. Section VI presents robustness tests and Section VII concludes.

II Data and Methodology

A Data

The data used for our analyses come from various sources. For our cross-sectional anal-

ysis of U.S. stock returns, we obtain equity prices, returns, market capitalization and

volume data from the CRSP for the period from January 1926 until December 2015.

In our main analysis we investigate four different firm characteristics which have been
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shown in the existing literature to be priced in the cross-section of stock returns. They

include size, value, momentum effects and the liquidity factor. The construction of the

variables, which we from now on refer to as Size, Book-to-Market, Momentum and Illiq-

uidity, follows the convention of the literature (see Jegadeesh & Titman, 1993; Amihud,

2002; Fama & French, 2008; Jiang & Yao, 2013, among others) and are based on market

capitalizations, returns and trading volumes from CRSP and balance-sheet information

from COMPUSTAT.2

High-frequency price data are obtained from Thomson Reuters Tick History. When

employing high-frequency data, the analysis is restricted to the period from January 1996

until December 2015 and on the S&P 500 constituents only.3

B Semiparametric Estimation of Long Memory in Volatility

Our estimation of the long memory parameter relies on two of the most popular estima-

tors, the GPH estimator and the Local Whittle estimator.

The first is based on the log-periodogram and was developed by Geweke & Porter-

Hudak (1983). The GPH estimator employs a linear regression using the first m peri-

odogram ordinates and exploits the shape of the spectral density around the origin. The

spectral density of a stationary process Xt is estimated empirically by the periodogram:

IX(λj) =
1

2πN

∣∣∣∣∣
N∑
t=1

Xte
−itλ

∣∣∣∣∣
2

, t = 1, ..., N (1)

where the periodogram is not affected by centering of the time series for Fourier frequen-

cies λj = 2πj/N (j = 1, ..., [(N − 1)/2]). The estimator is given by the negative slope

estimate β1 in the regression:

log(I(λj)) = β0 + β1log[4sin2(λj/2)] + εj, j = 1, ...,m (2)

Under mild conditions (m→∞, N →∞, m
N
→ 0), Robinson (1995b) derives the asymp-

2Even though the size factor is constructed by calculating the logarithm of the market capitalization
we refer to this factor as Size rather than log(Size).

3This choice is due to the restricted availability of high-frequency data for the complete cross-section,
which is crucial for our long memory estimates.
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totic distribution:

√
m(d̂− d) −−→

d
N

(
0,
π2

24

)
(3)

which provides the asymptotic standard errors for the long memory parameter. The

estimator is narrowband since the bandwidth parameterm leads to a bias–variance trade-

off. While a high m far from the origin leads to bias, a low m too close to the origin leads

to a rise in the variance.

The second estimator is the Local Whittle estimator, which is obtained by minimizing

the following objective function:

d̂LW = arg min
d∈θ

[
log

(
1

m

m∑
j=1

I(λj)

λ2dj

)
− 2d

m

m∑
j=1

logλj

]
, θ ⊆ (−0.5, 0.5) (4)

where m is restricted to m < N
2
. The Local Whittle estimator is an extension of the

one originally proposed by Whittle (1951) which relies on an approximate maximum

likelihood approach. Under mild assumptions similar to those for the GPH estimator,

Robinson (1995a) derives the asymptotic distribution:

√
m(d̂LW − d0) −−→

d
N

(
0,

1

4

)
(5)

For our main analysis we focus on the GPH estimator and the bandwidth m = N0.5

following the existing literature (Geweke & Porter-Hudak, 1983; Diebold & Rudebusch,

1989; Hurvich & Deo, 1999; Henry, 2002).4 Results with alternative bandwidth choices

and the Local Whittle estimator are reported in the robustness section, Section VI.

We refer to d as the memory parameter and differentiate between three cases: A time

series has short memory if d = 0. A time series has negative memory or is anti-persistent

if d < 0. A time series has long memory if 0 < d < 1 where it is non-stationary if

0.5 < d < 1.

4Typically, empirical researchers rely on this bandwidth choice since it is robust against short-range
dependencies in the data. In terms of mean squared error (MSE) improvement, Beran et al. (2013) argue
that the bandwidth m = O(N0.8) is the optimal choice.

5



III Long Memory Volatility in the Cross-Section of Stock

Returns

In this section we provide evidence of long memory volatility in the cross-section of U.S.

stock returns. First, we show in Section III.A that long memory volatility is prevalent

in most stocks but that the degree varies across stocks. Section III.B relates the mem-

ory parameter to firm characteristics. Section III.C investigates whether long memory

volatility is a priced factor.

A Descriptive Statistics

We apply the GPH estimator to the time series of squared returns for the cross-section

of U.S. stocks. Since we are interested in the relationship between memory, firm char-

acteristics and expected returns, we allow for a time-varying memory parameter. More

specifically, we estimate the memory parameter at a monthly frequency using a rolling

window, which includes the most recent five years of daily return observations.5 Table 1

provides summary statistics for the memory parameter estimates. In our sample period

we have on average 2480 memory parameter estimates at each point of time. The average

estimate is 0.22 with a standard deviation of 0.12. The mean t-statistic of 23.34 suggests

that the memory parameter is statistically significant on average. Also, we find that

most of the stocks exhibit long memory in volatility. 95% of the stocks show a memory

parameter with 0.0 < d < 0.5, while 3% of the stocks are anti-persistent and only 2%

show non-stationary long memory.

Our results are consistent with the literature and extend the evidence of long memory

in stock return volatility to a broader cross-section. Lobato & Savin (1998), for example,

find that components of the Dow Jones Index show strong evidence of long memory

in squared returns for the period from July 1962 until December 1994. Breidt et al.

(1998) find for the equally weighted CRSP portfolio for the period from 1962 until 1989

a memory parameter of d = 0.22, which coincides with both the mean and the median

from our analysis of the complete cross-section of the U.S. stocks.

5We require at least non-missing return observations on 50% of the days over the examined period
for a stock to be included in our analysis.
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B Explaining Long Memory with Firm Characteristics

In this section we relate the memory parameter of a stock’s volatility to firm characteris-

tics. We include Size, Book-to-Market, Momentum and Illiquidity. These variables have

been shown to be priced in the cross-section of stock returns (Jegadeesh & Titman, 1993;

Amihud, 2002; Fama & French, 2008; Jiang & Yao, 2013). We further include two jump

measures since recent studies have shown that jumps are an important factor in the cross-

section of stock returns. Jiang & Yao (2013) analyze the predictability of cross-sectional

stock returns and find that once controling for jumps firm characteristics such as size and

liquidity are no longer predictive. Kelly & Jiang (2014) and Cremers et al. (2015) show

that the sensitivity of stocks to market tail and jump risk helps to explain the cross-

sectional variation in expected returns. We apply the common jump test proposed by

Barndorff-Nielsen & Shephard (2006) (BNS).6 The test relies on the bipower variation,

which decomposes the quadratic variation into its parts due to continuous movements

and a jump part. The jump test statistic is given by

BNSt =
(π/2)Bt − St√

((π2/4) + π − 5)(π/2)2Qt

(6)

Qt =
1

Kt − 3

Kt∑
k=4

|rt,k||rt,k−1||rt,k−2||rt,k−3| (7)

St =
1

Kt

Kt∑
k=1

r2t,k (8)

Bt =
1

Kt − 1

Kt∑
k=2

|rt,k||rt,k−1| (9)

where Kt is the number of observations over the examined period, rt,k is the kth daily

observation over the examined period t and BNSt is normally distributed under the

null. First, we compute the BNS jump statistic for each month and stock using daily

return data within each calender month following Pukthuanthong & Roll (2015). The

first measure of jump intensity is given by the jump test statistic (BNS). Our second

measure is a dummy variable indicating whether the current month includes a significant

jump at the 5% level, which we denote as BNS-I.

6Pukthuanthong & Roll (2015) show with the help of simulations using different jump size and
frequency, that this test is preferable to those proposed by Lee & Mykland (2008), Jiang & Oomen
(2008) and Jacod & Todorov (2009).
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Each month for the period from January 1950 until December 2015, we sort all stocks

into quintile portfolios where stocks with the lowest memory parameter are in the first

quintile and stocks with the highest memory parameter are in the fifth quintile. We then

track the average firm characteristics of these quintile portfolios.7

Table 2 shows the results. We report the average memory and firm characteristics

for each quintile and for the long memory minus short memory (LMS) portfolio. For the

latter we also present t-statistics in square brackets in the last column. Average portfolio

size, momentum, and jump measures demonstrate a monotonic pattern that is increas-

ing/decreasing in the memory parameter. Stocks with higher market capitalization, worse

past performance and fewer jumps (higher jump statistics and fewer significant jumps)

exhibit longer memory in volatility. These differences are highly statistically significant

with absolute t-statistics above 12. There is no monotonic pattern for Book-to-Market

and Illiquidity but the hedge portfolio shows positive values for both and the t-statistic

is statistically significant for Illiquidity.

We complement the above analysis with cross-sectional regressions. At each point of

time, we regress the memory parameter of each firm on the predictor variables in the

following regression:

di,t = αt + βtXi,t + εi,t (10)

where di,t is the memory estimate of stock i at time t, Xi,t is the vector containing the

firm characteristics of stock i at time t and εi is the error term.8 The slope coefficients are

expected to have signs as the LMS portfolio spreads. The coefficients are reported in Ta-

ble 3 for three regressions. The first row excludes the jump measures, the second includes

the BNS jump statistic and the third includes the jump dummy variable. In accordance

with our portfolio sorts, stocks with large Size, worse prior performance and fewer jumps

(higher jump statistics and fewer significant jumps) exhibit higher memory parameters.

The coefficients are all statistically significant at the 1% level. We additionally find that

value stocks possess higher memory parameters, while illiquidity is not able to explain

7We start our analysis in 1950 because book-to-market data is available only from 1950 in COMPU-
STAT.

8We experiment with multiple alternative estimation methods for long memory in order to make
sure that the results are robust with respect to the estimation approach. The methods and results are
reported in Section VI.C and are qualitatively similar.

8



the degree of memory in volatility. Intuitively, stocks which tend to exhibit jumps more

frequently, are less persistent and predictable and should possess lower memory parame-

ters. We show the close connection of long memory and predictability in Section IV and

provide some intuition for how memory is generated for small (large) and loser (winner)

stocks in Section V.

C Long Memory Volatility and Expected Stock Returns: Port-

folio Sorts

In previous sections we relate the memory of volatility to firm-specific variables, trying

to explain the degree of long memory. In the next step, we investigate whether investors

demand a compensation for holding assets with higher exposure to this factor by looking

at the relationship between the degree of memory in volatility and realized future excess

stock returns. Assuming that the degree of memory in volatility is related to the pre-

dictability of a stock return’s volatility, a highly predictable stock should be less uncertain

than an unpredictable stock. We hence expect a negative price for long memory in order

to compensate investors for the additional volatility risk of short memory stocks.9

As in Section III.B, each month, we sort all stocks into quintile portfolios where

stocks with the lowest memory parameter are in the first quintile and stocks with the

highest memory parameter are in the fifth quintile. Excess returns of the equally weighted

portfolios are tracked over the subsequent month.10 The analysis is out-of-sample in the

sense that there is no overlap between the data used for the memory estimation and the

data used to compute the excess returns of the portfolios. The LMS portfolio returns

are then regressed on risk factors in order to test whether these returns merely reflect

passive exposure to standard factors. We include the market portfolio of the CAPM,

which controls for systematic risk and the Fama & French (1993) three-factor model

(FF3), which additionally includes the size and value effects. Further, we employ the

state-of-the art Fama & French (2015) five-factor model (FF5) and the Hou et al. (2014)

9Section IV confirms the intuitive relationship of memory and predictability of a stock’s volatility in
a validity check.

10Since our memory estimates di,t rely on rolling window estimates, one might argue that there is
barely temporal variation in our estimates. If this is true, this should work against our empirical analysis
and we should not find any significant relationship between memory and expected returns, but we do.
In the robustness section, Section VI, we repeat the analysis, relying on monthly memory parameters
estimated from high-frequency data in that month. The results are qualitatively similar.
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q-factor model (HXZ).11 We investigate three different sample periods, which start in

1926, 1963 and 1967, respectively. All periods end in December 2015.12

The results are presented in Table 4. We report the mean return of the quintile

portfolios and the LMS portfolio (Q5-Q1) in the first row. Below we report the alphas of

the three different models. We find that the annualized mean return generally adheres to

a decreasing pattern from 13.57% in the first quintile to 11.86% in the fifth quintile. All

quintile portfolio returns are statistically significant, just like the difference of −1.71%

between the long memory quintile and the short memory quintile (LMS). Controling for

risk factors leads to alphas of −2.23%, −2.47%, −2.84% and −2.52% for the CAPM,

Fama & French (1993) three-factor model, Fama & French (2015) five-factor and Hou

et al. (2014) q-factor model, respectively. The risk adjusted returns are all statistically

significant.13

Consequently, controling for standard risk factors does not affect our main result that

the long memory volatility excess return trade-off is priced with a negative sign.14

D Long Memory Volatility and Expected Stock Returns: Re-

gression Tests

The portfolio sorts present strong evidence that the degree of long memory in volatility is

(negatively) related to future excess returns. We now estimate Fama & MacBeth (1973)

regressions that simultaneously control for different variables and test if the degree of

memory of a stock’s volatility contains information about future excess returns beyond

that of various other firm characteristics. This exercise, which relies on individual stock

11The factors for the first three models are available from the Kenneth R. French’s data library,
website:mba.tuck.dartmouth.edu/pages/faculty/ken.french. The factors of the Hou et al. (2014) model
were kindly provided by the authors.

12The choice of different sample periods is motivated by the availability of the factor models. The
Fama & French (2015) factors are available starting in 1963 while the Hou et al. (2014) factors are
available starting in 1967.

13We focus on equally weighted portfolios. We have redone the analysis with value-weighted portfolios,
which leads to a spread return of −2.27% and a FF5 alpha of −2.19%. Both are statistically significant
at the 10% level.

14As shown in Section III.B, the memory parameter can be explained by firm characteristics such as
size, jumps and momentum. Nonetheless, controling for the risk factors delivers statistically significant
alphas. As an additional robustness check we investigate whether the isolated effect of long memory,
which is orthogonal to firm size and other firm characteristics, is priced in the cross-section as well.
Residual long memory is obtained by regressing the memory parameter on the firm characteristics at
each point of time following Hong et al. (2000), Nagel (2005) and Hillert et al. (2014). We find a CAPM
(FF5) alpha of −1.2% (−1.5%), which is statistically significant at the 10% level or lower. Results are
reported in Table 7 in the online appendix.
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returns rather than stock portfolios, presents an alternative method in order to estimate

the cross-sectional risk premium associated with long memory volatility. We rely on

individual stocks rather than portfolio returns since the formation of portfolios in cross-

sectional regressions is shown to influence the results and lead to higher standard errors

of the risk premium estimates (Lo & MacKinlay, 1990; Ang et al., 2010; Lewellen et al.,

2010). Each month, we regress excess stock returns over the following month on the stock

characteristics of the current month:

ri,t+1 − rf,t+1 = αt + γMt di,t + γCt Xi,t + εi,t+1 (11)

where ri,t is the return of stock i and rf,t is the risk-free rate at time t. Xi,t is a vec-

tor containing the firm characteristics Size, Book-to-Market, Momentum, Illiquidity and

Jumps.15 γMt and γCt are the risk premia associated with the memory parameter and the

remaining firm characteristics, respectively, and εi,t is the error term. In a second step we

perform tests on the time-series averages of the estimated monthly intercept and slope

coefficients in order to test for significance of the risk premia γ̂Mt and γ̂Ct over the sample

period.

Table 5 reports the results of the Fama & MacBeth (1973) regressions presenting the

time-series averages of the coefficients, α̂t, γ̂Mt and γ̂Ct . Model 1 regresses the excess return

of stocks over the following month on the memory parameter only. The market price of

long memory is −0.0039, which is statistically significant at the 5% level. Consequently,

a stock with anti-persistent volatility can earn average annualized returns of up to 4.7%

higher than a stock with long memory volatility.16 Models 2 to 6 additionally include

one of the firm characteristics in the cross-sectional regression. The magnitude and

significance of the memory risk premium is slightly reduced when adding Size but barely

changes when adding Book-to-Market, Momentum, Illiquidity or Jumps. Nonetheless,

the coefficient γ̂M remains statistically significant for all models. The negative (positive)

risk premium for Size (Book-to-Market, Momentum and Illiquidity) is consistent with the

15We use the same firm characteristics as in our portfolio sorts in Section III B. We include further
control variables such as the market beta, idiosyncratic volatility and more in the robustness section,
Section VI.

16The lowest possible memory parameter for a anti-persistent stock is given by the lower bound of the
interval (−0.5; 0) while the highest possible stationary memory parameter is given by the upper bound
of the interval (0; 0.5). The highest possible annualized spread returns can thus be approximated by
1 ∗ (−0.0039) ∗ 12 = −0.0468.
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literature (Fama & French, 1992; Jegadeesh & Titman, 1993; Amihud, 2002). Results are

qualitatively similar for the kitchen sink regression (Model 7) where the coefficient of the

memory parameter remains statistically significant.

IV Long Memory Volatility and Predictability

A possible explanation for the negative relationship between long memory volatility and

expected stock returns is the uncertainty around a stock’s volatility. As discussed earlier,

long memory represents the hyperbolic decay of the autocorrelation function which on

the other hand allows for (high and long-run) volatility predictability. One can argue

that in times of financial distress large negative shocks are more persistent for stocks

with long memory, which makes these stocks less favorable than short memory stocks.

But even though negative shocks are more persistent, the volatility predictability is still

higher for long memory stocks, which makes them less uncertain regarding their level of

risk.

In Sections III.C and III.D, we provide evidence that stocks with long memory volatil-

ity earn on average lower returns than stocks with short memory using both portfolio sorts

and cross-sectional regressions. In this section, we supply empirical evidence that long

memory is associated with predictability and hence confirm our channel of negative ex-

pected returns through volatility uncertainty. Further, this exercise is a validity check of

our long memory estimates. If our memory estimates are not biased by data quality or

spurious long memory, a higher memory parameter should be directly linked to higher

forecasting performance.17

For each stock, we conduct monthly predictability regressions of realized volatility

both in-sample and out-of-sample. The time series of monthly realized volatility is ob-

17We acknowledge the issue of spurious long memory where higher memory parameters can be caused
by structural breaks. Even though we work with rolling window estimates, which should be only
marginally affected by breaks, we control for this in three different ways. First, both our portfolio
sorts and cross-sectional regressions include the BNS jump statistic and the alpha or long memory risk
premium remain statistically significant. Hence, our results are not driven by the BNS variable. Second,
the validity check in this section relates the memory parameter to predictability. If our parameters are
biased by structural breaks or jumps, we should not find any clear relationship, however we do. Third,
we repeat our portfolio sorts but rely on returns purged from jumps following Pukthuanthong & Roll
(2015). Buying stocks with long memory volatility and selling stocks with short memory volatility, where
long memory is estimated from raw returns, leads to a statistically significant spread return of −1.73%
and a Fama & French (2015) five-factor alpha of −2.89%, which is statistically significant as well. Both
are of similar magnitudes to those in our main analysis.
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tained by summing squared daily returns for each month (Bollerslev et al., 2014). Fol-

lowing the spirit of Corsi (2009), we use (heterogenous) autoregressive models of realized

volatility (HAR-RV).18 The regressions include lagged observations of the realized volatil-

ity and we allow for five different specifications by including the volatility from the pre-

vious month (HAR(1)), six months (HAR(2)), one year (HAR(3)), two years (HAR(4))

and 5 years (HAR(5)):19

HAR(1) : RV M
t+1 = α + βRV M

t + εt+1 (12)

HAR(2) : RV M
t+1 = α + βRV M

t + βRV 6M
t + εt+1 (13)

HAR(3) : RV M
t+1 = α + βRV M

t + βRV 6M
t + βRV 1Y

t + εt+1 (14)

HAR(4) : RV M
t+1 = α + βRV M

t + βRV 6M
t + βRV 1Y

t + βRV 2Y
t + εt+1 (15)

HAR(5) : RV M
t+1 = α + βRV M

t + βRV 6M
t + βRV 1Y

t + βRV 2Y
t + βRV 5Y

t + εt+1 (16)

The multiperiod volatilities are normalized sums of the one-month realized volatilities.

The six-months’ realized volatility is exemplarily given by:

RV 6M
t =

1

6
(RV M

t +RV M
t−1 + ...+RV M

t−5) (17)

Despite the simplicity of these models, they are shown to be able to mimic long

memory behavior and exhibit good forecasting performance. We form quintile portfolios

by sorting the cross-section of stock returns by the memory parameter. We then compute

the average adjusted R2, F-statistic and out-of-sample R2
OOS for each quintile portfolio.20

The calculation of the out-of-sample R2
OOS follows Campbell & Thompson (2008), and

measures the differences in mean squared prediction errors (MSPE) for the predictive

model, Equations (12)-(16) and the historical mean.

The results are reported in Table 6. Panel A shows the adjusted R2 of the in-

18We also experimented with simple autoregressive (AR) models including the lags 1, 6, 12, 24 and
60, leading to qualitatively similar results.

19Our frequency differs from the one of Corsi (2009), who relies on daily, weekly and monthly volatility
in order to forecast the volatility over the next day, week or two weeks. Our goal is different. We are
interested in the one month horizon, which is the holding period for our portfolio sorts and the horizon
for the cross-sectional regressions.

20We report t-statistics of the slope coefficient for HAR(1) and F-statistics for the joint significance
of the slope coefficients for the remaining models. For the out-of-sample analysis, the R2

OOS for some
stocks show extremely bad performance, with values below −100% due to large spikes. We winsorize the
data at the 1% and 99% level to minimize the effect of these outliers. Cleaning the time series of the
outliers delivers qualitatively similar results.
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sample predictability regressions. There is a strictly monotonic pattern of explanatory

power, which is increasing in the memory parameter. This is supported by the increas-

ing t-statistics and F-statistics in Panel B. Stocks with higher memory parameters show

stronger explanatory power and the predictor variables are more statistically significant

than stocks with lower memory parameters. Lastly, the R2
OOS also show that the out-

of-sample forecasting performance of long memory stocks is stronger than short memory

stocks and exhibits a generally monotonic pattern. A graphical illustration of the results

is presented in Figure 1. One can see that the bars are monotonically increasing for all

five models and all three colors (adj R2, F-statistic and R2
OOS).

We thus show that the memory of stocks is a proxy for predictability, which explains

the negative spread returns of the LMS portfolio. At the same time, this exercise validates

our estimation approach to memory. Our results are true for both in-sample and out-of-

sample, while we allow for various model specifications including short memory processes

and long memory mimicking processes.

V Implication for Existing Models

In this section we discuss the connection of our empirical results with theoretical models

of how long memory in volatility is generated for individual stocks using the proposed

“Agent-based” model of LeBaron (2006) and the “Interacting Agent View” of Alfarano

& Lux (2007). These models rely on heterogeneity across market agents. Müller et al.

(1993), Peters (1994) and Corsi (2009) also consider markets with heterogenous traders.

Motivated by the memory-generating models, we discuss how large and loser stocks in

these models differ from small and winner stocks.21

A Interacting Agent View

Alfarano & Lux (2007) divide traders in a market into two groups – fundamentalists and

chartists – whose interactions are based on the mechanism introduced by Kirman (1993).

The noise traders (chartists) are driven by herd instincts and buy (sell) if they are opti-

mistic (pessimistic). The long memory in volatility is then generated by the interaction

21For these characteristics, we find statistical significance concerning memory parameter spreads for
both portfolio sorts and cross-sectional regressions.
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of agents with heterogenous beliefs and strategies. The numbers of fundamentalists and

chartists are fixed, but transition from optimists to pessimists and vice versa is allowed

by a two-state model. They derive an equilibrium distribution with two equilibria where

a transition between them has a finite probability. The average time for the transition

is denoted as the mean first passage time T0. From the ratio of mean first passage time

T0 and available data observations T , conclusions on the memory of the process can be

drawn. For higher T0 relative to T , the memory parameter of squared returns decreases

starting with a Hurst exponent close to 1 and converging to 0 for T >> T0. The mean

first passage time is negatively related to the number of agents N in the market. We

divide the cross-section of stock returns into several segments by firm characteristics.

The relation of T and T0 for each submarket allows for conclusions on the memory of

the submarket. We focus on the effect of these two variables, assuming that all other

variables are the same for the two markets in comparison.22

First, our main analysis shows that stocks with higher market capitalization exhibit

longer memory in volatility. Gompers &Metrick (2001) find that the demand for large and

liquid stocks has grown due to the increasing share of the U.S. equity market. Addition-

ally, investment decisions in small stocks are harder to justify to sponsors by professional

managers, as argued by Lakonishok et al. (1992). Further, Merton (1987) argues that

small stocks exhibit incomplete information. This makes smaller stocks less favorable as

well. All these findings suggest that the number of investors in large stocks dominates

those of small stocks. The larger number of agents for large stocks leads to a higher mean

first passage time and hence intuitively to longer memory in volatility, as we empirically

document.

Second, we find that stocks with longer memory in volatility tend to be loser stocks.

This result can be explained by the disposition effect, as labeled by Shefrin & Statman

(1985). The effect states that investors tend to hold on their losing stocks too long and

sell their winner stocks too soon in financial markets. This effect can be explained in the

context of the prospect theory of Kahneman & Tversky (1979) and the mental accounting

framework of Thaler (1980). The results suggest that the number of agents investing in

winner stocks tends to decrease while the number for the loser stocks tends to remain

constant or even increase. This leads to longer memory for loser stocks, as shown in our

22The impact of other variables is neglible, since the memory parameter is high for low T relative to
T0 and always converges to zero for T →∞.
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main analysis.

B Agent-based Models

LeBaron (2006) divides the market into groups according to their investment horizon and

hence considers a heterogenous agent framework. The agents rely on past information

such as lagged returns, dividend–price ratios and trend indicators to evaluate rules for

investment decisions. This evaluation varies across agents. Some agents rely only on

more recent data, e.g. only the past six months (short memory investor), while others

use thirty years’ worth of data (long memory investor). The trading rules may evolve over

time and a Walrasian equilibrium is reached by clearing the market. The author shows

that in a market consisting of homogeneous investors (long memory investors only), the

price converges to the equilibrium price through the learning mechanism, which results in

a short memory process for squared returns. If the market consists of all types of agents

(all memory), on the other hand, the price takes large swings from the equilibrium and

large crashes and shows long memory behavior for volatility. The persistence is driven by

the short-term investors. As argued by Corsi (2009), short-term investors are influenced

by the long-term variance, which again has an impact on the short-term variance while

long-term investors are not influenced by changes in short-term volatility. The model

can be transferred to parts of the complete market as proxied by the cross-section of

U.S. stock returns. We compare the fraction of short- and long-term investors in various

markets and conclude on the degree of memory in these markets.

Perez-Quiros & Timmermann (2000) argue that small firms with little collateral show

the highest asymmetry in their risk across recession and expansion states. Their expected

returns are thus more sensitive to credit market conditions. Chan & Chen (1991) present

similar arguments for small firms being more sensitive to news about the state of the

business cycle. This implies that investors in small firms are generally mid- to long-term

oriented, while investors of large and better collateralized firms may be both short- and

long-term oriented. This is supported by the argument from the “Interacting Agent View

model”. Large stocks are more favorable and hence attract all different kinds of agents.

The higher degree of heterogeneity of large firm investors lead to the higher memory

parameter compared to small firms.23

23Even though small firm investors are rather short-term oriented, this does not mean there are no
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Daniel & Moskowitz (2016) argue that the momentum strategy generates abnormally

high returns on average, but at the same time experiences abnormally high losses. This

is because the loser stocks embed features of a short call option on the market portfolio.

Especially during times of volatile bear markets, past-loser stocks lose a large fraction of

their market value and contain high financial leverage. The equity of theses firms is similar

to out-of-the money call options on the underlying firm values, which are correlated with

the market. This implies that loser stocks are much more sensitive to the state of the

market (turbulent vs. calm), which may change quickly. Consequently, the fraction of

short-term investors in the market of loser stocks should be larger than in the market of

winner stocks, which leads to higher memory estimates for loser stocks. This is what we

find empirically.

VI Extensions and Robustness Tests

In this section we run further analyses of long memory volatility in the cross-section and

various robustness tests including alternative estimators and portfolio sorts, and extend

our cross-sectional analysis with further control variables. Detailed results are reported

in the online appendix.

A Long Memory Volatility and Industries

In Section III we consider different firm characteristics and how they are able to explain

the memory parameter of volatility in the cross-section of U.S. returns. We find that

higher memory parameters can be related to large, loser stocks and stocks with fewer

jumps. In this section, we investigate whether firms in certain industries possess higher

or lower memory parameters. More specifically, we use the twelve industry portfolio

identifiers obtained from Kenneth R. French’s data library. The industries are Consumer

Non-Durables, Consumer Durables, Manufacturing, Energy, Chemicals, Business Equip-

ment, Telecommunication, Utilities, Shops, Healthcare, Money & Finance and Others.

We apply the GPH estimator and a bandwidth parameter of m = N0.5 as in our main

analysis. Table 8 of the online appendix reports the results. The mean and median are

long-term investors. The same is true for large firms. Hence we consider the relative proportion of
long-term and short-term investors and talk about the degree of heterogeneity.
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very close to the value for the complete cross-section (0.22). Since the degree of memory

is similar for all industries, industry codes, unlike firm characteristics, are not able to

explain the cross-sectional variation of the memory parameter.

B Fama–French Portfolios

In Section III we sort stocks by their memory parameter and investigate the average firm

characteristics of quintile portfolios. In this section, we validate our results by comparing

the memory of Fama–French decile portfolios, which are sorted by size, book-to-market

or momentum. There are two major differences with this approach. First, instead of

sorting by the memory parameter, stocks are sorted by their firm characteristics. Second,

we consider decile instead of quintile portfolios.24 The portfolio returns are obtained

from Kenneth R. French’s data library. We apply the GPH estimator with the band-

width parameter of m = N0.5 as in our main analysis and report the memory parameter

for each decile portfolio and the high-minus-low (D10 − D1) in Table 9 of the online

appendix. Consistent with our main results, portfolios with larger size, higher book-to-

market and worse prior performance exhibit higher memory parameters.25 The book-

to-market (momentum) portfolios demonstrate a monotonically increasing (decreasing)

pattern in memory.

C Estimation of the Memory Parameter

For our main analysis we follow the existing literature and choose the ad hoc bandwidth

parameter of m = N0.5. We repeat the estimation using a bandwidth parameter of

m = N0.6, m = N0.7 and m = N0.8 and alternative estimators in this section and report

the results in Tables 10, 11 and 12 of the online appendix.26

We report the portfolio sorts for the cross-section of U.S. returns using the GPH

estimator and alternative parameters in Table 10, Panels A, B and C. We find that sorting

by the memory parameter and holding stocks with long memory and selling stocks with

24The results for the Fama–French quintile portfolios are qualitatively similar.
25The magnitude of the memory parameters are somewhat higher than in our main analysis. This is

because we here use the complete time series of daily returns over more than 60 years, compared to the
5 years in our main analysis.

26These alternative bandwidth parameters are the most common choices in the literature, see Hurvich
& Ray (2003), Hurvich et al. (2005), Bandi & Perron (2006), Berger et al. (2009), Hou & Perron (2014),
among others, and include the MSE-optimal one for the GPH estimator.
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short memory still generates negative excess returns. Using the alternative bandwidth

parameters m = N0.6, m = N0.7 and m = N0.8 leads to returns of −1.80%, −2.71% and

−2.32% per annum, respectively. Adjusting for the additional risk factors of the Fama

& French (2015) model leads to significant alphas of similar magnitudes as in our main

analysis.

Further, we apply the GPH estimator to the absolute returns rather than the squared

returns as in our main analysis (Bollerslev & Wright, 2000). The results are reported

in Panel D and are consistent with our main findings. Stocks with short memory earn

on average 2.94% per annum more than stocks with long memory. This spread return

is statistically significant at the 1% level and remains significant when controling for the

Fama & French (2015) risk factors.

A commonly used alternative approach to estimate long memory is the Local Whittle

(LW) estimator. We repeat the estimation with the LW estimator and the same band-

width parameter as in our main results, m = N0.5 (Bandi & Perron, 2006). Results are

provided in Table 11. For the portfolio sorts we find a negative spread return of 2.09% for

the LMS portfolio which is statistically significant at the 5% level (Panel A). The Fama

& French (2015) five-factor alpha with a value of −3.21% is statistically significant as

well. In addition, we apply the LW estimator with bandwidth parameters of m = N0.6,

m = N0.7 and m = N0.8 to the squared returns and a bandwidth parameter of m = N0.5

to the absolute returns. Panels B to E report the results. The spread returns are all neg-

ative, varying from −1.82% to −3.03%, and the Fama & French (2015) five-factor alphas

vary from −2.54% to −3.93%, while all returns and risk-adjusted returns are statistically

significant.

Table 12 reports the coefficient estimates from the cross-sectional regressions in Equa-

tion (11) using the alternative long memory estimator and bandwidths. We rely on simple

regressions where individual stock returns are regressed on the long memory parameter

in Panel A and multiple regressions where we additionally include Size, Book-to-Market,

Momentum, Illiquidity and the BNS jump test statistic as explanatory variables. The

results are consistent with our main analysis. For the simple regressions we find that long

memory is negatively priced in the cross-section with a risk premium estimate varying

from −0.0104 to −0.0039, depending on the estimator and bandwidth, which is statis-

tically significant. Including the control variables slightly changes the magnitude of the
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long memory premium but they remain statistically significant. In addition, we find a

negative (positive) price for the size (book-to-market ratio and momentum) of a stock

which is consistent with both our main analysis and the literature.

D Holding Period Returns

In our main analysis, portfolios are rebalanced monthly and held for one month. We now

track whether the negative risk premium associated with long memory volatility persists

for longer holding periods. Each month, we sort all stocks into quintile portfolios where

stocks with the lowest memory parameter are in the first quintile and stocks with the

highest memory parameter are in the fifth quintile. Excess returns of the portfolios are

tracked over the subsequent one, two, three, four and five years. To account for the

overlapping returns, we adjust the standard errors following Newey & West (1987), using

lags according to the return horizon expressed in months.

The results are reported in Table 13 of the online appendix. Average returns and

Fama & French (2015) risk adjusted returns for the one-, two-, three-, four- and five-year

holding period are reported in Panels A, B, C, D and E. The annualized mean returns are

of similar magnitude as for the one-month holding period. The LMS spreads are −1.88%,

−1.93%, −1.88%, −1.90% and −1.91%, respectively, and are all statistically significant

at the 5% level or lower. The risk adjusted returns only change slightly, and vary between

−1.66% to −2.29% and are generally statistically significant.

E High-Frequency Data

We repeat our analysis, but rely on high-frequency instead of daily returns. We obtain

5-min returns for the S&P 500 constituents for the period from 1996 until 2015 from

Thomson Reuters Tick History. Our choice of the sample period and stocks is restricted

by their availability. The data is cleaned following Barndorff-Nielsen et al. (2009). Zhang

et al. (2005) argue that high-frequency data should always result in a more accurate

estimate when used correctly due to the basic statistical principle that more data are

always better. Bollerslev & Wright (2000) show that the high-frequency data allow for a

superior and nearly unbiased estimation of the long memory parameter using 5-min return

observations. We apply the GPH estimator and a bandwidth parameter of m = N0.5 to a

month of 5-min returns, which counts up to 1738 (= 22 ∗ 79) data points per estimation

20



window. This window is comparable to 8 years of daily observations.

The results are reported in Table 14 of the online appendix. We find a negative

return of −8.83% for the LMS portfolio, which is statistically significant at the 1% level.

Controling for additional risk factors generally slightly mitigates the risk premium but

the alphas remain significant. This section thus confirms our main results and shows

that the negative risk premium is not dependent on the source and frequency of data

and the sample period. We implicitly investigate four subsamples and thus show that

our main results are robust against various sample periods. Our choice of subsamples

is motivated by the availability of the data. The longest period from 1926 until 2015

is chosen according to the availability of the CRSP stock data. We control for Fama

& French (2015) (Hou et al., 2014) risk factors, which are available from 1963 until

2015 (1967 until 2015). Lastly, we also investigate the most recent 20 years from 1996

until 2015, which is chosen due to the availability of high-frequency data from Thomson

Reuters Tick History.

F Additional Control Variables

In Section III.D we conduct regression tests including Size, Book-to-Market, Momentum,

Illiquidity and Jumps. We now also control for further effects and anomalies which have

been shown to be good predictors of expected returns. More specifically, we include the

market beta (BETA), reversal (REV), cokurtosis with the market (CKT), coskewness

with the market (CSK), idiosyncratic volatility (IVOL), realized kurtosis (KURT), re-

alized skewness (SKEW) and demand for lottery (MAX). Further, we include a stock’s

volatility-of-volatility (Vol-of-Vol). In our empirical analysis we relate the long memory

of volatility to the predictability of volatility and uncertainty. We relate higher volatility

predictability to lower uncertainty regarding a stock’s level of risk. In the literature, un-

certainty has been measured by the volatility-of-volatility for both individual stocks and

the aggregate market (Baltussen et al., 2016; Hollstein & Prokopczuk, 2017).27 We calcu-

late the volatility-of-volatility as the 5-year rolling window volatility of monthly realized

volatility.28 We find an average cross-sectional correlation of 0.11 between the degree of
27Both studies investigate the asset pricing implication of the volatility-of-volatility and find a negative

price, just as we find for long memory.
28It is not possible to compute the measure of Baltussen et al. (2016) for our sample since they rely on

options data of individual stocks which are available starting in 1996 from OptionMetrics. Our approach
for calculating the volatility-of-volatility closely follows the approach for our long memory estimates.
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long memory volatility of a stock and its volatility-of-volatility. While both are intuitively

related to uncertainty, the measures are barely correlated and we hence do not expect

that our findings can be explained by the volatility-of-volatility of a stock. The market

beta is estimated from daily return regressions of excess stock returns on an intercept

and the market excess return over the examined period. Following Ang et al. (2006b),

idiosyncratic volatility equals the standard deviation of the residuals from the same re-

gression as for the market beta, but additionally includes the size and book-to-market

factors of the Fama & French (1993) model. The short-term reversal at the end of a

month is defined as the return of that month following Jegadeesh (1990). The coskew-

ness and cokurtosis of a stock at the end of a month is estimated from the daily returns

in that month following Ang et al. (2006a). The kurtosis and skewness of a stock at the

end of a month is given by the sample kurtosis and skewness estimated from the daily

returns in that month. Lastly, the demand for lottery is given by the maximum total

daily return observation of a month (Bali et al., 2011).

Table 15 of the online appendix presents the results of the cross-sectional regres-

sions.29 Models 7 to 15 show the time-series averages of the additional coefficients in

multiple regressions. Most importantly, the risk premium of the long memory volatility

remains negative and statistically significant for all additional control variables, varying

from −0.0043 to −0.0036. The signs of statistically significant risk premia for variables

besides long memory are generally consistent with the literature. Frazzini & Pedersen

(2014) find that portfolios with higher betas have lower alphas and Sharpe ratios than

portfolios of low-beta assets. Amaya et al. (2015) show that buying stocks with low real-

ized skewness and selling stocks with high realized skewness generates statistically signif-

icant and positive excess returns at a weekly frequency while there is no clear relationship

for realized kurtosis. The negative and statistically significant premium for idiosyncratic

volatility is consistent with the results of Ang et al. (2006b). Bali et al. (2011) argue

that investors are willing to pay more for stocks that exhibit extreme positive returns.

As a consequence, these stocks exhibit lower future returns, which is consistent with the

negative premium we find. Model 16 includes the memory parameter and all additional

control variables in this section while Model 17 presents the kitchen sink regression. The

coefficient of the memory parameter remains statistically significant at the 5% level or

29We also report mean values of each control variable in quintile portfolios, which are sorted by long
memory volatility. The results are presented in Table 16.
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lower.

We control for two further variables: Aggregate long memory and aggregate volatility.

Following Ang et al. (2006b), we rely on changes in the volatility index as a proxy for

innovations in aggregate volatility. The VIX index presents the implied volatility of a

S&P 100 index contract over the next 30 days ,which is at-the-money. Since the data

goes back only until 1986, we rely on U.S. stock market volatility following Bloom (2009)

for the time before. We compute the monthly standard deviation of the daily market

returns and normalize the time series of monthly return volatilities to the same mean

and variance as the VIX index when they overlap from 1986 until 2015. For aggregate

long memory, we follow the approach in our main analysis and apply the GPH estimator

and the bandwidth parameter m = N0.5 to squared market returns in the most recent

60 months. For each stock, we then estimate sensitivities to aggregate long memory and

volatility (Ang et al., 2006b):

ri,t − rf,t = β0 + βi,MktMKTt + βi,AF∆AFt + εi,t (18)

whereMKT is the market excess return, ∆AF describes the innovations in the aggregate

factor (long memory or volatility), βi,Mkt and βi,AF are loadings on the market risk and

aggregate factor, respectively, and ε is the error term. For both, aggregate long memory

and volatility, we estimate the loadings in time-series regressions using a rolling window

of 60 observations.

We then repeat our regression tests and further include the loadings on aggregate

long memory and volatility in the vector Xi,t. Table 17 of the online appendix reports

the results. The first two columns extend our control variables from III.D, while columns

three and four include the control variables discussed above. The coefficient associated

with the risk premium of long memory remains negative and statistically significant for

all model specifications. Our findings thus show that aggregate volatility or aggregate

long memory cannot explain our results.

VII Conclusion

In this paper we shed new light on the asset pricing implication of long memory in stock

return volatility. Using portfolio sorts and cross-sectional regressions, we analyze how
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the degree of long memory of a firm’s return volatility can be explained by its size, book-

to-market, prior performance or jumps. Based on existing theoretical models, we discuss

how long memory is generated in high market capitalization (winner) stocks compared

to low market capitalization (loser) stocks. We estimate a cross-sectional price of long

memory of −4.7% per annum. This estimate is robust to controling for size, value,

momentum, liquidity effects and more. We relate the compensation for holding short

memory stocks to higher risk, which is given by the low predictability of short memory

stocks. Our results are robust against different variations of the estimation approach and

the examined models.
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Figure 1: Predictability of Quintile Portfolios
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This figure reports adjusted R2, F-statistics and R2
OOS for quintile portfolios of the cross-

section of U.S. stock returns. For a better presentation, the test statistics are all divided
by 100.
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Table 1: Summary Statistics

This table presents summary statistics for the memory estimates of individual stocks’
volatility. The memory parameter is estimated with the GPH estimator and a bandwidth
parameter of m = N0.5. In our sample we have an average number of 2480 long memory
estimates per month. AR(1) stands for the cross-sectional average of first-order autocor-
relation coefficients. SD stands for the standard deviation. The second column reports
selected quantiles of the averages. t-statistic reports the mean t-statistic. Sign. at 5%
reports the proportion of significant long memory estimates, while the remainder of the
last column reports the proportion of the memory parameter being in a certain interval.

Descriptive Quantiles Memory
AR(1) 0.87 5% 0.04 t-statistic 23.34
Mean 0.22 25% 0.15 Sign. at 5% 0.96
SD 0.12 Median 0.22 −0.5 < d < 0.0 0.03
Skewness 0.40 75% 0.29 0.0 < d < 0.5 0.95
Kurtosis 1.48 95% 0.43 0.5 < d < 1 0.02
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Table 2: Portfolio Sorts and Characteristics

This table presents firm characteristics of portfolios sorted by the memory of volatility.
The memory parameter is estimated with the GPH estimator and a bandwidth parameter
of m = N0.5. From 1950 until 2015 we sort stocks each month and form and hold the
portfolio for one month. We report the average long memory parameter, size, momentum
and illiquidity, BNS statistic and BNS indicator function of quintile portfolios. The Q5-Q1
column reports the averages for the long memory minus short memory portfolio (LMS)
with the according t-statistics in square brackets.

Q1 Q2 Q3 Q4 Q5 Q5-Q1 (LMS)
Memory 0.0044 0.1295 0.2118 0.2975 0.4471 0.4427 [202.7567]
Size 11.6610 11.8630 12.0161 12.1707 12.3560 0.6950 [23.3435]
Book-to-Market 0.8934 0.9168 0.8993 0.8758 0.8996 0.0062 [0.5910]
Momentum 0.1681 0.1558 0.1522 0.1483 0.1284 −0.0397 [−14.2697]
Illiquidity 0.0044 0.0040 0.0038 0.0040 0.0055 0.0010 [3.9205]
BNS −0.1994 −0.0620 −0.0255 −0.0110 0.0036 0.2030 [12.5035]
BNS-I 0.0177 0.0126 0.0106 0.0087 0.0074 −0.0103 [−24.2588]
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Table 3: Cross-sectional Regression

This table presents the results from cross-sectional regressions for the period from 1950
until 2015. Each month, we regress the memory parameter of the cross-section on size,
book-to-market, momentum, illiquidity and BNS. The memory parameter is estimated
with the GPH estimator and a bandwidth parameter of m = N0.5. We report the average
β coefficients and the according standard errors in parentheses below. The first row
excludes any jump measures. The second row includes the BNS jump statistic while the
third row includes the BNS jump indicator. Stars indicate significance: ∗ significant at
p < 0.10; ∗∗p < 0.05; ∗∗∗p < 0.01.

Intercept Size Book-to-Market Momentum Illiquidity BNS BNS-I
β 0.0292∗∗∗ 0.0160∗∗∗ 0.0019∗∗∗ −0.0186∗∗∗ 0.3126

(0.0061) (0.0006) (0.0006) (0.0013) (0.2696)
β 0.0286∗∗∗ 0.0161∗∗∗ 0.0017∗∗∗ −0.0184∗∗∗ 0.3720 0.0052∗∗∗

(0.0061) (0.0006) (0.0006) (0.0013) (0.2738) (0.0005)
β 0.0301∗∗∗ 0.0160∗∗∗ 0.0018∗∗∗ −0.0185∗∗∗ 0.3701 −0.0491∗∗∗

(0.0061) (0.0006) (0.0006) (0.0013) (0.2754) (0.0025)
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Table 4: Sorted Portfolio Returns

This table reports average returns and risk-adjusted returns of equally weighted quintile
portfolios for the period from 1926 until 2015. Each month, stocks are sorted by the
degree of long memory in volatility and we track the portfolio returns over the subsequent
month. The memory parameter is estimated with the GPH estimator and a bandwidth
parameter of m = N0.5. The one-month-ahead portfolio returns are regressed on risk
factors in the Capital Asset Pricing Model (CAPM), the Fama & French (1993) 3-factor
model (FF3), the Fama & French (2015) 5-factor model (period starts in 1963) (FF5)
and the Hou et al. (2014) q-model (period starts in 1967) (HXZ). The corresponding
alphas are reported. We report Newey & West (1987) standard errors using lags equal to
the return horizon in parentheses. Stars indicate significance: ∗ significant at p < 0.10;
∗∗p < 0.05; ∗∗∗p < 0.01.

Q1 Q2 Q3 Q4 Q5 Q5-Q1 (LMS)
Mean return 0.1357∗∗∗ 0.1288∗∗∗ 0.1344∗∗∗ 0.1263∗∗∗ 0.1186∗∗∗ −0.0171∗∗

(0.0334) (0.0326) (0.0343) (0.0346) (0.0356) (0.0086)
CAPM 0.0385∗∗∗ 0.0328∗∗∗ 0.0337∗∗∗ 0.0238∗∗ 0.0162 −0.0223∗∗∗

(0.0125) (0.0115) (0.0110) (0.0103) (0.0108) (0.0083)
FF3 0.0136∗∗ 0.0103∗∗ 0.0084∗ −0.0016 −0.0111∗ −0.0247∗∗∗

(0.0062) (0.0051) (0.0048) (0.0048) (0.0062) (0.0077)
FF5 0.0238∗∗ 0.0146∗ 0.0137∗ 0.0045 −0.0046 −0.0284∗∗∗

(0.0108) (0.0087) (0.0076) (0.0075) (0.0095) (0.0099)
HXZ 0.0450∗∗∗ 0.0340∗∗∗ 0.0335∗∗∗ 0.0270∗∗ 0.0198 −0.0252∗

(0.0160) (0.0129) (0.0114) (0.0113) (0.0133) (0.0129)
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Table 5: Fama–MacBeth Regressions

This table reports results from Fama & MacBeth (1973) regressions for the period from
1950 until 2015. Each month, excess stock returns are regressed on lagged firm charac-
teristics including the memory parameters, market capitalization (Size), book-to-market
values, prior returns (Momentum), illiquidity and jump statistics (BNS). The memory
parameter is estimated with the GPH estimator and a bandwidth parameter of m = N0.5.
We report Newey & West (1987) standard errors using lags equal to the return horizon in
parentheses. Stars indicate significance: ∗ significant at p < 0.10; ∗∗p < 0.05; ∗∗∗p < 0.01.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
Intercept 0.0091∗∗∗ 0.0144∗∗∗ 0.0075∗∗∗ 0.0076∗∗∗ 0.0087∗∗∗ 0.0091∗∗∗ 0.0106∗

(0.0025) (0.0051) (0.0025) (0.0025) (0.0025) (0.0025) (0.0056)
Long Memory −0.0039∗∗ −0.0021∗ −0.0038∗∗ −0.0038∗∗ −0.0044∗∗∗−0.0043∗∗∗−0.0024∗∗

(0.0016) (0.0012) (0.0016) (0.0016) (0.0016) (0.0016) (0.0011)
Size −0.0006∗ −0.0005

(0.0003) (0.0003)
Book-to-Market 0.0019∗∗∗ 0.0024∗∗∗

(0.0005) (0.0006)
Momentum 0.0067∗∗∗ 0.0095∗∗∗

(0.0016) (0.0013)
Illiquidity 0.2010∗∗ 0.0991

(0.1010) (0.1768)
BNS 0.0024∗∗∗ 0.0020∗∗∗

(0.0004) (0.0003)
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Table 6: Long Memory and Predictability

This table reports results of predictive regressions. We run heterogenous autoregressive
regressions of the monthly realized variance for each stock including the previous one,
six, twelve, twenty-four and sixty observations. We form quintile portfolios where stocks
with the lowest memory parameter are in the first quintile and stocks with the highest
memory parameter in the fifth quintile portfolio. We report average adjusted R2 in Panel
A, average t-statistics and F-statistics in Panel B and out-of-sample R2 in Panel C.

Q1 Q2 Q3 Q4 Q5
Panel A: Adjusted R2

HAR(1) 0.0888 0.1507 0.1822 0.2343 0.3000
HAR(2) 0.1447 0.2111 0.2418 0.2897 0.3491
HAR(3) 0.1529 0.2185 0.2486 0.2946 0.3536
HAR(4) 0.1535 0.2184 0.2484 0.2958 0.3561
HAR(5) 0.1491 0.2132 0.2490 0.2931 0.3579
Panel B: T-statistic/F-statistic
HAR(1) 5.6276 8.5058 9.7878 11.7858 12.9780
HAR(2) 41.2025 74.8700 89.9142 116.0092 123.2804
HAR(3) 29.4787 52.5572 61.9348 78.9834 82.9948
HAR(4) 22.3186 39.6614 46.0103 58.7847 61.2399
HAR(5) 16.2773 29.1439 34.9617 42.7776 45.3960
Panel C: R2

OOS

HAR(1) 0.0474 0.1306 0.1515 0.1967 0.2729
HAR(2) 0.1266 0.2139 0.2237 0.2546 0.3117
HAR(3) 0.1203 0.2090 0.2136 0.2424 0.2921
HAR(4) 0.1039 0.1896 0.1944 0.2233 0.2704
HAR(5) 0.0064 0.1147 0.1194 0.1475 0.1919
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Table 7: Sorted Portfolio Returns: Residual Long Memory

This table reports average returns and risk-adjusted returns of equally weighted quintile
portfolios. Each month, stocks are sorted by their residual long memory and we track the
portfolio returns over the subsequent month. The memory parameter is estimated with the
GPH estimator and a bandwidth parameter of m = N0.5. Residual memory is calculated
by regressing the memory parameter on size, book-to-market, momentum and illiquidity
(Model 1). Model 2 additionally includes the BNS jump test statistic. The one-month-
ahead portfolio returns are regressed on risk factors in the Capital Asset Pricing Model
(CAPM) and the Fama & French (2015) five-factor model (FF5). The corresponding
alphas are reported. We report Newey & West (1987) standard errors using lags equal to
the return horizon in parentheses. Stars indicate significance: ∗ significant at p < 0.10;
∗∗p < 0.05; ∗∗∗p < 0.01.

Q1 Q2 Q3 Q4 Q5 Q5-Q1 (LMS)
Panel A: Model 1
CAPM 0.0261∗∗∗ 0.0227∗∗ 0.0286∗∗∗ 0.0188∗ 0.0146 −0.0115∗

(0.0101) (0.0100) (0.0098) (0.0101) (0.0097) (0.0060)
FF5 0.0049 −0.0007 0.0034 −0.0090∗ −0.0100∗ −0.0149∗∗

(0.0047) (0.0044) (0.0041) (0.0048) (0.0058) (0.0069)
Panel B: Model 2
CAPM 0.0261∗∗∗ 0.0236∗∗ 0.0293∗∗∗ 0.0176∗ 0.0141 −0.0120∗∗

(0.0100) (0.0100) (0.0099) (0.0100) (0.0097) (0.0060)
FF5 0.0050 0.0006 0.0042 −0.0102∗∗ −0.0099∗ −0.0149∗∗

(0.0047) (0.0043) (0.0041) (0.0048) (0.0058) (0.0068)



Table 8: Long Memory and Industries

This table reports descriptive statistics for the memory parameter of industry portfolios.
for the period from 1926 until 2015. The memory parameter is estimated with the GPH
estimator and a bandwidth parameter of m = N0.5. SD stands for the standard deviation.
Min and Max stand for the minimum and maximum observation over the sample period.

Non-Durables Durables Manufacturing Energy Chemicals Business Equipment
Mean 0.21 0.22 0.22 0.21 0.24 0.19
Median 0.21 0.22 0.21 0.21 0.23 0.20
SD 0.06 0.05 0.06 0.08 0.10 0.08
Min 0.02 −0.02 0.11 −0.03 −0.04 −0.11
Max 0.37 0.39 0.44 0.55 0.80 0.56
Skewness 0.32 −0.06 1.64 0.34 1.08 −0.29
Kurtosis 3.48 4.22 6.33 4.00 6.13 4.22

Telecommunication Utilities Shops Healthcare Money Finance Other
Mean 0.20 0.21 0.23 0.23 0.21 0.21
Median 0.21 0.21 0.22 0.22 0.20 0.21
SD 0.09 0.08 0.05 0.08 0.07 0.07
Min −0.30 −0.15 0.10 −0.01 −0.02 −0.05
Max 0.47 0.53 0.39 0.58 0.45 0.43
Skewness −0.78 −0.29 0.82 1.08 0.03 −0.47
Kurtosis 5.77 5.39 3.53 5.39 3.92 5.10

2



Table 9: Long Memory and Fama–French Portfolios

This table reports the memory parameter for decile portfolios sorted Size, Book-to-Market
and Momentum for the period from 1950 until 2015. The last column reports the average
of the High-Minus-Low (D10−D1) portfolio. The memory parameter is estimated with
the GPH estimator and a bandwidth parameter of m = N0.5.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D10-D1
Size 0.3425 0.5483 0.5162 0.4799 0.4955 0.4489 0.4349 0.4397 0.4159 0.3860 0.0436
Book-to-Market 0.3382 0.4249 0.4334 0.4544 0.4808 0.5062 0.5090 0.5326 0.4905 0.6149 0.2767
Momentum 0.6184 0.6202 0.6138 0.5527 0.5215 0.4896 0.4237 0.3635 0.3034 0.1952 −0.4232
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Table 10: Sorted Portfolio Returns: Alternative GPH Estimators

This table reports average returns and risk-adjusted returns of equally weighted quintile
portfolios for the period from 1926 until 2015. Each month, stocks are sorted by their
memory parameter estimate and we track the portfolio returns over the subsequent month.
The memory parameter is estimated with the GPH estimator and a bandwidth parameter
of m = N0.6, m = N0.7 or m = N0.8 in Panels A-C. The GPH estimator is applied to
absolute returns and m = N0.5 in Panel D. The one-month-ahead portfolio returns are
regressed on risk factors in the Fama & French (2015) five-factor model (FF5). The
average return and the corresponding alphas are reported. We report Newey & West
(1987) standard errors using lags equal to the return horizon in parentheses. Stars indicate
significance: ∗ significant at p < 0.10; ∗∗p < 0.05; ∗∗∗p < 0.01.

Q1 Q2 Q3 Q4 Q5 Q5-Q1 (LMS)
Panel A: GPH m = N0.6

Mean return 0.1347∗∗∗ 0.1353∗∗∗ 0.1316∗∗∗ 0.1248∗∗∗ 0.1167∗∗∗ −0.0180∗∗

(0.0345) (0.0347) (0.0338) (0.0345) (0.0331) (0.0089)
FF5 0.0219∗∗ 0.0174∗ 0.0081 0.0052 −0.0009 −0.0228∗∗

(0.0106) (0.0090) (0.0074) (0.0076) (0.0094) (0.0095)
Panel B: GPH m = N0.7

Mean return 0.1426∗∗∗ 0.1313∗∗∗ 0.1286∗∗∗ 0.1256∗∗∗ 0.1155∗∗∗ −0.0271∗∗∗

(0.0357) (0.0345) (0.0343) (0.0331) (0.0330) (0.0096)
FF5 0.0291∗∗∗ 0.0131 0.0074 0.0070 −0.0043 −0.0334∗∗∗

(0.0105) (0.0093) (0.0078) (0.0076) (0.0088) (0.0097)
Panel C: GPH m = N0.8

Mean return 0.1415∗∗∗ 0.1379∗∗∗ 0.1248∗∗∗ 0.1208∗∗∗ 0.1183∗∗∗ −0.0232∗∗

(0.0361) (0.0361) (0.0335) (0.0335) (0.0313) (0.0099)
FF5 0.0293∗∗∗ 0.0170∗∗ 0.0090 −0.0010 −0.0022 −0.0314∗∗∗

(0.0103) (0.0082) (0.0086) (0.0085) (0.0084) (0.0095)
Panel D: GPH Absolute Returns m = N0.5

Mean return 0.1417∗∗∗ 0.1321∗∗∗ 0.1306∗∗∗ 0.1264∗∗∗ 0.1123∗∗∗ −0.0294∗∗∗

(0.0335) (0.0331) (0.0341) (0.0342) (0.0360) (0.0103)
FF5 0.0202∗∗ 0.0145 0.0106 0.0074 −0.0026 −0.0228∗∗

(0.0102) (0.0091) (0.0074) (0.0074) (0.0105) (0.0105)
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Table 11: Sorted Portfolio Returns: Alternative LW Estimators

This table reports average returns and risk-adjusted returns of equally weighted quintile
portfolios for the period from 1926 until 2015. Each month, stocks are sorted by their
memory parameter estimate and we track the portfolio returns over the subsequent month.
The memory parameter is estimated with the LW estimator and a bandwidth parameter
of m = N0.5, m = N0.6, m = N0.7 or m = N0.8 in Panels A-D. The LW estimator
is applied to absolute returns and m = N0.5 in Panel E. The one-month-ahead portfolio
returns are regressed on risk factors in the Fama & French (2015) five-factor model (FF5).
The average return and the corresponding alphas are reported. We report Newey & West
(1987) standard errors using lags equal to the return horizon in parentheses. Stars indicate
significance: ∗ significant at p < 0.10; ∗∗p < 0.05; ∗∗∗p < 0.01.

Q1 Q2 Q3 Q4 Q5 Q5-Q1 (LMS)
Panel A: LW m = N0.5

Mean return 0.1391∗∗∗ 0.1299∗∗∗ 0.1309∗∗∗ 0.1256∗∗∗ 0.1181∗∗∗ −0.0209∗∗

(0.0333) (0.0332) (0.0333) (0.0351) (0.0358) (0.0100)
FF5 0.0309∗∗∗ 0.0133 0.0092 0.0009 −0.0012 −0.0321∗∗∗

(0.0115) (0.0086) (0.0077) (0.0076) (0.0097) (0.0109)
Panel B: LW m = N0.6

Mean return 0.1363∗∗∗ 0.1355∗∗∗ 0.1309∗∗∗ 0.1227∗∗∗ 0.1182∗∗∗ −0.0182∗

(0.0342) (0.0344) (0.0341) (0.0345) (0.0334) (0.0099)
FF5 0.0254∗∗ 0.0176∗∗ 0.0079 0.0017 0.0000 −0.0254∗∗

(0.0110) (0.0088) (0.0079) (0.0075) (0.0094) (0.0103)
Panel C: LW m = N0.7

Mean return 0.1435∗∗∗ 0.1324∗∗∗ 0.1307∗∗∗ 0.1238∗∗∗ 0.1137∗∗∗ −0.0298∗∗∗

(0.0352) (0.0349) (0.0338) (0.0343) (0.0326) (0.0101)
FF5 0.0324∗∗∗ 0.0131 0.0093 0.0054 −0.0069 −0.0393∗∗∗

(0.0106) (0.0092) (0.0081) (0.0079) (0.0090) (0.0105)
Panel D: LW m = N0.8

Mean return 0.1427∗∗∗ 0.1370∗∗∗ 0.1275∗∗∗ 0.1230∗∗∗ 0.1135∗∗∗ −0.0292∗∗∗

(0.0366) (0.0351) (0.0344) (0.0334) (0.0315) (0.0112)
FF5 0.0298∗∗∗ 0.0191∗∗ 0.0080 0.0014 −0.0053 −0.0351∗∗∗

(0.0108) (0.0088) (0.0082) (0.0078) (0.0093) (0.0106)
Panel E: LW Absolute Returns m = N0.5

Mean return 0.1445∗∗∗ 0.1327∗∗∗ 0.1336∗∗∗ 0.1175∗∗∗ 0.1141∗∗∗ −0.0303∗∗

(0.0337) (0.0324) (0.0344) (0.0337) (0.0369) (0.0121)
FF5 0.0264∗∗ 0.0147 0.0099 0.0021 −0.0029 −0.0293∗∗∗

(0.0103) (0.0091) (0.0075) (0.0076) (0.0108) (0.0112)
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Table 12: Cross-sectional Regressions: Alternative Estimators

This table reports results from Fama & MacBeth (1973) regressions for the period from
1950 until 2015. Each month, excess stock returns are regressed on the lagged memory
parameters in Panel A. Panel B further includes additional lagged firm characteristics,
which are market capitalization (Size), book-to-market values, prior returns (Momentum),
illiquidity and jump statistics (BNS). The memory parameter is estimated by applying
the GPH or the LW estimator and a bandwidth parameter of m = N0.5, m = N0.6,
m = N0.7 or m = N0.8 to squared or absolute returns. We report Newey & West (1987)
standard errors using lags equal to the return horizon in parentheses. Stars indicate the
significance: ∗ significant at p < 0.10; ∗∗p < 0.05; ∗∗∗p < 0.01.

GPH LW
N0.6 N0.7 N0.8 Abs. N0.5 N0.5 N0.6 N0.7 N0.8 Abs. N0.5

Panel A: Simple Regressions
Intercept 0.0089∗∗∗ 0.0091∗∗∗ 0.0091∗∗∗ 0.0094∗∗∗ 0.0092∗∗∗ 0.0091∗∗∗ 0.0094∗∗∗ 0.0095∗∗∗ 0.0097∗∗∗

(0.0026) (0.0026) (0.0027) (0.0025) (0.0026) (0.0026) (0.0027) (0.0027) (0.0025)
Long Memory −0.0039∗ −0.0062∗∗ −0.0075∗∗ −0.0045∗∗ −0.0047∗∗ −0.0053∗ −0.0084∗∗ −0.0104∗∗ −0.0060∗∗

(0.0022) (0.0028) (0.0036) (0.0019) (0.0022) (0.0029) (0.0038) (0.0049) (0.0025)
Panel B: Multiple Regressions
Intercept 0.0106∗ 0.0109∗ 0.0110∗ 0.0111∗∗ 0.0106∗ 0.0106∗ 0.0109∗ 0.0111∗ 0.0110∗

(0.0056) (0.0056) (0.0057) (0.0056) (0.0056) (0.0056) (0.0056) (0.0057) (0.0056)
Long Memory −0.0026∗ −0.0044∗∗ −0.0047∗ −0.0027∗∗ −0.0030∗∗ −0.0033∗ −0.0063∗∗ −0.0071∗ −0.0036∗∗

(0.0015) (0.0021) (0.0028) (0.0013) (0.0015) (0.0019) (0.0028) (0.0039) (0.0017)
Size −0.0005 −0.0005∗ −0.0005∗ −0.0005∗ −0.0005 −0.0005 −0.0005 −0.0005 −0.0005

(0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003)
Book-to-Market 0.0024∗∗∗ 0.0024∗∗∗ 0.0023∗∗∗ 0.0024∗∗∗ 0.0024∗∗∗ 0.0024∗∗∗ 0.0024∗∗∗ 0.0023∗∗∗ 0.0024∗∗∗

(0.0006) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006)
Momentum 0.0094∗∗∗ 0.0095∗∗∗ 0.0094∗∗∗ 0.0095∗∗∗ 0.0095∗∗∗ 0.0095∗∗∗ 0.0094∗∗∗ 0.0094∗∗∗ 0.0095∗∗∗

(0.0013) (0.0013) (0.0013) (0.0013) (0.0013) (0.0013) (0.0013) (0.0013) (0.0013)
Illiquidity 0.0987 0.0952 0.0926 0.0927 0.0993 0.0991 0.0971 0.0924 0.0933

(0.1764) (0.1754) (0.1752) (0.1759) (0.1763) (0.1765) (0.1753) (0.1742) (0.1752)
BNS 0.0020∗∗∗ 0.0020∗∗∗ 0.0020∗∗∗ 0.0020∗∗∗ 0.0020∗∗∗ 0.0020∗∗∗ 0.0020∗∗∗ 0.0020∗∗∗ 0.0020∗∗∗

(0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003)
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Table 13: Sorted Portfolio Returns: Alternative Holding Periods

This table reports average returns and risk-adjusted returns of equally weighted quintile
portfolios for the period from 1926 until 2015. Each month, stocks are sorted by their
memory parameter estimate and we track the portfolio returns over the subsequent one,
two, three, four and five years in Panel A, B, C, D and E, respectively. The memory
parameter is estimated with the GPH estimator and a bandwidth parameter of m = N0.5.
The one-month-ahead portfolio returns are regressed on risk factors in the Capital Asset
Pricing Model (CAPM) and the Fama & French (2015) five-factor model (period starts
in 1963) (FF5). The mean returns and the corresponding alphas are reported. We report
Newey &West (1987) standard errors using lags equal to the return horizon in parentheses.
Stars indicate significance: ∗ significant at p < 0.10; ∗∗p < 0.05; ∗∗∗p < 0.01.

Q1 Q2 Q3 Q4 Q5 Q5-Q1 (LMS)
Panel A: One Year Holding Period
Mean return 0.1404∗∗∗ 0.1371∗∗∗ 0.1384∗∗∗ 0.1329∗∗∗ 0.1216∗∗∗ −0.0188∗∗

(0.0503) (0.0504) (0.0472) (0.0438) (0.0448) (0.0095)
FF5 0.1566∗∗∗ 0.1592∗∗∗ 0.1616∗∗∗ 0.1478∗∗∗ 0.1400∗∗∗ −0.0166

(0.0502) (0.0488) (0.0477) (0.0470) (0.0473) (0.0150)
Panel B: Two Years Holding Period
Mean return 0.1453∗∗∗ 0.1431∗∗∗ 0.1412∗∗∗ 0.1371∗∗∗ 0.1260∗∗∗ −0.0193∗∗

(0.0423) (0.0403) (0.0386) (0.0359) (0.0371) (0.0097)
FF5 −0.0059 −0.0037 −0.0076 −0.0200∗∗ −0.0288∗∗∗ −0.0229∗∗

(0.0092) (0.0079) (0.0075) (0.0087) (0.0111) (0.0100)
Panel C: Three Years Holding Period
Mean return 0.1445∗∗∗ 0.1441∗∗∗ 0.1421∗∗∗ 0.1378∗∗∗ 0.1256∗∗∗ −0.0188∗∗

(0.0390) (0.0391) (0.0357) (0.0325) (0.0332) (0.0092)
FF5 −0.0072 −0.0025 −0.0093 −0.0202∗ −0.0292∗∗ −0.0219∗∗

(0.0089) (0.0092) (0.0078) (0.0115) (0.0119) (0.0091)
Panel D: Four Years Holding Period
Mean return 0.1510∗∗∗ 0.1509∗∗∗ 0.1478∗∗∗ 0.1438∗∗∗ 0.1319∗∗∗ −0.0190∗∗

(0.0424) (0.0434) (0.0394) (0.0352) (0.0352) (0.0094)
FF5 −0.0008 0.0017 −0.0031 −0.0152 −0.0212 −0.0204∗∗

(0.0188) (0.0234) (0.0292) (0.0302) (0.0224) (0.0081)
Panel E: Five Years Holding Period
Mean return 0.1534∗∗∗ 0.1537∗∗∗ 0.1493∗∗∗ 0.1464∗∗∗ 0.1343∗∗∗ −0.0191∗∗

(0.0341) (0.0379) (0.0356) (0.0321) (0.0303) (0.0093)
FF5 −0.0191 −0.0204 −0.0263∗ −0.0352∗∗∗−0.0393∗∗∗ −0.0203∗∗

(0.0141) (0.0180) (0.0142) (0.0124) (0.0122) (0.0091)
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Table 14: Sorted Portfolio Returns: High Frequency Data

This table reports average returns and risk-adjusted returns of quintile portfolios for the
period from 1996 until 2015. Each month, stocks are sorted by their long memory pa-
rameter estimate and we track the portfolio returns over the subsequent month. The
one-month-ahead portfolio returns are regressed on risk factors in the Capital Asset Pric-
ing Model (CAPM), the Fama & French (1993) 3-factor model (FF3), the Fama & French
(2015) 5-factor model (FF5) and the Hou et al. (2014) q-model (HXZ). The corresponding
alphas are reported. We report Newey & West (1987) standard errors using lags equal to
the return horizon in parentheses. The memory parameter is estimated using a month of
5-min returns and the GPH estimator and a bandwidth parameter of m = N0.5. Stars
indicate significance: ∗ significant at p < 0.10; ∗∗p < 0.05; ∗∗∗p < 0.01.

Q1 Q2 Q3 Q4 Q5 Q5-Q1 (LMS)
Mean return 0.1638∗∗∗ 0.1246∗∗∗ 0.1091∗∗ 0.1025∗∗ 0.0754∗ −0.0883∗∗∗

(0.0441) (0.0474) (0.0461) (0.0438) (0.0445) (0.0176)
CAPM 0.1508∗∗∗ 0.1138∗∗∗ 0.0980∗∗ 0.0881∗∗ 0.0600 −0.0908∗∗∗

(0.0403) (0.0432) (0.0444) (0.0405) (0.0417) (0.0182)
FF3 0.1369∗∗∗ 0.1040∗∗ 0.0798∗ 0.0768∗ 0.0633 −0.0736∗∗∗

(0.0429) (0.0437) (0.0457) (0.0433) (0.0434) (0.0193)
FF5 0.0963 0.0643 0.0395 0.0558 0.0367 −0.0597∗∗

(0.0644) (0.0638) (0.0612) (0.0581) (0.0563) (0.0257)
HXZ 0.0558 0.0194 −0.0088 0.0259 −0.0169 −0.0727∗∗

(0.0870) (0.0845) (0.0827) (0.0785) (0.0737) (0.0302)
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Table 15: Fama–MacBeth Regressions: Additional Control Variables

This table reports results from Fama & MacBeth (1973) regressions for the period from 1950 until 2015. Each month, excess stock
returns are regressed on lagged firm characteristics including, memory parameters, market capitalization (Size), book-to-market values,
prior returns (Momentum), illiquidity and jump statistics (BNS). We further control for Beta, Cokurtosis (CKT), Coskewness (CSK),
idiosyncratic volatility (IVOL), kurtosis (KURT), skewness (SKEW), demand for lottery (MAX) and volatility of volatility (Vol-of-
Vol). We report Newey & West (1987) standard errors using lags equal to the return horizon in parentheses. Stars indicate significance:
∗ significant at p < 0.10; ∗∗p < 0.05; ∗∗∗p < 0.01.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 Model 13 Model 14 Model 15 Model 16 Model 17
Intercept 0.0091∗∗∗ 0.0144∗∗∗ 0.0075∗∗∗ 0.0076∗∗∗ 0.0087∗∗∗ 0.0091∗∗∗ 0.0096∗∗∗ 0.0095∗∗∗ 0.0087∗∗∗ 0.0089∗∗∗ 0.0116∗∗∗ 0.0114∗∗∗ 0.0096∗∗∗ 0.0122∗∗∗ 0.0089∗∗∗ 0.0106∗∗∗ 0.0267∗∗∗

(0.0025) (0.0051) (0.0025) (0.0025) (0.0025) (0.0025) (0.0027) (0.0024) (0.0026) (0.0026) (0.0019) (0.0025) (0.0025) (0.0021) (0.0017) (0.0019) (0.0040)
Long Memory −0.0039∗∗ −0.0021∗ −0.0038∗∗ −0.0038∗∗ −0.0044∗∗∗−0.0043∗∗∗−0.0040∗∗ −0.0037∗∗ −0.0036∗∗ −0.0037∗∗ −0.0042∗∗∗ −0.0043∗∗∗ −0.0039∗∗ −0.0041∗∗∗ −0.0038∗∗∗ −0.0041∗∗∗ −0.0021∗∗

(0.0016) (0.0012) (0.0016) (0.0016) (0.0016) (0.0016) (0.0017) (0.0016) (0.0016) (0.0016) (0.0014) (0.0017) (0.0016) (0.0015) (0.0014) (0.0013) (0.0010)
Size −0.0006∗ −0.0013∗∗∗

(0.0003) (0.0002)
Book-to-Market 0.0019∗∗∗ 0.0012∗∗

(0.0005) (0.0005)
Momentum 0.0067∗∗∗ 0.0096∗∗∗

(0.0016) (0.0013)
Illiquidity 0.2010∗∗ 0.4686∗∗

(0.1010) (0.1836)
BNS 0.0024∗∗∗ −0.0001

(0.0004) (0.0003)
Beta −0.0510∗∗∗ −0.0006 −0.0006

(0.0042) (0.0005) (0.0006)
REV −0.0005 −0.0577∗∗∗ −0.0395∗∗∗

(0.0005) (0.0043) (0.0037)
CKT 0.0000 0.0007 0.0011∗∗∗

(0.0005) (0.0005) (0.0004)
CSK −0.0005 0.0003 −0.0010

(0.0008) (0.0007) (0.0007)
IVOL −0.1483∗∗∗ −0.0725 −0.2892∗∗∗

(0.0447) (0.0598) (0.0535)
KURT −0.0006∗∗∗ −0.0003∗∗ −0.0002∗∗

(0.0001) (0.0001) (0.0001)
SKEW −0.0020∗∗∗ 0.0014∗∗∗ 0.0009∗∗∗

(0.0003) (0.0003) (0.0003)
MAX −0.0610∗∗∗ −0.0159 0.0156

(0.0112) (0.0164) (0.0165)
Vol-of-Vol −0.0074 0.0207 −0.0206

(0.0309) (0.0244) (0.0244)
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Table 16: Portfolio Sorts and Additional Control Variables

This table presents firm characteristics of portfolios sorted by the memory of volatility.
The memory parameter is estimated with the GPH estimator and a bandwidth param-
eter of m = N0.5. From 1950 until 2015 we sort stocks each month and form and hold
the portfolio for one month. We report the average long memory parameter, memory
parameters, market capitalization (Size), book-to-market values, prior returns (Momen-
tum), illiquidity and jump statistics (BNS), Beta, Cokurtosis (CKT), Coskewness (CSK),
idiosyncratic volatility (IVOL), kurtosis (KURT), skewness (SKEW), demand for lottery
(MAX) and volatility of volatility (Vol-of-Vol) of quintile portfolios. The Q5-Q1 column
reports the averages for the long memory minus short memory portfolio (LMS) with the
according t-statistics in square brackets.

Q1 Q2 Q3 Q4 Q5 Q5-Q1 (LMS)
Memory 0.0044 0.1295 0.2118 0.2975 0.4471 0.4427 [202.7567]
Size 11.6610 11.8630 12.0161 12.1707 12.3560 0.6950 [23.3435]
Book-to-Market 0.8934 0.9168 0.8993 0.8758 0.8996 0.0062 [0.5910]
Momentum 0.1681 0.1558 0.1522 0.1483 0.1284 −0.0397 [−14.2697]
Illiquidity 0.0044 0.0040 0.0038 0.0040 0.0055 0.0010 [3.9205]
BNS −0.1994 −0.0620 −0.0255 −0.0110 0.0036 0.2030 [12.5035]
Beta 0.8044 0.8458 0.8668 0.8874 0.8998 0.0954 [13.5244]
REV 0.0151 0.0128 0.0124 0.0118 0.0108 −0.0043 [−6.2043]
CKT 0.7717 0.8385 0.8870 0.9271 0.9574 0.1857 [15.0266]
CSK −0.0462 −0.0464 −0.0455 −0.0432 −0.0410 0.0052 [1.9815]
IVOL 0.0245 0.0233 0.0226 0.0224 0.0233 −0.0012 [−3.5765]
KURT 3.9543 3.8076 3.7205 3.6439 3.5518 −0.4024 [−40.4010]
SKEW 0.2678 0.2461 0.2337 0.2232 0.2074 −0.0604 [−16.6647]
Max 0.0672 0.0625 0.0602 0.0594 0.0609 −0.0063 [−7.1539]
Vol-of-Vol 0.0616 0.0551 0.0527 0.0528 0.0577 −0.0039 [−4.4344]
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Table 17: Exposure to Market Long Memory and Aggregate Volatility

This table reports results from Fama & MacBeth (1973) regressions for the period from
1950 until 2015. Each month, excess stock returns are regressed on lagged firm character-
istics including, memory parameters, market capitalization (Size), book-to-market values,
prior returns (Momentum), illiquidity and jump statistics (BNS). We further control for
Beta, Cokurtosis (CKT), Coskewness (CSK), idiosyncratic volatility (IVOL), kurtosis
(KURT), skewness (SKEW), demand for lottery (MAX) and volatility of volatility (Vol-
of-Vol) and exposure to market memory and aggregate volatility. We report Newey &
West (1987) standard errors using lags equal to the return horizon in parentheses. Stars
indicate significance: ∗ significant at p < 0.10; ∗∗p < 0.05; ∗∗∗p < 0.01.

Model 1 Model 2 Model 3 Model 4
(Intercept) 0.0114∗∗ 0.0107∗ 0.0239∗∗∗ 0.0239∗∗∗

(0.0053) (0.0055) (0.0049) (0.0047)
Long Memory −0.0017∗ −0.0024∗∗ −0.0018∗ −0.0022∗∗

(0.0010) (0.0011) (0.0010) (0.0010)
Size −0.0004 −0.0005∗ −0.0011∗∗∗−0.0012∗∗∗

(0.0003) (0.0003) (0.0003) (0.0003)
Book-to-Market 0.0020∗∗∗ 0.0023∗∗∗ 0.0012∗∗ 0.0013∗∗

(0.0005) (0.0006) (0.0005) (0.0005)
Momentum 0.0093∗∗∗ 0.0094∗∗∗ 0.0093∗∗∗ 0.0094∗∗∗

(0.0012) (0.0013) (0.0013) (0.0013)
Illiquidity −0.0091 0.0770 0.4028∗∗∗ 0.4076∗∗

(0.1470) (0.1716) (0.1550) (0.1693)
BNS 0.0020∗∗∗ 0.0019∗∗∗−0.0001 −0.0002

(0.0003) (0.0003) (0.0003) (0.0003)
Beta −0.0004 −0.0007

(0.0005) (0.0006)
Rev −0.0412∗∗∗−0.0381∗∗∗

(0.0037) (0.0038)
CKT 0.0011∗∗∗ 0.0012∗∗∗

(0.0003) (0.0004)
CSK −0.0011 −0.0010

(0.0007) (0.0007)
KURT −0.2973∗∗∗−0.0002∗∗

(0.0515) (0.0001)
SKEW −0.0003∗∗ 0.0009∗∗∗

(0.0001) (0.0003)
MAX 0.0008∗∗∗ 0.0145

(0.0002) (0.0170)
Vol-of-Vol 0.0200 −0.2936∗∗∗

(0.0164) (0.0585)
Market Long Memory −0.0017 −0.0004

(0.0015) (0.0014)
Aggregate Volatility −0.0008 0.0005

(0.0009) (0.0008)
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