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Abstract

Options on two underlyings are a common exotic product in the equity and FX derivatives
market. The value of these kinds of options depends on the correlation of the two underlyings.
We will present a model to compute a lower bound for the price of this option. The model,
represented by a non-linear parabolic PDE, is implemented with finite elements in order to
demonstrate the results with several derivatives from the European market.
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Figure 1: Historical 60-day Correlation between Commerzbank and Dresdner Bank

1 Introduction

Rainbow options on two assets or currencies are common in the derivatives market. In the OTC
market plain vanilla basket options and digital basket options, sometimes with barriers or caps,
are common exotics. Options on-the-worst-of-two are sometimes embedded in triple currency
linked bonds or reverse convertibles. Triple linked currency bonds can be divided into a straight
bond and a series of puts on the worst of two currencies [12]. So-called double reverse convert-
ibles can be seen as a straight bond (sometimes a zero coupon bond) and a short position in a
put on the worst of two equities. Products of this kind are currently popular in the retail market
and are offered by BHF Bank and HSBC Trinkaus und Burkhardt. Reverse convertibles in-
cluding a basket option on two equities as offered by A BN Amgro have not gained any popularity.

The price of an option on two assets depends strongly on the correlation of these two assets
denoted by p. A straightforward extension of the classical Black-Scholes framework for options
on two assets leads to the following well-known PDE [7]

L a0V 1,0V Al
201 gge T 30dggy + pmSiSigaaat
av av ov
(T—Dl)Sla—Sl-l-(T—DQ)SQa—SQ = rV — E (].)

The problem, however, is that correlation p is not a constant as can be seen in fig. 1. Instead
of giving a correct figure for the correlation, it is much easier to derive a reasonable guess for
the lower and upper bound. In the FX market, it is possible to compute implied correlation [9].
This, however, is usually not possible in the equity market.

In the following, we will show how to price an option when only upper and lower bounds for
correlation are known. This approach uses similar hedging arguments as the original approach by
Black and Scholes [1]. We are only interested in the worst-case solution. The derived pricing PDE
is nonlinear in contrast to eq. (1). This model is similar in spirit to earlier models with respect
to other unknown parameters such as volatility, dividends, and interest rates. For a survey see
[19]. We will show how to implement this model using a collocation finite element method. This
includes a thorough discussion of the appropriate boundary conditions. As examples, we present
numerical results for several rainbow options from the European market.
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2 A Pricing Model with Uncertain Correlation
2.1 A Worst-Case Pricing Equation
Assuming that a lower and an upper bound for correlation is
-1<p~<p<pt <1 (2)

we shall use a similar argument as Black and Scholes [1] to derive a model for worst case pricing.
Both assets follow the usual SDE:

dSl = Sl dt + o1 S] dX (3)
dS, = M2 Sy dt + 09 Sy dX (4)

Both assets are correlated
E(dX;dX;)=pdt (5)

Setting up a portfolio consisting of a long position in one option and short positions in both
underlyings leads to:

I =V(S1,52,t) — A1S1 — A2 S5y (6)
With It6’s Lemma an infinitesimal change in this portfolio can be expressed as:
o2V 2 (ov
dll = [ 1, dt - A’L d i
Zz;]z;go]pj ]8585 +;<asz > S (7)

This expression can be simplified because i, j = 2. We also know that p; = 1 and p;; = pj;. To
simplify the notation we set p1o = p21 = p.

ov OV 1BV 1,0
I = -
d < ot T 1SS ae 5015 ag + 50053 as2> dt
ov ov
+ <a—Sl—A >d51+ <352 A2> dSs (®)

Choosing A; = 85 for i = 1,2 elimininates the risk just as in the classical argument when
deriving the multidimensional Black-Scholes equation.

2 1 2 1 2
dll = <aa—‘; +0102p51528§1;/5 5 Sl (8352 5 52 (8352> dt (9)
In the Black-Scholes model it can be argued that from knowing V we also know dIl. Here,
however, this is not true since p is unknown. Since we want to derive a worst-case-scenario model,
we want to be extremely pessimistic: In every infinitesimal time step we assume a correlation
that leads to the smallest growth in the portfolio. This implies that the return on this worst-case
portfolio is set equal to the risk-free rate.

min dTT = rII dt (10)

The minimization is with respect to p. Using eq. (6) the right-hand side of eq. (10) can be
rewritten as

ov av
rIIdt=r <V(Sl,52,t) - 8—5151 8—5252> (11)
The left-hand side can be expressed as
min 8V 82V 9 282V 1 9 282V
= = — 12
E T T 575 5 a5z T 272555 | X (12)

~

A

Because of the minimization with respect to p € [p™; p*], we can distinguish two cases:
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L. 85?‘(;52 =Tiross >0 = A= p~01025152 cross

2. % = I‘cross <0 => A= p+01025152rcross

Combining these results and taking dividends into account, we arrive at the worst-case pricing
equation:

301510 37 S+ pCamdnionSiSi L+
(r — Dl):s*lg—;/1 +(r— 172):5*23—;/2 - V- 38—‘; (13)
R A &
2
Toss = Fess (15)

These results can be extended to p~ and p* as they are deterministic functions of ¢. Obviously,
it has to hold that p=(¢) < p*(t). It is also possible to combine this model with other models to
adjust for the uncertainty of the other unknown parameters.

2.2 Misspecification

This section deals with the error incurred by estimating the bandwidth of p in a too optimistic
manner. We are interested in the effect of decreasing p~ and increasing p* by infinitesimal
amounts. The change in V' by relaxing p~ by e is generally not the same as the change incurred
by increasing pt to pT + €. Let us define:

oV V(= =V(p~ +¢

0,- = o ° 5 (16)
v V(pt —€) = V(pT +¢)

Ot =57 5 (17)
with ¢ = 0.01

Both 6,- and d,+ are negative by definition: The price of an option in a worst-case scenario can
only decrease by relaxing the input parameter.

3 Implementing the Model

3.1 A Numerical Approach: The Collocation Finite Element Method

These models are non-linear parabolic PDEs for which analytical solutions are not known.
When, however, it can be shown that the Black-Scholes T'.,,ss is single-signed, the non-linear
PDE reduces to the Black-Scholes pricing equation which is linear. For certain rainbow options
it is well-known that T'..,ss is single-signed so that only a linear PDE has to be solved.
Sometimes, this can even be achieved analytically. From the large family of possible numerical
solution techniques we have chosen a collocation finite element approach with cubic Hermite
trial functions. This approximates I'.;.,ss accurately and delivers the other hedging parameters
as a by-product. From the finite difference family only explicit FD are straightforward to
employ; ADI and hopscotch methods need to be extended ([19], ch. 48; [15]). For a possible
extension of FDs to compute accurate cross-derivatives see [18].

First we consider the stationary problem L (u(z,y)) = f, L being a non-linear differential oper-
ator. We look for an approximate solution @(z,y) for the following problem:

Lw) = f, (18)

u(xmzn) =  Umings u(xmaz) = Umaz, (19)

u(ymzn) = Uminy> U(ymaw) = Umaz, ; (20)
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That is, we consider a rectangular domain with Dirichlet conditions. This method can easily be
generalized for non-rectangular domains and Neumann and mixed boundary conditions [14]. An
approximate solution @ can take the following form:

N
i=Y appr(z.y) . (21)
k=1

The task is to find values for a; which make @ the “best” approximation. While the Galerkin
finite element methods sometimes used in two-asset derivative pricing (cf. [3], [16]) determine
the a;’s by solving

Tmax Ymaz
[ [ a@-neaar=0. k=18, (22)
Tmin Ymin

collocation finite element methods take the following approach. They enforce that, at certain
points in the domain, the so-called collocation points, the PDE is exactly satisfied.

The domain is divided into rectangular disjoint elements, the finite elements. They are not
necessarily of the same size. The four collocation points for each element [z;; z;11] X [ys; ¥it1] in
the method used here are

{xi + (% + 2%) (Tit1 — 23);yi + (% + 2%) (Yi+1 — yi)} (24)

Let s; denote the number of gridlines in direction i. The approximate solution is defined by a
linear combination of 4s,s, basis functions

Hi(z)H;(y), Hi(x)S;(y), Si(z)H;(y), Si(z)S;(y) (25)
with
T—x 2 T—x 3
Hy(z) = 3 <¢> -2 <¢> for zp_1 <z <z
T — Th_1 Tp — Tg—1
2 3
= 3 (L““ _x> —2 (73219“ _x> for z <z < g4
Tk4+1 — Tk Tk4+1 — Tk
= 0 elsewhere (26)
(x —mp1)? (x —xp_1)3
Sp(z) = -— + for 21 <z <=z
k(@) (T — 1)  (Th — Tp—1)? Pl ==
— )2 _ \3
- ($k+1 .T) — (CUk-',-l CC) 3 for z, <z < Tl
(Th1 — k) (Thy1 — Ti)
= 0 elsewhere (27)
2 3
Hy) = 3 (M) _9 (M) for yos <y < us
Yk — Yr—1 Yk — Yr—1
2 3
_ 3<M> _2<M> for ux <y < v
Yie+1 — Yk Ye+1 — Yk
= 0 elsewhere (28)
_ 2 _ 3
Si(y) = - (Y —yr=1)" (¥ = Y1) for yes <y <

Wk —yr—1) Wk —Yr-1)

_ )2 _ a3
= Gen v len —y) 5 for yr <y < yp
(Yr+1 — Yr) (Yr+1 — Yr)

= 0 elsewhere (29)

The approximate solution 4(z,y) has the form

Sz Sy

a(z,y) =Y Y {AiHi(2)H;j(y) + BijHi(2)S;(y) + CyjSi(x) Hj(y) + DijSi(x)S;(y)}  (30)

i=1 j=1
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so the N = 4Sx8y unknowns are Alla Blla Clla Dlla A12, Blg, 012, Dlg, Ceay Aszsya Bszsya
Cs,s,» Ds,s, which are relabeled to ay,...,an for notational convenience. The approximating
function @(z,y) has a continuous mixed derivative @, because the mixed derivative of each of
the basis functions is continuous. To be succesful in this setting, the key feature of continuous
mixed derivatives has to hold. This feature is not common to most FE methods in use today.
The basis functions normally used by Galerkin methods do not even have continuous @, or .

The approximate solution is required to satisfy the PDE exactly at the four collocation points,
in each of the (s, — 1)(s, — 1) subrectangles, and to satisfy the boundary conditions at certain
points. The number of boundary collocation points plus the number of interior collocations
points 4(s, — 1)(sy — 1), is equal to the number of basis functions 4s;s,, which is equal to the

number of unknowns V. Finding the IV parameters a1, ..., an results in a system of non-linear
equations:
fl(al,...,aN) =0
(31)
fN(al, - ,aN) = 0

This system of non-linear equations is solved via Newton’s method. The integration of time
is similar to the Galerkin finite element method. Spatial variables are discretized with finite
elements while time is treated with finite differences. This can be visualized as the non-linear
elliptic operator L(u) evolving through time. Each equation corresponds to a collocation point.
The dynamic counterpart to eq. (31) is given by

dl gl(ala"'aaN)
a=| ¢ |= : (32)
aN gN(ala"';aN)

This stiff system of non-linear ordinary differential equations can be solved with various time-
stepping procedures. We have chosen a Crank-Nicolson implementation. The initial conditions
to eq. (32) are given by a discretization of the final condition of the PDE. All computations have
been performed with PDE2D, a general purpose finite element solver described in [14].

3.2 Estimating the Data

Normally, there are not enough options in the market to compute implied correlations from
market data. When the option is exchange-traded, it is possible to construct a historical data
series of implicit correlations. As a first approach, one can pick the extremes of this time series
as Pmaz and pmin. For OTC products, a time series of historical correlations as in fig. 1 gives
some insights into the behavior of correlation. Another approach to find p,4,, and ppq. is based
on the forward Kolmogorov equation [11]. First, one has to specify the functions a(p) and b(p)
in

dpr = a(pe)dt + b(pe)d Xy (33)

and estimate their parameters. The forward Kolmogorov equation with appropriate boundary
and final conditions gives the probabilities that p will breach a pre-specified band. The converse
approach is also valid: The correlation distribution is determined at each time step. In case one
does not want the correlation to breach the band with a 5 % probability, one has to cut off the
0.025 quantiles at the left and right hand side of the distribution. These quantiles are used as
lower and upper bounds. Usually, the lower and upper bounds are both functions of time.
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4 Applications of the Model

4.1 Capped Calls on Baskets

As a first example of a rainbow option, we consider a capped call on a basket of two equities.
This is a common OTC product. Sometimes it is traded at exchanges as well.! For pricing this

call we have to solve PDE (13) - (15) with the following final and boundary conditions:

V(T)

V(S Sminy = BS <Sl,—E,t
w1
oV (Sy, S5)

051

95s =0
. E
V(sPin S,) = BS <52,—,t
w1

OV(SPe, Sy _

min [cap, max (0, w1.51 + w2S> — E)]

) — BS (S1,cap,t)

)—Bﬂ&wwﬁ

(34)
(35)

(36)
(37)
(38)

(39)

The function BS(z,y,t) denotes the price of a European call option with an underlying price of
x and a strike price of y as given by the Black-Scholes model [1].2

| Parameter | Symbol | Value |
First asset price S1 100
Weight first asset w1 1
Second asset price So 100
‘Weight second asset wo 1
Strike price E 200
Interest rate r 0.0953102
Dividend yield first asset D 0.0487902
Dividend yield second asset D> 0.0
Time to Maturity T 0.5
s 0
Domain Syhar 200
ST??,ZTL 0
Sprar 200
Cap cap 10

Table 1: Data Capped Call on a Basket

Volatility | Scenario 1 Scenario 2 Scenario 3

o1 | o2 p=05 p- =04<p<06=pT | p~=03<p<07=pF 9,-
0.1 5.3676 5.1953 5.0833 -0.050

0.1 | 0.2 4.9923 4.8832 4.7742 -0.050
0.3 4.7555 4.6612 4.5677 -0.045
0.1 4.9625 4.8878 4.7767 -0.050

0.2 | 0.2 4.9989 4.7348 4.5998 -0.065
0.3 4.7120 4.5884 4.4569 -0.065
0.1 4.7632 4.6669 4.5706 -0.050

0.3 | 0.2 4.7246 4.5686 4.4584 -0.070
0.3 4.6329 4.5006 4.3591 -0.070

Table 2: Results Capped Call on a Basket

n Germany, examples for capped options are WKN 822361, WKN 822362, WKN 822380, and WKN 822399
which are traded in Frankfurt, Diisseldorf, Stuttgart.
2For a discussion of the boundary conditions and alternative specifications see [16].
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4.2 Options on the Maximum or the Minimum of Two Risky Assets

This product has the payoff

[¢ (min (S1,782) — K)|" (40)
This is a call (¢ = +1) or put (¢ = —1) on the maximum (7 = —1) or minimum ( = +1) of the
two underlyings S; and S» with a strike K. It has been shown by ([13], eq. (123)) that T'cposs
can be expressed as:

(r=D1)(T—1) dap; — d

e 3P1 1
Teross = 61— n(ds) N[ po- 22— 41
Soo/T —t (ds) < 021/1_/)2) (41)

=B
P @%ﬁ (42)
o = o} +03—2poi09 (43)
4 - In() + (r— D1+ 203) (T —t) (44)
g1 Tt
ln(g—f) + (D1 — D2 — %0’2) (T — t)

ds = (45)

oVl —t

The functions N(-) and n(-) represent the cumulative distribution function and the density
function of the standard normal distribution, respectively. Since B, N(-) and n(-) are positive,
the sign of I'.,.,ss depends solely on the variables ¢ and 1 which determine the product type.

| Product | 8 [ n [ Tecross |
Call on the Maximum | +1 | —1 1
Call on the Minimum | +1 | +1 [y
Put on the Minimum —1 | +1 7
Put on the Maximum | —1 | —1 !

Table 3: Signs of T'¢ypss

Using these results, the worst-case scenarios can be computed using the Black-Scholes price with
the following correlations [2]:

| Product | Correlation |
- T
Call on the Maximum | p} .0, = ﬁ ff pt(r)dr
. T
Call on the Minimum PAverage = ﬁ ff pJr T)dT

Put on the Minimum

pAve'raqe T

- - T T
Put on the Maximum | py 0. = —_ f

Table 4: Worst-Case Correlations

In the case when pT(¢) is a constant, p¥, .. ge Teduces to pT. This holds in a similar fashion for
p=(t).

4.3 Two-Asset Barrier Options

In October 1993, Bankers Trust structured a call option on a basket of Belgian stocks that
would knock out if the Belgian franc -not the Belgian stock- appreciated by more than 3.5 %.
So we have two spatial variables entering the pricing equation: one that determines the payoff
treating the basket as a single risk factor, and one that determines whether the option is still
alive. This kind of product went through a boom in the OTC market in 1997 with a strike in
the exchange rate of USD vs. DEM and a barrier in the exchange rate in USD vs. FRF. Back
then, this product was employed to profit from the high difference in historical and implied
correlation. Normally, this product comes with an FX rate on the knock-out barrier so that
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an adjustment for discrete monitoring of the barrier is not necessary. This product can be
generalized for knock-in and part-time barriers so that the barrier is only valid for parts of the

life of the option [5].

We again solve the PDE eq. (13) - (15)

and the data:

OV (1, S5im)

OV (S1,55"")

v(T) =

95?2 =0

05>

V(S{™,S) = 0

av(S{naz’ 52)

max (0, w25, — E)
= [S7ins7er] x [57

05, 0
| Parameter | Symbol | Value |
First asset price S1 100
Weight first asset w1 1
‘Weight second asset w9 1
Strike price E 100
Interest rate r 0.1
Dividend yield first asset D, 0.0
Dividend yield second asset D> 0.0
Volatility first asset o1 0.2
Volatility second asset 02 0.3
Time to Maturity T 0.5
Correlation p varies
s varies
Domain Syrer 300
san 0
S7aT 300

with the following final and boundary conditions:

5y

Table 5: Data Two-Asset Barrier Option Product

Location of Barrier

S5 95 99

p=05 04<p<06 p =05 04<p<06
Amal. | FE FE Anmal. | FE FE

80 | 1.3373 | 1.3353 1.2257 0.3570 | 0.3568 0.3143

85 | 2.1369 | 2.1320 1.9643 0.5572 | 0.5560 0.4945

90 | 3.1633 | 3.1566 2.9205 0.8080 | 0.8064 0.7233

95 | 4.4008 | 4.3939 1.0836 1.1039 | 1.1026 0.9969

100 | 5.8210 | 5.8155 5.4230 1.4376 | 1.4368 1.3090

105 | 7.3901 | 7.3874 6.9287 1.8007 | 1.8008 1.6524

110 | 9.0741 | 9.0753 8.5487 2.1859 | 2.1870 2.0199

115 | 10.8430 | 10.8485 10.2603 2.5868 | 2.5890 2.4051

120 | 12.6721 | 12.6821 12.9316 2.9984 | 3.0017 2.8030

Table 6: Results European Two-Asset Barrier Option

4.4 Basket Options
It holds for both calls and puts that the higher the correlation, the higher the price of the option.

Consequently

ov

8—p—:‘£

>

0

(52)
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From the following relationship ([13], eq. (100))

K = (710'27'5152 F12 (53)
—_———

>0

we can conclude that I';o is always positive. Therefore, the worst-case price of a basket option
only depends on p~. Since no closed-form solution is known for basket options, the price of this
type of option has to be computed numerically or by using an analytical approximation. For a
survey of available methods see [6].

5 Conclusions and Outlook

For many rainbow options, the worst case scenarios cannot be computed by simply plugging in
the worst case correlation into the Black-Scholes models. Whenever numerical techniques need
to be used, they need to provide a good approximation of the mixed derivative. One method
that does well under these circumstances is a collocation finite element method with a cubic
Hermite basis function.

Other common OTC products are rainbows with a binary payoff structure and various caps or
barriers. Digital payoffs lead to high curvature in the spatial variables, a feature finite elements
can easily deal with. Barriers introduce non-rectangular domains (compare [16]) which are hard
to cover with finite differences while they pose no problem for finite element methods. Recently,
some American rainbows have been sold.? Currently, no models are available that describe the
worst-case price in the presence of an early exercise. Also, since most basket options have more
than just two underlyings, solvers in higher dimensions need to be developed.

3For example: Deutsche Bank has issued various American options on baskets of Hewlett Packard Co./Agilent
Technology (WKN 845950ff) and Roche Holding AG/Givaudan AG (WKN 836746ff) which are listed at various
German stock exchanges.
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