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Abstract

Lending is associated with credit risk. Modelling the loss stochastically,

the cost of credit risk is the expected loss. In credit business the probability

that the debtor will default in payments within one year, often is the only

reliable quantitative parameter. Modelling the time to default as continuous

variable corresponds to an exponential distribution. We calculate the ex-

pected loss of a trade with several cash flows, even if the distribution is not

exponential. Continuous rating migration data show that the exponential

distribution is not adequate in general. The distribution can be calibrated

using rating migrations without a parametric model. A practitioner, how-

ever, will model time as a discrete variable. We show that the expected loss

in the discrete model is a linear approximation of the expected loss in the

continuous model and discuss the consequences. Finally, as costs for the

expected loss cannot be charged up-front, the credit spread over risk-free

interest is derived.

1 Introduction

Credit risk attracts immense interest in finance at present. The key reason

is that insolvency rates have increased in the last years. E.g. the annual

rate for the commercial sector in Germany has increased from 0.1% in the

1960s to more than 1% in the first years of the twenty first century (??).

As a consequence, national authorities, such as the “Bundesaufsichtsamt für

das Kreditwesen” (BaKred) in Germany, and international authorities, such

as the “Bank of International Settlement” in Basle, strive to regulate the

management and measurement of credit risk tighter3. A first step in that

3The development is similar to the regulation of management and measurement of mar-
ket risk. For the latter the international “minimal requirements for trading” have evolved
in the past ten years and have been integrated in German law (“Mindestanforderungen
für das Betreiben von Handelgeschäften” (MaH)).
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direction on the international level is the new capital accord of the Bank of

International Settlement (named Basle II, see ?).

Besides the regulatory efforts, the market simultaneously has developed

financial products which allow the trade of credit risk. The volume of these

products has rapidly grown because of the increase in demand to secure credit

risk. A standardization in documentation, e.g. for credit default swaps (see

? and ?) has enabled such growth. The leverage of credit risk can be dra-

matically higher for those credit derivative products compared with genuine

lending. Investment banks manage these high risks because of regulatory

requirements, but also voluntarily, with sophisticated methods of primarily

stochastic and statistical nature, see e.g. ?. As a consequence, the lending

business is now in competition with investment banking and needs to adopt

the developed methodologies or at least be aware of the inaccuracy of simplis-

tic methods. The present paper tries to shed light on these inaccuracies by

postulating that the sophisticated methodology is a continuous-time markov

model and the simple approach is based on discrete univariate statistics.

In fact, some simplifications are indeed correct in the lending business.

E.g. it is typical in practice to fix the payment dates and payment heights

when the contract is negotiated. Hence, we refrain from modelling random

payment dates and heights. Additionally, a loan starts with the granting of

the notional, say today, and ends with maturity.

The credit risk, i.e. the loss that is associated with the insolvency of the

debtor costs the creditor money. When being contacted by a potential debtor

at first time a creditor needs to calculate the cost in order to decide whether,

and if at which rate, to lend. He will base the decision usually on data of

similar cases he has been able to study. The loss will depend on the time

of default after the initiation of the loan. The analysis of time-to-event data

is well established under a variety of labels, e.g. “event history analysis”,

“survival analysis” or “analysis of failure times” (see e.g. ?, ?, ?, ?, ?, ? and

?).
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Our contribution is now the adaption of those methods: We derive ac-

curate formulae for the expected loss, constituting the primary stochastic

cost when lending. To this end, we show that the loss arising from a loan

is a stochastic (jump) process. We compare the costs with the costs arising

from discrete modelling theoretically and in an example. Finally we propose

non-parametric estimation for the calibration of the costing formulae and

illustrate that in an example using rating data.

Three different situations are conceivable. The hazard of default can be

either constant over the whole period or it can be modelled as deterministic

function changing over time. Furthermore, the payment of the debtor can

either be a single payment, a so called bullet, at the time of maturity or it

can more realistically be modelled as incorporating many payments at fixed

a priori known time points till maturity.

The paper is structured as follows. In the next section we consider the

most simple though unrealistic case of a constant hazard rate as well as a

single payment scheme. This is mathematically spoken the most simple case

and is therefore well suited to introduce the problem and the basic ideas. In

section three we generalize this setup by first considering a payment scheme

with many payments till maturity by assuming the hazard rate to be constant

over time. Afterwards we generalize this model by furthermore allowing the

hazard rate to be a non-constant deterministic function. The case of a bullet

payment and a non-constant hazard rate is not relevant in practise and does

not give any additional theoretical insight and is therefore omitted here.

In practice the costs of a loan are usually obtained by applying a discrete

univariate model. Section four compares our results with this discrete model.

Section five finally provides a test for the homogeneity of the loss process.

Furthermore, kernel estimation of the default hazard is proposed if inhomo-

geneity must be assumed and is exemplified using rating data. Section six

concludes, proofs are given in the appendix.
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2 A simple model

We take the point of view of a creditor who lends a certain amount, denoted

by “notional”. Our prototype loan that will serve to illustrate the problem

is particulary simple. It originates in t0 = 0 and ends at maturity T . The

notional is 1 and payed (back) in T . The creditor is prepared to reduce

the initial payment by the expected loss considered as cost. Our aim is

to calculate the expected loss. The credit loss from the perspective of the

creditor for 0 ≤ t ≤ T is given by the stochastic process

Lt := I{τ≤t},

where Icondition denotes the indicator function, i.e. is 1 if the condition is true

and 0 otherwise. The default time of the debtor is denoted by τ . We require

a probability space (Ω, P,F), an increasing filtration of sub-σ-algebras Ft ⊂
F and Lt to be adapted to the filtration. In this section we will consider

the particulary simple case of τ ∼ Exp(α), i.e. assume the loss process to

be homogeneous. The generalization to an arbitrary deterministic default

hazard α(t) will be part of the next section.

It is well known that any stochastic process can be decomposed into a

trend-type component, named “compensator”, and a martingale. In order to

determine the compensator, we use that

E(dLt|Ft−) = I{τ≥t}P (τ ∈ [t, t + dt]|τ ≥ t) = I{τ≥t}αdt

with intensity process λ(t) := I{τ≥t}α and left-side limit Ft− := limdt↘0Ft−dt.

Hence, we have Lt = Λt + Mt with Λt =
∫ t

0
λ(s)ds (see ?, pg. 51) as

cumulative intensity, i.e. the compensator. Clearly, L0 = 0 almost surely

and Λ0 = 0 almost surely so that E(MT ) = E(M0) = 0. Denoting the

density of the default time τ by f(t) we have

E(LT ) = E(ΛT ) + E(MT ) =

∫ T

0

EI{τ≥s}αds =

∫ T

0

f(s)ds = F (T )

= 1− e−αT . (1)
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The notional of 1 was chosen for pure convenience. For a generalization

to any (known) cash flow A, multiply the expected loss (1) by A. So far,

our understanding has been that the counterparts, creditor and debtor, agree

to exchange the amount A, the notional, at maturity T . Consequently, the

creditor reduces the initial payment to the debtor by the cost for the expected

loss and hence pays out Ae−αT . However, to regain the notional at the ma-

turity of a trade is common only in the bond market. For loans, the notional

is usually paid to the debtor at origination and returned including interest

at maturity. The latter modality is still a simplification. Usually, only short

running loans have an aggregated compensation at maturity called “bullet”

structure. For longer maturities it is common to pay interest periodically.

We will cover this case in the next section. For the application of (1) to a loan

with final compensation think of the final payment A as the compensation

for a loan with notional Ae−αT . If now, instead of the final payment A, the

pay-out at origination B is fixed, A (seen as redemption including costs for

the expected loss) is

A = BeαT . (2)

Formula (2) demonstrates that the accounting for the expected loss is similar

to continuous compounding of A with interest rate α (see ?, pg. 46). The

latter is known in the pricing of derivative products subject to credit risk (?,

?) or (see ?, pg. 106).

3 The multiple payment loan

The last section displayed the general idea. Here we want to enlarge the

model to representative situations. Typically, loans involve periodical pay-

ments, it can be viewed as a cash flow series ati of payments at the times

0 = t0 < t1 < . . . < tn = T . Positive payments symbolize flows from the

debtor to the creditor, negative payment from the creditor to the debtor.

Figure 1 displays a typical contract.
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0 = t0

B

t1 ti

ati

tn = T

at1

atn

Figure 1: Typical cash flow series of a loan

The loss is now the stochastic process

Lt = I{t≥τ}
∑
ti≥τ

ati = I{t≥τ}
n∑

i=1

I{τ≤ti}ati .

In banking the creditworthiness of a debtor is usually described by a

rating defining the one-year probability of default (PD1). E.g. rating agencies

assess these probabilities and publish their results for further uses by credit

originators (see e.g. ???). As a result, PD1 is the most well-known parameter

in credit risk and we like to display the expected loss in terms of the PD1.

As the default hazard is constant PD1 = P (τ ≤ 1) is determined by α is

given by

F (1) = 1− e−α, (3)

(see e.g. ?) where F (t) := P (τ ≤ t). Any PD of the debtor is given by

F (t) = 1− e−αt.

Theorem 1 Let the series at0 , . . . , atn represent the payments of a loan con-

tract originated in t0 maturing in tn. Assume that the default risk of the
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debtor is constant and given by the one-year probability of default PD1. Than

the expected loss of the creditor a priori, i.e. at t0 is

E(LT ) =
n∑

i=1

(1− (1− PD1)
ti)ati .

The proof is postponed to the appendix.

In the remainder of the section we will account for two modifications, the

time-value of money and the variability of the default hazard. The principle

of time-value in money is that future payments are less valuable now, in

t0. We must discount the payments with the so-called risk-free interest rate.

We must discount the contractual payments ati with a risk-free interest rate

curve r(t). By using continuous compounding we get

atie
r(ti)ti . (4)

In fact, we know the interest rate curve r(t) for lending free of credit risk in t0.

One possibility is to use the interbank offer rates, e.g. the “Euribor” for the

Euro-denoted loans. Hence, the discounted payments are again deterministic

and do not need methodological advances.

The second generalization is to allow for a non-constant default hazard.

Often in practice it is argued that the one-year probability of default PD1

cannot be applied to all time periods of the loan as done so far. In terms

of the default hazard the assumption of a constant rate α is unrealistic, we

need a time-dependent default hazard α(t).

Theorem 2 Let the series at0 , . . . , atn represent the payments of a loan con-

tract originated in t0 maturing in tn. Assume that the default risk of the

debtor is given by the known default hazard α(t). Let r(t) denote the contin-

uous compounding interest rate at time t0 for loan free of credit risk. Than

the expected loss of the creditor at t0 is

E(LT ) =
n∑

i=1

(1− e−
∫ ti
0 α(s)ds)atie

r(ti)ti .
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Proof: It should be noted that

E(dI{τ≤t}|Ft−) = I{τ≥t}P (τ ∈ [t, t + dt]|τ ≥ t) = I{τ≥t}α(t)dt

with intensity process λ(t) := I{τ≥t}α(t). Similar to the proof of Theorem

1 we have E(LT ) = I{τ≥t}
∑

ti≥t atie
r(ti)tiα(t)dt. Again, we have achieved

E(LT ) =
∑n

i=1 F (ti)atie
r(ti)ti where the cumulative distribution function F (t)

is no longer the exponential distribution but one-to-one determined by the

default hazard via F (t) = 1− e
∫ t
0 α(s)ds. ¤

4 Comparison to the discrete model

Credit Risk is in practice often modelled in a discrete fashion (see e.g. ?), e.g.

with one year intervals. Consider now the prototype loan type of the previous

section that has a final compensation of 1 at maturity T . Market standard is

now to assume equivalence of a loan over T years to T independent one-year

loans and calculate the expected loss as4: (using 3)

T × F (1) = T (1− e−α). (5)

The stated procedure is underpinned statistically by the Bernoulli model

for the one-year default and an implicit assumption is that the Bernoulli

probability does not change, i.e. that default hazard is again constantly α.

To compare the exact expected loss costs (1) with the market method (5)

consider the difference

DT := T (1− e−α) + e−αT − 1.

It can be easily seen that the roots of DT , i.e. the maturities where the

market method is exact, are T = 0 and T = 1. To examine the behavior of

4Hierfür wäre natürlich (neben meiner Gewissheit aus der WestLB) auch noch ein Zitat
nützlich.
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DT in more detail we consider the first derivative

D′
T = (1− e−α)− αe−αT

and obtain the local extremes by solving D′
T = 0. This is the case for

T0 = − 1
α
ln(1−e−α

α
). The second derivative of DT is D′′

T = α2e−αT being

positive at T = T0 proving that the difference DT has exactly one local

minimum. This proves that DT is decreasing for T < T0 and increasing for

T > T0 showing that DT is negative for 0 < T < 1 and positive for T > 1.

Therefore, the market method understates the costs for maturities under one

year and overstates the costs for maturities over one year where the benefits

from our approach increases exponentially. Numerical root finding reveals

that the cost of the market method (5) values 10% higher compared with the

exact cost (1) when the PD1 is 1% and the maturity T = 20.

Given the fact that T0 is near to zero for all 0 < α < 1, which holds

for the realistic cases of 0 < PD1 < 0.2, our approach is analogous to the

one-year approach for T < 1 (year).

The market method of expected-loss calculation (5) for our prototype

loan is easily generalized to the multi-payment loans of Theorem 1. One must

simply consider each payment ati to represent a prototype loan and assume

all prototype loans to be independent. In line use the one-year probability

of default PD1, apply it to each year in which a loan is granted and add

the yearly costs PD1 × notional. Interestingly, the procedure is an analytic

approximation of the exact cost given in Theorem 1.

Theorem 3 Under the assumptions and notations of Theorem 1 holds:

ELT ≈
n∑

i=1

PD1tiati .

The equality holds for PD1 = 0.

Proof: Expand the coefficient 1− (1−PD1)
ti in Theorem 1 with respect
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Figure 2: Annual insolvency rate for the German economy from 1962 to 2004

(until 1994 West Germany) in per thousand.

to the variable PD1 at 0:

1− (1− PD1)
ti =

∞∑
ν=1

(−1)ν+1 ti!

(ti − ν)!
PDν

1 .

If we use a linear approximation, namely ν = 1, we have

1− (1− PD1)
ti ≈ tiPD1.

¤
Thus, we have shown that the conventional calculation is a Taylor approxi-

mation, only using the linear coefficient.

Clearly, the approximation is good for small default probabilities. How-

ever, insolvency rates, and hence default probabilities, has been rising in

Germany for the past forty years. Figure 2 displays the annual insolvency

rate for companies (?? amended by the recently published value for 2004).

Whereas in the sixties and seventies the approximation given in Theorem

3 may have been sufficiently accurate, nowadays the approximation seems to
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be questionable. The average insolvency rate in the sixties of the last century

was only around 10% of the average rate in the first decade of the present

century.

We would like to investigate potential business implications. Our example

is a 10 year loan of 100 million Euro notional to a counterpart with one-year

PD of 1%. We consider the case of constant annuities, i.e. annual payments

of 10 million to pay back the debt. The expected loss with respect to the

market method (Theorem 3) is 5.5 million Euro, or 5.5%. Whereas the exact

expected loss in the exact calculus (Theorem 1) is 5.34 million Euro - or

5.34%. The user of the market method collects 160, 000 Euro too much from

the counterpart. The difference of 16 basis points is huge from an investment

banking perspective, especially when looking at liquid markets. The loan

market is already liquid and becomes more and more liquid with current

increases in loan trading. Even more liquid is the interest rate derivative

market, especially the Swap market.

However, the quantity is not easy to assess because it is not denoted on

an annual basis. The interest rate needs distribution over ten years. It is

not possible to divide the amount by ten in the case of the ten-year loan

because the future cash flows are subject to default, and, hence less valuable.

The equilibrium premium mark-up is a constant surplus ε to the ati . In the

continuous model, the additional cash flow arising from the risk premium

is Pt = ε
∑n

i=1 1{τ>ti} and in order to compensate for the expected loss in

Theorem 1, the expected premium needs to equal the expected loss. The

expected premium E(PT ) is easily calculated for a constant default hazard

as ε
∑n

i=1 e−tiα. The premium that the credit needs to collect, the “credit
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spread”, is5

ε =

∑n
i=1(1− (1− PD1)

ti)ati∑n
i=1(1− PD1)ti

. (6)

For our example of the ten year loan with a 1% annual default probability,

the ε is 0.5639%, which adds up to 5.639 million if the counterpart fulfills all

duties. This amount is slightly higher than the expected loss of 5.34 million

due to the potential loss of parts of the premium when the counterpart default

prior to the maturity of the trade. The easiest charge for the expected loss on

an regular basis as indicated by the formula (5) for the one-year loan would

be 1% for all periods. This approach would almost double the exact credit

spread (6) in our example.

5 Calibrating the default hazard

We see that pricing for credit risk needs a specification of the default hazard,

either as in Theorem 1 and 3 of a constant hazard or as in Theorem 2 of

a variable hazard. The question arises which hazard function to use. The

assumption of a constant rate is certainly appealing in terms of simplicity.

Having historical data at hand, the maximum likelihood estimate from a

sample τ1, . . . , τn of identically independently distributed default times is

known to be n/
∑n

i=1 τi. The point is, rather, how can we decide whether

the hazard rate is constant?

The rating class assigns a counterpart to a homogeneous population. His-

torical behavior of the population can be used to infer about the shape of

the hazard function. The first important question is: When is the origin of

5From microeconomic theory we know that in competitive markets, as in the capital
market, the supplier of capital has negligible impact on the price. However, proper pricing
of the loan is not redundant for one important reason. The price developed can be seen as
a hurdle rate to the market price. If the credit spread in the market is above the hurdle
rate (6) we safely enter into a deal, otherwise our risk perception is above the market’s
and the investor should refrain from trading.
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time? In order to observe default times we must define a point in time when

we start counting. Banks must rate a counterpart internally when a (first)

loan is negotiated. The interesting event is “default after amendment to the

portfolio” the time of initialization of the trade must be seen as the origin

of the random variable “default time”. Ongoing regular rating at least on

an annual basis is mandatory until the trade is matured. Default dates are

usually known exactly. These data can be used to test the assumption of a

constant default hazard for the transition from the respective rating class to

the default state. Fortunately, from a business perspective, many of the en-

gagements end without the observation of a default time. The censoring that

can occur is then right-censoring as the event may not be observed due to the

termination of trade without default6. In any type of survival analysis and

especially in assessing the credit risk, right-censored observations arise from

“good” risk, meaning that counterparts do not default while being under in-

vestigation. These observations have to be incorporated into the estimation

and testing of the default hazard because neglecting them would result in

serious bias, in this case over-costing. Interestingly, ? uses the same con-

tinuous type of data (to test for Markovian behavior, meaning rating drift),

although with calender dates as time axis.

Employing the common notation for censored data, we define that the n

independent observations Xi = max{τi, ci}, i = 1, . . . , n, refer either to the

default times τi or the censoring times ci and that δi = I{Xi=τi} indicates the

censoring for i = 1, . . . , n. Ordering of the censoring indicators δ(i) follows

that of the corresponding observations X(i).

We suggest, at first stage, to check graphically for a constant hazard rate,

i.e. a linear cumulative hazard function A(t) :=
∫ t

0
α(s)ds. A standard plot

in statistical software (in the presence of right-censoring) data is − log of the

product-limit estimate. The latter estimates the survival function, meaning

1 minus the cumulative distribution function, without bias (see ?). See again

6Other censoring vents are discontinued rating or migration to another rating class.
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equality (3) for the relation. If it appears to be linear, the hazard function

might be constant. A kernel-smoothed estimates of the hazard rate itself can

easily be implemented as we will see in the example.

However, an even better indicator of the linearity for the hazard function

is an inferential test against the null hypothesis of a constant hazard function

(given the one-year PD1).

In the statistical literature the test for a constant hazard function is

known as “one-sample log-rank test” (see ?). The test can be embedded

in the context of counting processes (see ?). As we can assume the one-

year PD1 to be known and, see (3), apply the test to the hypothesis H0 :

α(t) ≡ − log(1−PD1). The asymptotically standard normal distributed test

statistic is V = (N(t) − E(t))/
√

E(t) where N(t) := ]{i : Ti ≤ t, Ci = 1}
is the number of uncensored defaults until time t and E(t) := − log(1 −
PD1)

∑n
i=1(Xi ∧ t) is the expected number of defaults in [0, t]. Usually, one

uses for the argument t the largest uncensored default time.

As an example we use internal rating data of a rating system, made

available to us by WestLB AG, Düsseldorf. The data set comprises 200

counterparts belonging to a homogeneous (minor) rating class. Default or

censoring times range from 7 days to 1789 days (4.9 years). The censor-

ing (withdrawn rating, discontinued business relation, change of rating class

other than default, still active) is 69.5%. Figure 3 displays estimates of the

survival function and the cumulative hazard function. As in the right tail,

above 678 days, no uncensored information is available, resulting in uninfor-

mative estimates.

The estimation of the cumulative hazard function looks rather concave

than linear. We need to estimate the survival curve for the test, later.
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Figure 3. Kaplan-Meier estimate of the survival distribution function of the

default time in the rating class (black line) and corresponding estimate for

cumulative hazard function (grey line).

We estimate the default hazard (used in Theorem 2) via kernel smoothing.

We use the following kernel estimate of the hazard rate (see e.g. ?)

αn(t) =
n∑

i=1

δ(i)

n− i + 1

1

RNN(X(i))
K

(
X(i) − t

RNN(X(i))

)
. (7)

with a bi-quadratic kernel k(·) (see e.g. ?) and nearest-neighbor bandwidth

RNN(·) (see e.g. ?) to assess the assumption of a constant hazard. For a

proof of strong consistency see ?.

For an optimal choice of the bandwidth parameter, namely the num-

ber of nearest neighbors, we use the selector from the density estimation

context. The bandwidth was chosen optimally with respect to the mean

integrated squared error in the context of density estimation assuming an

underlying normal distribution. This method is sometimes referred to as

“rule of thumb”. (See for example ? for the case of fixed bandwidth den-
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sity estimation.) A bridge, laid out in detail in ?, helps us to calculate the

optimal number of nearest neighbors from an optimal fixed bandwidth.

For our study data the hazard rate estimate programmed in SAS/IML is

depicted in Figure 4. We restrict the display to 800 days, as in the case of

Figure 3. It can be seen that three modes seem to be present.

Figure 4. Kernel estimate of the hazard rate with nearest neighbor

bandwidth and 23 nearest neighbors.

To supplement the descriptive assessment of the hazard rate we use the

log-rank test for inferential statistics as implemented in SAS/STAT.

We assume the rating to be well calibrated and use the one-year probabil-

ity of the product-limit estimate of 38.7% as a one-year PD which is assumed

to be known (see Figure 3). The maximum uncensored survival time t is 1.86

years and until then N(t) = 61 defaults occur. Under the null hypothesis of

a constant default hazard the expected number is E(t) = 77. The test rejects

the hypothesis at a level of 5% and, hence, strongly supports our judgement

of a varying hazard rate. The p-value is 0.034.
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6 Summary

We have discussed the loss and its costs in terms of the expected loss of

loans. We started with a loan with bullet payment and modelled the loss

as stochastic jump process to derive a formula for the exact expected loss.

Assuming a constant hazard rate of default for the counterpart, we showed

that the standard practice in banking is a Taylor approximation of our result

only by using the linear component. We gave evidence that the hazard rate

may not be assumed to be constant and derived a formula which accounts

for the cumulative hazard rate. Furthermore, we showed how to estimate the

latter from right-censored data. The techniques which we applied generalize

the calculation of the expected loss by using migration matrices as in ? due

to the continuous nature which makes the assumption of a discrete cash flow

structure such as for rating matrices redundant. We have integrated the cost

of default into the interest rate charged by the investor as price building.

SAS and SAS/IML are registered trademarks of SAS Institute Inc. Carry,

NC, USA.

A Proof of Theorem 1

To calculate the compensator, we calculate again the expected incremental

changes

E(dLt | Ft−) = I{τ≥t}
∑
ti≥t

atiE(I{τ∈[t,t+dt]} | Ft−)

= I{τ≥t}
∑
ti≥t

atiαdt

where λ(t) := 1{τ≥t}
∑

ti≥t atiα is the intensity process. To calculate the

expected loss up until time T in the stochastic calculus we need to calculate
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the expected trend at time T because

ELT = EΛT .

Now,

EΛT = E

∫ T

0

∑
ti≥s

atiI{τ≥s}αds

=

∫ T

0

∑
ti≥s

atiEI{τ≥s}αds

=
n∑

i=1

ati

∫ T

0

I{ti≥s}f(s)ds

=
n∑

i=1

F (ti)ati

=
n∑

i=1

(1− e−ti(− log(1−PD1)))ati .

¤
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